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We explore the phenomenological viability of a light Z0 in heterotic-string models, whose existence has

been motivated by proton stability arguments. A class of quasirealistic string models that produce such a

viable Z0 are the left-right symmetric (LRS) heterotic-string models in the free fermionic formulation.

A key feature of these models is that the matter charges under Uð1ÞZ0 do not admit an E6 embedding. The

light Z0 in the LRS heterotic-string models forbids baryon number violating operators, while allowing

lepton number violating operators, hence suppressing proton decay yet allowing for sufficiently small

neutrino masses via a seesaw mechanism. We show that the constraints imposed by the gauge coupling

data and heterotic-string coupling unification nullify the viability of a light Z0 in these models. We further

argue that agreement with the gauge coupling data necessitates that the Uð1ÞZ0 charges admit an E6

embedding. We discuss how viable string models with this property may be constructed.
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I. INTRODUCTION

The discovery of the Higgs boson at the LHC lends
further credence to the hypothesis that the Standard
Model (SM) provides a viable effective parametrization
of all subatomic interactions up to the grand unified theory
(GUT) or heterotic-string unification scales. Support for
this possibility stems from: the matter gauge charges;
proton longevity; suppression of neutrino masses; and the
logarithmic evolution of the SM parameters in its gauge
and matter sectors. Preservation of the logarithmic running
in the SM scalar sector entails that it must be augmented by
a new symmetry. A concrete framework that fulfills the
task is given by supersymmetry.

The supersymmetric extension of the SM introduces
dimension four and five baryon and lepton number violat-
ing operators that mediate proton decay. This problem is
particularly acute in the context of heterotic-string-derived
constructions, in which one cannot assume the existence of
global or local discrete symmetries that simply forbid the
undesired operators. Indeed, the issue has been examined
in the past by a number of authors [1]. The avenues ex-
plored range from the existence of matter parity at special
points in the moduli space of specific models, to the
emergence of non-Abelian custodial symmetries in some
compactifications. However, a caveat to these arguments is
that in addition to suppressing the proton decay mediating
operators, one must also ensure that the mass terms of left-
handed neutrinos are sufficiently suppressed. That is, while
baryon number should be conserved to ensure proton lon-
gevity, lepton number must be broken to allow for sup-
pression of left-handed neutrino masses. In heterotic-string
constructions, due to the absence of higher-order represen-
tations of the grand unified theory [2], one typically has to

break lepton number by one unit, which generically results
in both lepton and baryon number violation. An alternative
solution to this conundrum is obtained if an additionalUð1Þ
gauge symmetry, beyond the SM gauge group, remains
unbroken down to low scales. An additional Abelian gauge
symmetry, which is broken near the TeV scale, may also
explain the suppression of the � term in the supersymmet-
ric potential [3].
The possibility of a low-scale Z0 arising from heterotic-

string-inspired models has a long history and continues to
attract wide interest [4]. Surprisingly, however, keeping a
Z0 in explicit string-derived constructions, unbroken down
to the low scale, turns out to be notoriously difficult, as
such an extra symmetry must satisfy a variety of pheno-
menological constraints. Obviously, to play a role in
the suppression of proton decay mediating operators
(PDMOs) implies that the SM matter states are charged
under this symmetry. While forbidding baryon number
violation, it should allow for lepton number violation,
required for the suppression of neutrino masses.
Furthermore, it should be family universal; otherwise there
is a danger of generating flavor changing neutral currents,
or of generating the PDMOs via mixing. The additional
symmetry should also allow for the fermion Yukawa cou-
plings to electroweak Higgs doublets and must be anomaly
free. Explicit string models that do give rise to an extra
Uð1Þ symmetry with the required properties are the left-
right symmetric models of [5,6]. The existence of the
required symmetry in explicit string constructions ensures
that, in these examples, the extra Uð1Þ is free of any gauge
and gravitational anomalies. In [7] we constructed toy
string-inspired models that are compatible with the charge
assignments in the string-derived models. In these models,
the proton lifeguarding extra Uð1Þ symmetry can, in prin-
ciple, remain unbroken down to low scales.
An additional constraint that must be imposed on the

extra gauge and matter states that arise in the Z0 models is
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compatibility with the gauge parameters sin 2�WðMZÞ
and �3ðMZÞ. The perturbative heterotic-string predicts
that all the gauge couplings are unified at the string uni-
fication scale MS, which is of the order 5� 1017 GeV.
Nonperturbatively, the heterotic string can be pushed
to the GUT unification scale MGUT, of the order
2� 1016 GeV [8]. In this paper we study the constraints
that are imposed on the string-inspired Z0 models by gauge
coupling unification and show that the gauge coupling data
are not in agreement with the left-right symmetric
heterotic-string models. The origin for the disagreement
lies in the specific Uð1ÞZ0 charges, which do not admit an
E6 embedding. For comparison we also perform the analy-
sis for Uð1ÞZ0 charges that maintain the E6 embedding and
show that, in this case, agreement with the data is achieved.
We discuss how viable string-derived models that preserve
the E6 embedding may be constructed.

II. ADDITIONAL Uð1Þ’S IN FREE
FERMIONIC MODELS

In this section we review the structure of the free
fermionic models. We focus on the extra Uð1Þ symmetries
that arise in the models and the charges of the matter states.
We elaborate on the gauge symmetry breaking patterns
induced by the generalized GSO (GGSO) projections
but concentrate here on the group theory structure and
the matter charges. Further details of the free fermionic
models and their construction are found in earlier liter-
ature [5,9–16]. The free fermionic models correspond to
Z2 � Z2 orbifold compactifications at special points in the
moduli space [17]. It should be emphasized that our results
are applicable to the wider range of orbifold models
because they merely depend on the symmetry breaking
patterns of the observable gauge symmetry.

Free fermionic heterotic-string models are constructed
by specifying a consistent set of boundary condition basis
vectors and the associated one-loop GGSO phases [9].
These basis vectors span a finite additive group �, where
the physical states of a given sector � 2 � are obtained by
acting on the vacuum with bosonic and fermionic operators
and by applying the GGSO projections. The Uð1Þ charges,
with respect to the unbroken Cartan generators of the four-
dimensional gauge group, are given by

QðfÞ ¼ 1

2
�ðfÞ þ FðfÞ; (2.1)

where �ðfÞ is the boundary condition of the complex
world-sheet fermion f in the sector �, and F�ðfÞ is a
fermion number operator counting each mode of f once
(f� minus once). For periodic fermions with �ðfÞ ¼ 1, the
vacuum is a spinor representing the Clifford algebra of the
zero modes. For each periodic complex fermion f, there
are two degenerate vacua jþi and j�i annihilated by the
zero modes f0 and f�0, with fermion numbers FðfÞ ¼ 0,
�1, respectively.

Three-generation models in the free fermionic construc-
tion have been obtained by using two constructions: the
first were the NAHE-based models [13]; and the second
class of models are those constructed by the classification
method of [15]. The important distinction between the two
cases is that the latter has only been applied for symmetric
orbifolds, whereas, in the former, most of the constructions
utilize asymmetric boundary conditions.
In NAHE-based models [5,10–12,14] the first set of five

basis vectors, f1; S; b1; b2; b3g, are fixed; b1, b2 and b3
correspond to the three twisted sectors of the Z2 � Z2

orbifold and S is the spacetime supersymmetry generator.
The gauge symmetry at the level of the NAHE set is
SOð10Þ � SOð6Þ3 � E8 with N ¼ 1 spacetime supersym-
metry. The second stage of the construction consists of
adding three additional basis vectors to the NAHE set. The
additional vectors reduce the number of generations to
three and simultaneously break the four-dimensional
group. The SOð10Þ symmetry is broken to one of its
maximal subgroups: SUð5Þ �Uð1Þ (FSU5) [10]; SUð3Þ �
SUð2Þ �Uð1Þ2 (SLM) [11]; SOð6Þ � SOð4Þ (PS) [12];
SUð3Þ �Uð1Þ � SUð2Þ2 (LRS) [5]; and SUð4Þ � SUð2Þ �
Uð1Þ (SU421) [14].
An important distinction between the last two cases

and the first three is in regard to the anomalous Uð1ÞA
symmetry that arises in these models [5,14,18]. The Cartan
subalgebra of the observable rank eight gauge group is
generated by eight complex fermions, denoted by
f �c 1;...;5; ��1;2;3g, where �c 1;...;5 are the Cartan generators of
the SOð10Þ group and ��1;2;3 generate three Uð1Þ symme-
tries, denoted by Uð1Þ1;2;3. In the FSU5, PS and SLM cases

the Uð1Þ1;2;3, as well as their linear combination

Uð1Þ� ¼ Uð1Þ1 þUð1Þ2 þUð1Þ3 (2.2)

are anomalous, whereas in the LRS and SU421 models
they are anomaly free. The distinction can be seen to arise
from the symmetry breaking patterns induced in the two
cases from the underlying N ¼ 4 toroidal model in four
dimensions. Starting from the E8 � E8, in the first case the
symmetry is broken to SOð16Þ � SOð16Þ by the choice of
GGSO projection phases in the fermionic models, or equiv-
alently by a Wilson line in the corresponding orbifold
models. The basis vectors b1 and b2 break the symmetry
further to SOð10Þ �Uð1Þ3 � SOð16Þ. Alternatively, we
can implement the b1 and b2 twists in the E8 � E8 vacuum,
which break the gauge symmetry to E6 �Uð1Þ2 � E8. The
Wilson line breaking then reduces the symmetry to
SOð10Þ �Uð1Þ� �Uð1Þ2 � SOð16Þ. It is then clear that

theUð1Þ� becomes anomalous because of the E6 symmetry

breaking to SOð10Þ �Uð1Þ� and the projection of some

states from the spectrum by the GGSO projections [18]. On
the other hand, the LRS and SU421 heterotic vacua arise
from an N ¼ 4 vacuum with E7 � E7 � SOð16Þ gauge
symmetry [5,14]. In this case, one of the E7 factors pro-
duces the observable gauge symmetry and the second is
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hidden. The important point here is that these models
circumvent the E6 embedding. Hence, in these cases, the
Uð1Þ� does not have an E6 embedding and therefore re-

mains anomaly free.
The case of the symmetric orbifolds studied in [15] only

allows for models with an E6 embedding ofUð1Þ� . Thus, in
these models Uð1Þ� is, generically, anomalous. There is,

however, a class of models in which it is anomaly free. This
is the case in the self-dual models under the spinor-vector
duality of [19]. In these models the number of SOð10Þ
spinorial 16 representations and the number of vectorial
10 representations arising from the twisted sectors is iden-
tical, although the E6 symmetry is broken. This situation
occurs when the spinorial and vectorial representations are
obtained from different fixed points of the Z2 � Z2 toroidal
orbifold. A self-dual, three-generation model with unbro-
ken SOð10Þ symmetry is given in Ref. [15]; however, a
viable model, of this type, with broken SOð10Þ symmetry
has not been constructed to date.

Alternatively, we may construct Uð1Þ� � E6 as an

anomaly-free combination by following a different
symmetry breaking pattern to the E6 ! SOð10Þ �Uð1Þ
discussed above. Originally, the E6 ! SOð10Þ �Uð1Þ
breaking is achieved by projecting the vector bosons that
arise in the spinorial 128 representation of SOð16Þ and
enhance the SOð16Þ symmetry to E8. We may construct
models in which these vector bosons are not projected and,
thus, the E6 symmetry is broken to a different subgroup.
Examples of such models include the three-generation
SUð6Þ � SUð2Þ models of [20]. In this case, the Uð1Þ� is

anomaly free by virtue of its embedding in the enhanced
symmetry.

III. GAUGE COUPLING ANALYSIS

In this section we present a comparative analysis of the
two classes mentioned above. It will be instructive to
specify a model in each class:

(i) Model I: This model was first presented in [7]. In
this case the extra Uð1Þ� does not admit an E6

embedding, i.e. SOð10Þ �Uð1Þ� 6� E6.

(ii) Model II: This model preserves the E6 embedding
of the Uð1Þ� and is akin to Z0 models arising in

string-inspired E6 models [4].
Before proceeding with the gauge coupling analysis, it is
instructive to detail the symmetry breaking patterns
applicable to both models. The SM gauge group will be
embedded, for our analysis, in SOð10Þ. As previously men-
tioned, this is broken to the left-right symmetric (LRS)
gauge group via the addition of basis vectors �, �, and �
at the string scale MS. The SUð2ÞR is then broken at some
intermediate scaleMR. An anomaly-free Uð1Þ combination
that remains is the Uð1ÞZ0 which is required to survive to
low energies to preserve proton longevity [6,7].

In our analysis we vary the unification scale in the
range 2� 1016–5� 1017 GeV. The lower scale is the

natural minimal supersymmetric Standard Model
(MSSM) unification scale [21] MX, whereas the higher
scale corresponds to the heterotic-string unification scale
[22] MS. This factor of 20 discrepancy was discussed in
[23] and it was concluded that intermediate matter thresh-
olds contributed enough to overcome the difference, al-
lowing coupling unification in a wide class of realistic
free-fermionic string models [24]. From the spectra of our
models, we will see that it is natural to include intermedi-
ate matter thresholds to achieve string unification. It has
also been demonstrated that nonperturbative effects aris-
ing in heterotic M theory [25] can push the unification
scale down to the MSSM unification scale [8]. Our aim
here is to study, qualitatively, the question of gauge
coupling unification in the LRS heterotic-string models,
in particular, to demonstrate that a low-scale Z0 in these
models is incompatible with the gauge coupling data at
the electroweak scale. The novel feature of the LRS
models is the Uð1ÞZ0 charge assignments. These admit
an E8 embedding and therefore similar charge assign-
ments also arise in heterotic M theory and so we take
the unification scale to vary between MX and MS to allow
for the possible nonperturbative effects. We contrast the
analysis in the LRS heterotic-string models with the
models that admit the E6 embedding of the Uð1ÞZ0

charges. In both models there are four intermediate scales
between MS and MZ, corresponding to:
MR: SUð2ÞR breaking scale.—The neutral components

ofH R þ �H R acquire a vacuum expectation value (VEV)
to break the SUð2ÞR symmetry and leave the Uð1ÞZ0

unbroken.
MD: Color triplet scale.—The additional color triplets in

our model acquire a mass at this scale. This will also
resolve the discrepancy between the MSSM unification
scale and string scale unification.
MZ0 : Uð1ÞZ0 breaking scale.—The Uð1ÞZ0 is broken at

this scale by singlets acquiring VEVs. The anomaly-
canceling doublets also acquire mass at this scale and
only the MSSM spectrum survives to lower scales.
MSUSY: Supersymmetry breaking scale.—The current

bounds from the LHC will be included here to get a
phenomenologically viable supersymmetry scale. Only
the SM states remain down to the MZ scale, at which the
gauge data are extracted. Threshold corrections for the top
quark and Higgs boson are included in the analysis.
In addition, due to the extra Abelian gauge symmetry
acting as our proton protector, MZ0 should be sufficiently
low in order for adequate suppression of induced PDMOs
[6,7]. By starting from the string scale and evolving the
couplings down to MZ, our analysis may test whether the
predictions of these models are in accordance with low-
energy experimental data.
Low-energy inputs
For our analysis, we take the following values for the

masses and couplings [26]:
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MZ ¼ 91:1876� 0:0021 GeV;

sin 2�WðMZÞjMS ¼ 0:23116� 0:00012;

��1 � ��1
e:m:ðMZÞ ¼ 127:944� 0:014;

�3ðMZÞ ¼ 0:1184� 0:0007:

(3.1)

We also include the top quark mass of Mt � 173:5 GeV
[26] and the Higgs boson mass of MH � 125 GeV [27] in
our analysis.

Renormalization group equations
For the analyses of both models, we follow [23]. String

unification implies that the SM gauge couplings are unified
at the heterotic-string scale. The one-loop renormalization
group equations (RGEs) for the couplings are given by

4�

�ið�Þ ¼ ki
4�

�string

þ �i log
M2

string

�2
þ �ðtotalÞ

i ; (3.2)

where �i are the one-loop beta-function coefficients, and

�ðtotalÞ
i represents possible corrections from the additional

gauge or matter states. By solving the one-loop RGEs we
obtain expressions for sin 2�WðMZÞ and �3ðMZÞ. In each
model, we initially assume the MSSM spectrum between
the string scale MS and the Z scale MZ and treat all
perturbations as effective correction terms. At the string
unification scale we have

�S � �3ðMSÞ ¼ �2ðMSÞ ¼ k1�YðMSÞ; (3.3)

where k1 ¼ 5=3 is the canonical SOð10Þ normalization.
Thus, the expression for sin 2�WðMZÞjMS takes the general

form [23]

sin 2�WðMZÞjMS ¼ �
sin 2�W
MSSM þ�

sin 2�W
I:M: þ�

sin 2�W
L:S:

þ �
sin 2�W
I:G: þ �

sin 2�W
T:C: (3.4)

with �3ðMZÞjMS taking similar form with corresponding

��3 corrections. Here �MSSM represents the one-loop con-
tributions from the spectrum of the MSSM between the
unification scale and the Z scale. The following three �
terms correspond to corrections from the intermediate
matter thresholds, the light supersymmetry (SUSY) thresh-
olds, and the intermediate vector bosons corresponding to
the SUð2ÞR symmetry breaking. The last term,

�sin 2�W
T:C: ¼ �sin 2�W

H:S: þ �sin 2�W
Yuk: þ �sin 2�W

2-loop þ �sin 2�W
Conv: ; (3.5)

includes the corrections due to heavy string thresholds and
those arising from Yukawa couplings, two loops and
scheme conversion. These corrections are small and are
neglected for this demonstrative analysis.

For sin 2�WðMZÞ we obtain

�sin 2�W
MSSM ¼ 1

1þ k1

�
1� �

2�
ð11� k1Þ logMS

MZ

�
;

�sin 2�W
I:M: ¼ 1

2�

X
i

k1�

ð1þ k1Þ ð�2i � �1iÞ log
MS

Mi

;

�
sin 2�W
L:S: ¼ 1

2�

k1�

ð1þ k1Þ ð�1L:S: � �2L:S:Þ log
MSUSY

MZ

;

(3.6)

where � ¼ �e:m:ðMZÞ and Mi are the intermediate gauge
and matter scales discussed earlier. Similarly for �3ðMZÞ,
we have

�
�3

MSSM ¼ 1

1þ k1

�
1

�
� 1

2�
ð15þ 3k1Þ logMS

MZ

�
;

��3

I:M: ¼
1

2�

1

ð1þ k1Þ
X
i

½ð1þ k1Þ�3i � ð�2i þ k1�1iÞ�

� log
MS

Mi

;

�
�3

L:S: ¼� 1

2�

1

ð1þ k1Þ ½ð1þ k1Þ�3L:S: � ð�2L:S: þ k1�1L:S:Þ�

� log
MSUSY

MZ

: (3.7)

A subtle issue in the analysis of gauge coupling unification
in string models is the normalization of the Uð1Þ genera-
tors. In GUTs the normalization of Abelian generators is
fixed by their embedding in non-Abelian groups. However,
in string theory the non-Abelian symmetry is not manifest,
and the proper normalization of the Uð1Þ currents is ob-
scured. The Uð1Þ normalization in string models that uti-
lize a world-sheet conformal field theory construction is
fixed by their contribution to the conformal dimensions
of physical states. The procedure for fixing the normaliza-
tion was outlined in [23,28] and we repeat it here for
completeness.
In the free fermionic heterotic-string models, the

Kač-Moody level of non-Abelian group factors is always
one. In general, a given Uð1Þ current U, in the Cartan
subalgebra of the four-dimensional gauge group, is a com-
bination of the simple world-sheet currents Uð1Þf � f�f,
corresponding to individual world-sheet fermions f. U
then takes the form U ¼ P

fafUð1Þf, where the af are

model-dependent coefficients. EachUð1Þf is normalized to

one, so that hUð1Þf; Uð1Þfi ¼ 1, and each of the linear

combinations must also be normalized to one. The proper
normalization coefficient for the linear combination U is

given byN ¼ ðPfa
2
fÞ�1

2, and the properly normalizedUð1Þ
current is, thus, given by Ûð1Þ ¼ N 	U.
In general, the Kač-Moody level k of a Uð1Þ generator

can be deduced from the operator product expansion be-
tween two of the Uð1Þ currents and is given by
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k ¼ 2N�2 ¼ 2
X
f

a2f: (3.8)

The result is generalized to k ¼ P
ia

2
i ki when the Uð1Þ is a

combination of several Uð1Þ’s with different normaliza-
tions. This procedure is used to determine the Kač-Moody
level k1 of the weak-hypercharge generator, as well as that
of any other Uð1Þ combination in the effective low-energy
field theory.

In the LRS heterotic-string models, the SOð10Þ symme-
try is broken to SUð3ÞC �Uð1ÞC � SUð2ÞL � SUð2ÞR,
where the combinations of world-sheet currents

1

3
ð �c �

1
�c 1 þ �c �

2
�c 2 þ �c �

3
�c 3Þ (3.9)

and

1

2
ð �c �

4
�c 4 þ �c �

5
�c 5Þ (3.10)

generateUð1ÞC and T3R , respectively, where the latter is the

diagonal generator of SUð2ÞR. The weak hypercharge is
then given by

Uð1ÞY ¼ T3R þ
1

3
Uð1ÞC: (3.11)

The symmetry of SUð2ÞR is incorporated in the analysis at
the MR scale, where above this scale the multiplets are in
representations of the LRS gauge group and below the MR

scale they are in SM representations. The weak-
hypercharge coupling relation is given by

1

�1ðMRÞ ¼
1

�2RðMRÞ þ
kC
9

1

�ĈðMRÞ
¼ 1

�2RðMRÞ þ
2

3

1

�ĈðMRÞ : (3.12)

Here we have used (3.8) to find that the Kač-Moody level
ofUð1ÞC is kC ¼ 6. Again using (3.8) we find that k1 ¼ 5

3 as

expected. This reproduces the expected result at the uni-
fication scale

sin 2�WðMSÞ ¼ 1

1þ k1
� 3

8
: (3.13)

A. Coupling unification in LRS heterotic-string models

This model is an example of a three-generation, free
fermionic model that yields an unbroken, anomaly-free
Uð1Þ symmetry. Heterotic-string models with this property
break the SOð10Þ symmetry to the left-right symmetric
subgroup [5] and are therefore supersymmetric and com-
pletely free of gauge and gravitational anomalies. The
Uð1Þ� symmetry in the string models is an anomaly-free,

family universal symmetry that forbids the dimension four,
five and six PDMOs, while allowing for the SM fermion
mass terms. A combination ofUð1Þ� , Uð1ÞB�L andUð1ÞT3R

remains unbroken down to low energies and forbids baryon
number violation while allowing for lepton number
violation. Hence, it allows for the generation of small
left-handed neutrino masses via a seesaw mechanism,
specifically an extended seesaw with the singlets, 	
[5,7]. Proton decay mediating operators are only generated
when the Uð1ÞZ0 is broken. Thus, the scale of the Uð1ÞZ0

breaking is constrained by proton lifetime limits and can be
within reach of the contemporary experiments. A field
theory model demonstrating these properties was pre-
sented in [7].

1. Spectrum

The spectrum of our model above the left-right symme-
try breaking scale is summarized in Table I. The spectrum
below the intermediate symmetry breaking scale is shown
in Table II. The spectra above and below the SUð2ÞR
breaking scale are both free of all gauge and gravitational
anomalies. Hence, the Uð1ÞZ0 combination given in
Eq. (3.14) is viable to low energies.

The heavy Higgs H k
R þ �H k

R that break the SUð2ÞR �
Uð1ÞC ! Uð1ÞY , along a flat direction, leave the orthogo-
nal combination

Uð1ÞZ0 ¼ 1

5
UC � 2

5
T3R þU� (3.14)

TABLE I. High-scale spectrum and SUð3ÞC � SUð2ÞL �
SUð2ÞR � Uð1ÞC �Uð1Þ� quantum numbers, with i ¼ 1, 2, 3

for the three light generations, j ¼ 1, 2 for the number of
doublets required by anomaly cancellation, n ¼ 1; . . . ; k, and
a ¼ 1; . . . ; p. The �i show the contributions for each state,
relevant for the RGE analysis later.

Field SUð3ÞC �SUð2ÞL �SUð2ÞR Uð1ÞC Uð1Þ� �3 �2L �Y

Qi
L 3 2 1 þ 1

2 � 1
2 1 3

2
1
6

Qi
R

�3 1 2 � 1
2 þ 1

2 1 0 5
3

Li
L 1 2 1 � 3

2 � 1
2 0 1

2
1
2

Li
R 1 1 2 þ 3

2 þ 1
2 0 0 1

H0 1 2 2 0 0 0 1 1

Hij
L 1 2 1 þ 3

2 þ 1
2 0 1

2
1
2

H0 ij
L 1 2 1 � 3

2 þ 1
2 0 1

2
1
2

Hij
R 1 1 2 � 3

2 � 1
2 0 0 1

H0 ij
R 1 1 2 þ 3

2 � 1
2 0 0 1

Dn 3 1 1 þ1 0 1
2 0 1

3

�Dn �3 1 1 �1 0 1
2 0 1

3

H R 1 1 2 þ 3
2 � 1

2 0 3
5 1

�H R 1 1 2 � 3
2 þ 1

2 0 3
5 1

Si 1 1 1 0 �1 0 0 0

�Si 1 1 1 0 þ1 0 0 0

	a 1 1 1 0 0 0 0 0
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unbroken. Here, the index k allows for the possibility
that the heavy Higgs sector contains more than two fields,
as is typically the case in the string constructions. Further
discussion of this model, including a trilinear level super-
potential, can be found in [7]. Here we notice that the
incomplete representations added to the MSSM may cause
problems with gauge coupling unification. The induced
gauge anomalies in the SUð2Þ2L=R �Uð1Þ� diagrams re-

quire the addition of Hij
L , H0ij

L Hij
R , H0ij

R , which differ
from the E6 case. The addition of triplets may help subdue
any adverse effects and will also give scope for the inclu-
sion of intermediate matter scales.

2. Renormalization group analysis

The properly normalized�-function coefficients are shown
in Tables I and II. The numerical output of Eqs. (3.6) and (3.7)
is generated subject to the variation of the scales and is
displayed in Fig. 1. The intermediate scales are varied to
find phenomenologically viable areas of the parameter space.
The scales and ranges of sin 2�WðMZÞ and �3ðMZÞ were first
restricted to the experimentally allowed regions and then also
allowed to take values outside this range. The hierarchy of
scales was constrained to be

MS * MR >MD * MZ0 * MSUSY >MZ: (3.15)

To this end, we restricted the allowed range of sin 2�WðMZÞ
and �3ðMZÞ to five sigma deviations from the central values
shown in Eq. (3.1). The RGEs were run in MATHEMATICA.
Restricting the output to the experimentally constrained inter-
val produced no phenomenologically viable results. Allowing
the values of sin 2�WðMZÞ and �3ðMZÞ to run freely and
restricting the relevant mass scales to (in GeV)

2� 1016 
MS 
 5� 1017; 105 
MD 
 1012;

109 
MR 
 5� 1017; 103 
MZ0 ;MSUSY 
 1010

(3.16)

also produced no phenomenologically viable results, as shown
in Fig. 1.

3. Contrasting analysis with E6 embedding of Uð1Þ�
To further elucidate the constraints on the LRS

heterotic-string models arising from coupling unification,
we contrast the outcome with the corresponding results
when the Uð1Þ� charges are embedded in E6 representa-

tions. For models that allow the E6 embedding of the
Uð1ÞZ0 charges, the spectrum consists of three generations
of 27s that decompose under SOð10Þ as

27i ! 16i1
2

þ 10i�1 þ 1i2: (3.17)

Under SUð3ÞC � SUð2ÞL � SUð2ÞR �Uð1ÞC �Uð1Þ� ,
this results in a similar spectrum to the LRS model. The
16 decomposes exactly as for the LRS model,

Qi
L �

�
3; 2; 1;þ 1

2
;þ 1

2

�
; Li

L �
�
1; 2; 1;� 3

2
;þ 1

2

�
;

Qi
R �

�
�3; 1; 2;� 1

2
;þ 1

2

�
; Li

R �
�
1; 1; 2;þ 3

2
;þ 1

2

�
;

(3.18)

TABLE II. Low-scalematter spectrumandSUð3ÞC�SUð2ÞL�
Uð1ÞY�Uð1ÞZ0 quantum numbers with �i contributions.

Field SUð3ÞC �SUð2ÞL T3R Uð1ÞY Uð1ÞZ0 �3 �2L �Y

Qi
L 3 2 0 þ 1

6 � 2
5 1 3

2
1
6

uciL
�3 1 � 1

2 � 2
3 þ 3

5
1
2 0 4

3

dciL
�3 1 þ 1

2 þ 1
3 þ 1

5
1
2 0 1

3

Li
L 1 2 0 � 1

2 � 4
5 0 1

2
1
2

eciL 1 1 � 1
2 þ1 þ 3

5 0 0 1


ci
L 1 1 þ 1

2 0 þ1 0 0 0

Hu 1 2 þ 1
2 þ 1

2 � 1
5 0 1

2
1
2

Hd 1 2 � 1
2 � 1

2 þ 1
5 0 1

2
1
2

Hi
L 1 2 0 þ 1

2 þ 4
5 0 3

2
3
2

H0 i
L 1 2 0 � 1

2 þ 1
5 0 3

2
3
2

Ei
R 1 1 � 1

2 �1 � 3
5 0 0 1

Ni
R 1 1 þ 1

2 0 �1 0 0 0

E0 i
R 1 1 þ 1

2 þ1 � 2
5 0 0 1

N0 i
R 1 1 � 1

2 0 0 0 0 0

Dn 3 1 0 þ 1
3 þ 1

5
1
2 0 1

3

�Dn �3 1 0 � 1
3 � 1

5
1
2 0 1

3

Si 1 1 0 0 �1 0 0 0

�Si 1 1 0 0 þ1 0 0 0

	a 1 1 0 0 0 0 0 0

sin2 θW (MZ)

α
3
(M

Z
)

FIG. 1. Freely running sin 2�WðMZÞ and �3ðMZÞ: sin 2�WðMZÞ
vs �3ðMZÞ with 0:05 & �string & 0:1.
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with the proviso that the charges underUð1Þ� take the same

sign. The 10 decomposes as

Hi � ð1; 2; 2; 0;�1Þ; Di � ð3; 1; 1;þ1;�1Þ;
�Di � ð�3; 1; 1;�1;�1Þ: (3.19)

The remaining singlets are neutral under the SM gauge
group and are used to break the Uð1ÞZ0 . In addition to the
complete SOð10Þ representations above, the E6 spectrum
includes a bidoublet

H0 � ð1; 2; 2; 0;�1Þ (3.20)

that facilitates gauge coupling unification. The model
also contains the pair of heavy Higgs right-handed
doublets

H R þ �H R ¼
�
1; 1; 2;

3

2
;
1

2

�
þ

�
1; 1; 2;� 3

2
;� 1

2

�

(3.21)

that break the intermediate SUð2ÞR symmetry. We
run the RGEs in exactly the same way as shown for
the LRS model, constraining the mass scales to the
hierarchy

MS * MR * MD ¼ MZ0 * MSUSY � MZ: (3.22)

In this model we find that unification does occur, as
found in previous literature. We note that the phenomeno-
logically viable results (see Fig. 2) required MS �MX �
2� 1016 GeV as expected. The intermediate scales were
found to be (in GeV)

1� 1013 
 MR 
 1� 1016;

1� 103 
 MD 
 1� 108;

1� 103 
 MSUSY 
 1� 106;

(3.23)

with MZ0 between 1 and 105 TeV. In this case we have
taken the mass of the vectorlike doublets,MZ0 , and triplets,
MD, to be degenerate, which is the case in E6-inspired
models, as they are generated by the same singlet VEV.
String models afford more flexibility that we do not make
use of in our analysis here. Fine-tuning the MSUSY allows
for MZ0 to be in agreement with current experimental
bounds.
The contrast between the two cases can be elucidated

further by examining more closely the contributions of the
intermediate gauge and matter thresholds to sin 2�WðMZÞ
and �3ðMZÞ. Using the general expressions in Eqs. (3.6)
and (3.7) we find that, in the case of the spectrum and
charge assignments in the LRS heterotic-string model,
shown in Tables I and II, the threshold corrections from
intermediate gauge and matter scales are given by

�ðsin 2�WðMZÞÞI:T:
¼ 1

2�

k1�

1þ k1

�
12

5
log

MS

MR

� 24

5
log

MS

MZ0
� 2nD

5
log

MS

MD

�
;

�ð�3ðMZÞÞI:T:
¼ 1

2�

�
3

2
log

MS

MR

� 9 log
MS

MZ0
þ 3nD

4
log

MS

MD

�
: (3.24)

In the case of models that admit an E6 embedding of the
charges, the same threshold corrections are given by

�ðsin 2�WðMZÞÞI:T:
¼ 1

2�

k1�

1þ k1

�
12

5
log

MS

MR

þ 6

5
log

MS

MH

� 6

5
log

MS

MD

�
;

�ð�3ðMZÞÞI:T:
¼ 1

2�

�
3

2
log

MS

MR

� 9

4
log

MS

MH

þ 9

4
log

MS

MD

�
: (3.25)

If we takeMS to coincide with the MSSM unification scale
and with MR as well, then the first lines in Eqs. (3.6) and
(3.7), which only contain the MSSM contributions, are in
good agreement with the observable data. The corrections
arising from the intermediate gauge and matter thresholds
in Eqs. (3.24) and (3.25) then have to cancel. We see from
Eq. (3.24) that the corrections from the intermediate dou-
blet and triplet thresholds contribute with equal sign in
sin 2�WðMZÞ. For �3ðMZÞ, the corrections from these
thresholds contribute with opposite sign, but the contribu-
tion of the doublets outweighs the contribution of the
triplets. We may compensate for the negative contribution
from the extra doublets by lowering the SUð2ÞR breaking
scale. Requiring that m
�

& 1 eV necessitates that MR �
109 GeV. Keeping the extra triplets at the GUT scale and
the Z0 scale at 1012 GeV then yields rough agreement
with sin 2�WðMZÞ but gross disagreement with �3ðMZÞ.
Lowering the triplet scale improves the agreement with

sin2 θW (MZ)

α
3(

M
Z
)

FIG. 2. Freely running sin 2�WðMZÞ and �3ðMZÞ: sin 2�WðMZÞ
vs �3ðMZÞ with 0:05 & �string & 0:1 for model II.
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�3ðMZÞ but conflicts with the data for sin 2�WðMZÞ. We
therefore conclude that a low-scale Z0 in the LRS heterotic-
string models is incompatible with the gauge data at the
Z-boson scale. In contrast, from Eq. (3.25) we see that the
corresponding corrections cancel each other, provided that
MH ¼ MZ0 ¼ MD. This is the case as both are generated
by the Z0 breaking VEV. This cancellation is, of course, the
well known cancellation that occurs when the representa-
tions fall into SUð5Þ multiplets. Allowing MR to be at
1015 GeV then compensates for the SUSY threshold at
1 TeV, enabling accommodations of the low-energy data,
as illustrated in Fig. 2.

IV. STRING MODELS WITH E6 EMBEDDING

The low-scale Z0 in the string models is, in essence, a
combination of the Cartan generators Uð1Þ1;2;3 that are

generated by the right-moving complex world-sheet fermi-
ons ��1;2;3, together with aUð1Þ symmetry, embedded in the
SOð10Þ GUT, and is orthogonal to the weak hypercharge.
Whether, or not, the symmetry is anomaly free depends on
the specific symmetry breaking pattern induced by the
GGSO projections. As we discussed above, in the FSU5,
PS and SLM the symmetry is anomalous, whereas in the
LRS models it is anomaly free. The difference stems from
the fact that in the former cases the combination for Uð1Þ�
admits the E6 embedding but in the latter it does not. On
the other hand, as we have seen in Sec. III, the E6 embed-
ding allows for compatibility with the low-scale gauge
coupling data. The Z0 in the LRS models, which do not
admit the E6 embedding, is constrained to be heavier than
at least 1012 GeV. Gauge coupling data, therefore, seem to
indicate that the E6 embedding of the charges is necessary.
We emphasize that the indication is that the charges must
admit an E6 embedding and not that the E6 symmetry is
actually realized. An illustration of this phenomenon is the
existence of self-dual models under the spinor-vector dual-
ity without E6 enhancement [19]. The question then arises
as to how one constructs heterotic-string models with
anomaly-free Uð1Þ� , which admit an E6 embedding. Here

we discuss how viable heterotic-string models with E6

embedding of the Uð1ÞZ0 charges may be obtained, the
main constraint being that the extra Uð1Þ symmetry has
to be anomaly free. For this purpose, we first give a general
overview as to how the gauge symmetry is generated in the
string models.

The vector bosons that generate the four-dimensional
gauge group in the string models arise from two principal
sectors: the untwisted sector and the sector x ¼
f �c 1;...;5; ��1;2;3g. In the x sector the complex right-moving
world-sheet fermions, that generate the Cartan subalgebra
of the observable gauge group, are all periodic. At the level
of the E8 � E8 heterotic-string in ten dimensions, the
vector bosons of the observable E8 are obtained from
the untwisted sector and from the x sector. Under the
decomposition E8 ! SOð16Þ, the adjoint representation

decomposes as 248 ! 120þ 128, where the adjoint 120
representation is obtained from the untwisted sector and
the spinorial 128 representation is obtained from the x
sector. The set f1; S; x; �g produces a model with N ¼ 4
spacetime supersymmetry in four dimensions. The gauge
symmetry arising in this model, at a generic point in the
compactified space, is either E8 � E8 or SOð16Þ � SOð16Þ
depending on the GGSO phase cðx�Þ ¼ �1.

Adding the basis vectors b1 and b2 reduces the
spacetime supersymmetry to N ¼ 1. The observable
gauge symmetry reduces from E8 to E6 �Uð1Þ2 or
SOð16Þ ! SOð10Þ �Uð1Þ3. Additional vectors reduce
the gauge symmetry further. Aside from the model of
[20], all the quasirealistic free fermionic models follow
the second symmetry breaking pattern. That is, in all these
models, the vector bosons arising from the x sector are
projected out.
We consider, then, the symmetry breaking pattern

induced by the following boundary condition assignments
in two separate basis vectors:
(1)

bf �c 1...5
1
2

g ¼
�
1

2

1

2

1

2

1

2

1

2

�
) SUð5Þ �Uð1Þ; (4.1)

(2)

bf �c 1...5
1
2

g ¼ f11100g ) SOð6Þ � SOð4Þ: (4.2)

The assignment in Eq. (4.1) reduces the untwisted SOð10Þ
gauge symmetry to SUð5Þ �Uð1Þ; however the assign-
ment in Eq. (4.2) reduces it to SOð6Þ � SOð4Þ. Thus,
the inclusion of Eqs. (4.1) and (4.2) in two separate bound-
ary condition basis vectors reduces the SOð10Þ gauge
symmetry to SUð3ÞC � SUð2ÞL �Uð1ÞC �Uð1ÞL, where
2Uð1ÞC ¼ 3Uð1ÞB�L and Uð1ÞL ¼ 2Uð1ÞT3R

. For appropri-

ate choices of the GGSO projection coefficients, the vector
bosons arising from the x sector enhance the SUð3Þ �
SUð2Þ �Uð1Þ2 �Uð1Þ� arising from the untwisted sector

to SUð4ÞC � SUð2ÞL � SUð2ÞR �Uð1Þ� 0 , where
Uð1Þ4 ¼ Uð1ÞC þ 3Uð1ÞL � 3Uð1Þ� ; (4.3)

Uð1Þ2 ¼ Uð1ÞC þUð1ÞL þUð1Þ� ; (4.4)

Uð1Þ� 0 ¼ �3Uð1ÞC þ 3Uð1ÞL þUð1Þ� : (4.5)

Uð1Þ4 and Uð1Þ2 are embedded in SUð4ÞC and SUð2ÞR,
respectively, and Uð1Þ� is given by Eq. (2.2). The matter

representations charged under this group arise from the
sectors bj and are complemented by states from bj þ x to

form the ordinary representations of the Pati-Salam model.
The difference, as compared to the Pati-Salam string mod-
els of [12], is thatUð1Þ� 0 is anomaly free. The reason is that

all the states of the 27 representation of E6 are retained in
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the spectrum, whereas in the Pati-Salam models of [12]
the corresponding states are projected out. The sym-
metry breaking of the Pati-Salam SUð4ÞC � SUð2ÞR group
is induced by the VEV of the heavy Higgs in
the ð�4; 1; 2Þ�1

2
 ð4; 1; 2Þþ1

2
representation of SUð4ÞC �

SUð2ÞL � SUð2ÞR �Uð1Þ� 0 . In addition to the weak

hypercharge, this VEV leaves the unbroken combination

Uð1ÞZ0 ¼ 1

2
Uð1ÞB�L � 2

3
Uð1ÞT3R

þ 5

3
Uð1Þ� 0 ; (4.6)

which is anomaly free and admits the E6 embedding of the
charges.

V. CONCLUSIONS

In this paper we examined the gauge coupling unifica-
tion constraints imposed on a low-scale Z0 arising in LRS
heterotic-string-derived models. The existence of a low-
scale Z0 in these models guarantees that PDMOs are suffi-
ciently suppressed. However, we have shown that the
hypothesis of a low-scale Z0 in these models is incompat-
ible with the gauge coupling data at the electroweak scale.
We contrasted this result with the corresponding result in

string models that admit an E6 embedding of the Uð1Þ
charges. In the latter case the possibility of a low-scale
Z0 is viable. We further discussed how heterotic-string
models that admit the E6 embedding may be obtained in
the free fermionic formulation, though an explicit
three-generation viable model is yet to be constructed.
Similarly, a more complete analysis of the phenomenologi-
cal realization of this Uð1Þ symmetry in heterotic-string
models is warranted and will be reported in future publi-
cations. We also remark that other Uð1Þ symmetries that
have been proposed in the literature to suppress proton
decay mediating operators [4,29] have also been invali-
dated due to neutrino masses and other constraints [6]. The
enigma of the proton lifetime in heterotic-string unification
continues to serve as an important guide in the search for
viable string vacua.
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