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Considering quantum gravity within the framework of effective field theory, we investigated the

consequences of spontaneous Lorentz violation for the gravitational potential. In particular, we focus our

attention on the bumblebee models, in which the graviton couples to a vector B� that assumes a nonzero

vacuum expectation value. The leading order corrections for the nonrelativistic potential are obtained

from calculation of the scattering matrix of two scalar particles interacting gravitationally. These

corrections imply anisotropic properties associated with the bumblebee background and also add a

Darwin-like term for Newton’s potential.
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I. INTRODUCTION

A longstanding problem in theoretical physics is the
conciliation between the Standard Model (SM) describing
the behavior of elementary particles and General Relativity
(GR), which accounts the large scale physics dominated
by gravity. With such a conciliation, both theories, which
are extremely well tested, should appear as low-energy
descriptions of a single and fundamental (and yet unknown)
theory of quantum gravity. This framework opens the pos-
sibility for the discovery of new phenomena, not described
by any of these effective theories. Unfortunately, since
quantum gravity effects are relevant at energy scales of
the order of the Planck mass mP � 1:22� 1019 GeV, no
experimental evidence for the signature of a more funda-
mental physics has been obtained up to now.

Despite the fact that Planck scale dynamics remains
impossible to access experimentally, a great deal of work
has been performed by exploring the point of view that
quantum gravity phenomena can be observed by amplifi-
cation of its effects at attainable energies. One of the most
interesting possibilities is the violation of Lorentz symme-
try [1]. In fact, the existence of different mechanisms that
bring out Lorentz-violating (LV) effects is supported in
several theoretical contexts, such as loop quantum gravity
[2], string theory [3], noncommutative field theories [4],
and more recently in warped brane worlds [5,6] and
Hǒrava-Lifshitz gravity [7].

The first framework to account for LV in the SM was
proposed by Colladay and Kostelecký [8], based on the idea
of spontaneous Lorentz symmetry breaking in string theory
[9], known as the Standard Model Extension (SME). The
SME provides a set of gauge-invariant LV tensor operators,
compatible with the coordinate invariance [10] and suitable

to address the CPT and Lorentz violation in physical
systems. A number of interesting investigations have been
developed in the different sectors of the SME. The
CPT-even gauge sector was first examined by Kostelecký
and Mewes [11], with the attainment of upper bound of 1
part in 1037 (using birefrigence data). This sector was also
addressed in connection with its classical solutions [12],
consistency aspects [13] and fermion/photon interactions
[14,15]. More recently, new works have proposed LV sce-
narios endowed with higher dimensional operators, with
new interesting results [16,17]. Higher dimensional opera-
tors can be considered in terms of nonminimal interactions
as well. A CPT-odd nonminimal coupling for fermions was
first regarded in Ref. [18], with some recent developments
[19]. Very recently, an analogue CPT-even nonminimal
coupling for fermions, embracing the KF gauge tensor of
the SME, was proposed and discussed both in relativistic
and nonrelativistic scenarios [20].
Another relevant SME sector much addressed in recent

years is the gravitational one. The SME accommodates both
explicit symmetry breaking as well as spontaneous break-
ing. However, when one focuses on its gravitational sector,
one notices that the explicit violation is incompatible with
geometrical identities like the Bianchi identity, which
suggests one should work with spontaneous breakings to
address LV within the gravitational sector [21]. A general
treatment of spontaneous local Lorentz and diffeomorphism
violation for the gravitational sector of the SME was first
addressed in Refs. [22,23]. In these papers, it is supposed
that tensor fields acquire nonzero vacuum expectation values
(VEV), breaking these symmetries spontaneously. It was
then shown that the corresponding linearized effective equa-
tions can be used to study the post-Newtonian effects in a
series of gravitational systems [24–26]. It is worth mention-
ing that a discussion for alternative ways to introduce
Lorentz violation in gravity was considered in [27].
In this paper we investigate low-energy effects of

Lorentz violation in the context of the gravitational sector
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of SME. More precisely, we choose a particular model in
which the spontaneous Lorentz violation comes from the
dynamics of a single vector field B�, coupled with the

gravitational field through a term B�B�R
��. This theory

represents the simplest case of the well-known bumblebee
models, which were first introduced by Kostelecký and
Samuel in the context of string theory [9]. In the weak-
field approximation, we determine the modified graviton
propagator and examine the effects of the Lorentz-
violating background on the gravity excitations. Next, we
show that the introduction of an uncharged scalar field,
coupled with the gravitational field, leads to corrections to
the classical Newtonian potential. This corrections are able
at break down the radial symmetry present in standard
case, revealing a spatial anisotropy due to the presence of
a term proportional to bibjx̂

ix̂j. In fact, this result is

corroborated by a series of post-Newtonian calculations
for the pure gravity sector of the minimal SME [23,28,29].
Other interesting and new term that we have found is

proportional to r2 1
r � �ð3Þð ~xÞ and it can be interpreted as

a gravitational Darwin term in analogy to the usual electric

Darwin term r � ~E, which is generally obtained, together
with spin-orbit coupling, from a nonrelativistic limit of the
Dirac equation [30]. Throughout this work we shall use the
spacetime signature (þ���) and adopt the following
definition for the Ricci tensor: R��¼@��

�
���@��

�
��þ

��
���

�
�����

���
�
��, where ��

�� ¼ 1
2 g

�� (@�g��þ@�g���
@�g��). All quantities are expressed in natural units

(" ¼ c ¼ �0 ¼ 1), in which the gravitational constant
is GN ¼ 6:707� 10�57 eV�2. Moreover, tensors are sym-
metrized with unit weight, i.e., Að��Þ ¼ 1

2 ðA�� þ A��Þ.
The structure of the paper is as follows. Section II is

devoted to discussing the theoretical model, introducing
the general action including a LV term, and then restricting
to spontaneous LV. In Sec. III, we perform the weak-field
approximation and calculate the LV-corrected propagator.
In Sec. IV, we introduce the coupling with a matter field
and obtain the nonrelativistic potential for two bosons
interacting gravitationally, via a scattering process.
Finally, we present our final remarks in Sec. V.

II. THE THEORETICAL MODEL

The simplest gravity model involving Lorentz-violating
terms that combine tensor fields and responsible for the
spontaneous local Lorentz breaking, with the gravitational
field in (3þ 1)-dimensional Riemann spacetime, is given
by the action

S ¼ SEH þ SLV þ Smatter: (1)

The first piece in the above equation represents the usual
Einstein-Hilbert action, defined by

SEH ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p 2

�2
ðR� 2�Þ; (2)

where g denotes the determinant of the metric field g��, R

is the Ricci scalar, � is the cosmological constant and
�2 ¼ 32�GN is the gravitational coupling. Since our main
goal is to examine the effects of the Lorentz-violating on
the nonrelativistic gravitational potential, we can disregard
the implications of �, assuming it equal to zero hereafter.
The second piece in Eq. (1) represents the gravitational

sector for the minimal SME and contains the coefficients
for Lorentz violation, coupled to the Riemann, Ricci, and
scalar curvatures, in the following form (see, e.g., [23]):

SLV ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p 2

�2
ðuRþ s��R�� þ t��	
R��	
Þ; (3)

where u, s�� and t��	
 are dynamical tensor fields with
zero mass dimension and with s�� and t��	
 having
the same symmetries as the Ricci and Riemann tensors,
respectively. This action is assumed to be invariant
under general coordinate transformations and the local
Lorentz violation must be achieved through a Higgs-like
mechanism.
The last term on the right side of Eq. (1) takes into

account the matter-gravity couplings, which in principle
should include all fields of the standard model as well as
possible interactions with coefficients u, s�� and t��	
.
However, we will focus our attention on the possible
effects produced by the action (3), restricting ourselves to
the case where the ordinary matter only interacts with the
gravitational field. Further details about these effects in the
context of Lorentz-violation involving the matter sector of
the SME can be seen in Ref. [28].
Next, let us consider the particular case when t��	
 ¼ 0.

The coefficients u and s�� have 10 degrees of freedom (the
trace of s�� could be absorbed in the scalar coefficient u)
that may be described by an effective field theory involving
a single vector field B�, whose dynamics is determined by

the following action:

SB ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
� 1

4
B��B

�� þ �B�B�R��

� VðB�B
� � b2Þ

�
; (4)

where B�� ¼ @�B� � @�B�, � is a dimensionless cou-

pling constant and b2 is a positive constant that sets the
VEV for B�. The potential VðxÞ triggers the spontaneous

breakdown of both Lorentz and diffeomorphism symme-
tries, such that its minimum occurs at g��B�B� � b2 ¼ 0,

i.e., when B� and g�� acquire nonzero vacuum expectation

values. This theory is a particular case of the so-called
bumblebee models and were initially evaluated in the
context of string theory [9]. Furthermore, we note that
for � ¼ 0 the action for the bumblebee field becomes
Uð1Þ gauge invariant and the potential V also spontane-
ously breaks this symmetry.
The correspondence between the action (3) and the

bumblebee model (4) is obtained through the relations [23],
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u ¼ 1

4
�B	B	; s�� ¼ �B�B� � 1

4
�g��B	B	;

t��	
 ¼ 0;
(5)

where for convenience we write � ¼ ð2�=�2Þ, so that the
mass dimension of the bumblebee field and the coupling
constant are, respectively: ½B�� ¼ 1, ½�� ¼ �2.

III. WEAK-FIELD APPROXIMATION AND
THE GRAVITON PROPAGATOR

To investigate the effects of gravity-bumblebee coupling
on the graviton dynamics, we split the dynamical fields
into the vacuum expectation values and the quantum
fluctuations,

g�� ¼ ��� þ �h��; B� ¼ b� þ ~B�;

B� ¼ b� þ ~B� � �b�h
��;

(6)

where h�� and ~B� represent small perturbations around the

Minkowski background and a constant vacuum value b�,

respectively. The vector b� is the local Lorentz violation

coefficient associated to the bumblebee field.
Varying the action (4) with respect to B�, we obtain the

equation of motion for the bumblebee field,

1ffiffiffiffiffiffiffi�g
p @�f ffiffiffiffiffiffiffi�g

p
B��g � 2V 0B� þ 2�B�R�� ¼ 0; (7)

where the prime on V means differentiation with respect to
the argument.

Following the ideas described in Ref. [23], we may
employ the expansions defined in Eq. (6), and assume for
VðxÞ the smooth quadratic form

V ¼ �

2
ðB�B� � b2Þ2; (8)

so that the linearized version of the equation of motion (7)
can be written as

ðh��� � @�@� � 4�b�b�Þ ~B�

¼ �2��b�b	b
h
	
 � 2�b	R	�; (9)

with h � @2. In this expression, R�� shall be understood

as being in its linearized form. Also, for simplicity b� is

adopted as a timelike vector, such that b�b� ¼ þb2.

Applying the Green’s function method, the solution to
Eq. (9) is straightforward, leading in momentum space to
the following expression:

~B� ¼ �p�b	b
h
	


2b � p þ 2�b	R
	�

p2
� 2�p�b	b
R

	


p2b � p
þ �p�R

4�b � p� �b�R

p2
þ �p�b2R

p2b � p ; (10)

with b � p ¼ b�p
�, p2 ¼ p � p ¼ p�p

�.

By substituting this solution into the action (3), with the
help of the relations defined by Eqs. (5) and (6) in a suitable
order, we are able to determine the modifications yielded
by the nonzero vacuum expectation value b� on the kinetic

terms of the graviton field. Therefore, it is necessary to
expand the bumblebee-graviton interaction LLV up to
second order in h�� as follows,

LLV ¼ �
ffiffiffiffiffiffiffi�g

p
B�B�R��

¼ �

�
b�b�R

��ðh2Þ þ 2b� ~B�R
��ðhÞ

þ 1

2
�h		b�b�R

��ðhÞ
�
þOðh3Þ; (11)

where the order in h�� at the Ricci tensors is explicitly

indicated. Replacing ~B� and grouping the terms conven-
iently, we obtain

LLV¼�

�
p2b�b�h

��h		þ1

2
ðb�pÞ2ðh		Þ2�1

2
ðb�pÞ2h��h��þp2b�b�h

�	h�	�ðb�b�p	p
þbð�p�Þbð	p
ÞÞh��h	

�

þ4�2

�2

��
�2p2b�b��2b2p�p�þ4b�pbð�p�Þ�

p2p�p�

4�

�
h��h		

þ
�
2b�b�p	p
�bð�p�Þbð	p
Þþ

b2p�p�p	p


p2
�2b�pp�p�bð	p
Þ

p2
þp�p�p	p


4�

�
h��h	


þ
�
b2p2�ðb�pÞ2þp4

4�

�
ðh		Þ2þ

�
p2b�b��2b�pbð�p�Þþ

ðb�pÞ2p�p�

p2

�
h��h��

�
þOðh3Þ; (12)

with � ¼ ð2�=�2Þ, as previously defined. It should be
noted that the first-order terms in the gravity-bumblebee
coupling constant � are all quadratic in the background
b�, but in second-order Oð�2Þ, there are contributions

which are background independent, and that come
from the � term in the bumblebee fluctuation ~B�. These
contributions introduce higher derivatives corrections
(@4) on the kinetic term of the graviton field. As we shall
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see in the next section, these two kinds of modifications
will induce different corrections on the gravitational
potential.

The Lorentz-violating Lagrangian (12) can be rewritten
to position space and combined with the expanded
Einstein-Hilbert Lagrangian,

LEH ¼ @h��@	h
	
� � @�h

��@�hþ 1

2
@�h@

�h

� 1

2
@	h

��@	h�� þOðh3Þ; (13)

with h � h��. We add one convenient gauge fixing term,

Lgf ¼ �
�
@�h

�� � 1

2
@�h

�
2
; (14)

to yield the effective Lagrangian, which we need to con-
sider in order to obtain the modified graviton propagator.
Then, in the LEH þLgf þLLV, the kinetic term for the

graviton field becomes

Lkin ¼ � 1

2
h��Ô��;	
h

	
; (15)

where the operator Ô��;	
 is separated in two pieces

Ô��;	
 ¼ K̂��;	
 þ V̂��;	
; (16)

such that K̂��;	
 is the usual quadratic form,

K̂��;	
 ¼ 1

2
ð��	��
 þ ��
��	 � ����	
Þð�@2Þ;

(17)

while V̂��;	
 encloses the terms that contain the Lorentz-

violating Lagrangian LLV.

The graviton propagator is defined by

h0jT½h��ðxÞh	
ðyÞ�j0i ¼ D��;	
ðx� yÞ; (18)

where D��;	
 is the operator that satisfies the Green’s

equation, given as

Ô��;
��D

��;	
ðx� yÞ ¼ iI��;	
�4ðx� yÞ; (19)

with I��;	
 ¼ 1
2 ð��	��
 þ ��
��	Þ. Thus, the exact

graviton propagator is evaluated by inverting (16), finding
a closed operator algebra composed by a set of appropri-
ated projectors. It is known that the bumblebee model
under study has Nambu-Goldstone and massive propagat-
ing modes [22]. The implications of these modes on the
graviton propagator, concerning the stability, causality and
unitarity of this theory are important issues that have not
been investigated so far. However, the full calculation of
the graviton propagator on the presence of Lorentz viola-
tion is not the main purpose of the present work and will
be addressed in an upcoming work. Thus motivated by the
fact that the magnitude of b� should be small as well as the

coupling constant �, we make use the conventional gravi-
ton propagator in the gauge given by Eq. (14) and treat the
Lorentz-violating term in Eq. (16) as a perturbative inser-
tion [31]. This is accomplished by means of the following
matricial identity:

1

Aþ B
¼ 1

A
� 1

A
B

1

Aþ B
¼ 1

A
� 1

A
B
1

A
þ 1

A
B
1

A
B

1

Aþ B

¼ � � � : (20)

The operator K̂ can easily be inverted and the conven-
tional graviton propagator is then written in the momentum
space as

D��;	

0 ðqÞ ¼ i

2

��	��
 þ ��
��	 � ����	


q2 þ i�
: (21)

After lengthy contraction operations of indices, we are

ready to give the explicit form of D��;	
 ¼ D��;	

0 þ

D
��;	

LV up to second order in b�, which reads as

ðD��;	

LV Þ� ¼ i�

�
b2
�
g	
g��

q2
þ q	q
g��

q4

�
þ ðb � qÞ2ðg	
g�� � g	�g
� � g	�g
�Þ

2q4

þ b � qðb
q	g�� þ b	q
g�� þ b�q�g	
 þ b�q�g	
Þ
2q4

þ
�
b	b�g
� þ b
b�g	� þ b	b�g
� þ b
b�g	� � 2b	b
g�� � 4b�b�g	


2q2

� 4b�b�q	q
 þ b
b�q	q� þ b	b�q
q� þ b
b�q	q� þ b	b�q
q�

2q4

��
; (22)
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ðD��;	

LV Þ�2 ¼ i�2

�2

�
b2
�
12q�q�g	
 � 12q	q
g��

q4
þ 8q	q
q�q�

q6

�

þ g	
g��

2�
þ 2ðb � qÞ2ðq	q�g
� þ q
q�g	� þ q	q�g
� þ q
q�g	� þ 2q�q�g	
 � 2q	q
g��Þ

q6

þ b � q
�
10ðb
q	g�� þ b	q
g�� � b�q�g	
 � b�q�g	
Þ

q4
þ 8ðb
q	q�q� þ b	q
q�q�Þ

q6

� 4ðb�q	g
� � b�q
g	� � b�q	g
� � b�q
g	�Þ
q4

�
� q	q
g��

q2�
þ 3q�q�g	


q2�

þ
�
2ðb	b�g
� þ b
b�g	� þ b	b�g
� þ b
b�g	� � 2b	b
g�� þ 2b�b�g	
Þ

q2

þ 2ð8b�b�q	q
 � b
b�q	q� � b	b�q
q� � b
b�q	q� � b	b�q
q�Þ þ 2q	q
q�q�

�

q4

��
; (23)

where ðD��;	

LV Þ� and ðD��;	


LV Þ�2 are contributions to
D��;	


LV proportional to � and �2, respectively.
Some comments about these results are worthwhile.

Taking into account the expression (5), the products b2,
ðb � qÞ2 and ðb � qÞb� are first order terms in the Lorentz-
violating coefficients u and s��. Thus, we note that the

correction ðD��;	

LV Þ� involves only terms to first order in u

and s��, and do not depend on the particular form of the
bumblebee potential VðxÞ. In second order at �, there are
terms that are not associated with the vector b� (they are

proportional to ��1) and depend only on the coupling of
that potential. In addition, the corrections to graviton
propagator have poles in q2 ¼ 0, showed that in this ap-
proximation the theory is free of ghosts and tachyons.

Nevertheless, the expression for ðD��;	

LV Þ�2 also possess

a nonpole term g	
g��=2� that may be related to the
propagation of massive bumblebee mode in the graviton
propagator. In fact, the analytic contributions which are
generated by massive particles in the Feynman diagrams
can be expanded in a Taylor series as 1=ðq2 �m2Þ ¼
�1=m2ð1� q2=m2 þ � � �Þ [32,33]. Thus, only when we
evaluate the tree-level graviton propagator in an exact
tensor form, we will be able to answer if there are non-
physical modes induced by the higher derivative terms and
the Lorentz-violating term. Any way, the treatment of
Lagrangian (12) as a perturbative insertion can be per-
formed, and it represents a reasonable approximation.
Finally, it is still important to mention that this propagator
is symmetric under an indices permutation (� $ �) and
(	 $ 
), as it really must be. We should draw attention for
other evaluations concerning the graviton propagator [34].

IV.MODIFIEDNEWTON’S LAWOFGRAVITATION

In this section, we study the effects of the spontaneous
Lorentz violation when we consider the tree-level modified
propagator as determined previously. One of the simplest
examples that we can choose to evaluate such effects, con-
sists in the gravitational interaction of two distinguishable

heavy particles described in the nonrelativistic limit by the
Newtonian potential. Thus, our main goal here is to deter-
mine the scattering amplitude of two massive bosons parti-
cles of spin-zero by one-graviton exchange. Once calculated
the matrix amplitude in leading order, we can take the
nonrelativistic limit and compare it with the Born approxi-
mation to determine the potential modified by the nonzero
vacuum expectation value b�.

Consider the following action for a real scalar field in
curved spacetime,

Smatter ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2
g��@�@�� 1

2
m22

�
; (24)

which can be expanded in the weak field approximation up
to first order in h. We are then left with the following
Lagrangian:

Lmatter	 1

2
@�@��1

2
m22

�1

2
�h��

�
@�@��1

2
���ð@	@	�m22Þ

�
:

(25)

Now, let us consider the scattering process involving two
scalar particles of mass m1 and m2. The only Feynman
diagram that contributes to this process, in lowest order, is
drawn in Fig. 1, and its analytical expression can be
written as

iM¼ð�i�Þ2V��ðp1;�k1;m1ÞD��;	
ðqÞV	
ðp2;�k2;m2Þ;
(26)

where q ¼ p2 � k2 ¼ �ðp1 � k1Þ is the momentum
transfer and the vertex V��ðp; k;mÞ corresponds to the
expression

V��ðp; k;mÞ ¼ � 1

2
½p�k� þ p�k� � ���ðp � kþm2Þ�:

(27)
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Substituting the expressions defined in (18) and (27) into
the scattering amplitude (26), we arrive at the sum of the
two pieces:

iM ¼ iM0 þ iMLV; (28)

such that the first term is just the conventional amplitude
given by [32]

iM0¼� i�2

8q2
½4fk1 �p1ðm2

2�k2 �p2Þþk1 �p2k2 �p1

þk1 �k2p1 �p2g�2m2
1f4ðm2

2�k2 �p2Þþ2k2 �p2g�;
(29)

which is modified by iMLV, consisting of a large expres-
sion involving the possible contractions of b� with the
four-momenta of the incoming and outgoing scalar field
and also with the virtual graviton momentum.

To access the nonrelativistic limit, we take the approxi-
mation (also called static limit) p1;2 ¼ ðm1;2; 0Þ, k1;2 ¼
ðm1;2; 0Þ, and q ¼ ð0; ~qÞ. In this way, the scalar products

involving b� can be written as follows: b � p1;2 ¼
b � k1;2 ¼ b0m1;2 and b � q ¼ �ð ~b � ~qÞ, so that b�¼ðb0; ~bÞ
is the constant background in an asymptotically inertial
frame.

Inserting these expressions into the matrix amplitude
(28) and collecting the remaining terms, we get the
simplified result

iMNR ¼ i�2m2
1m

2
2

2 ~q2
� i� ~b2�2m2

1m
2
2

~q2
þ i�ð ~b � ~qÞ2�2m2

1m
2
2

2 ~q4

þ 8i�2b20m
2
1m

2
2

~q2
� i�2m2

1m
2
2

2�
; (30)

where the first term gives the well-known tree-level result,
whose Fourier transform yields the standard Newtonian
potential, while the other terms represent the matrix ele-
ments arising from the spontaneous Lorentz breaking. The
second and fourth terms only yield an unobservable scal-
ing, since they can always be absorbed into the definition
of the coupling constant. However, the third and last terms
contribute to the matrix element with a nontrivial physical
result and will be discussed below.

To make the connection to the Newtonian gravitational
potential, we follow Ref. [35], and define the potential
Fourier transformed in the nonrelativistic limit by

hfjiTjii � ð2�Þ4�4ðp� kÞiMðp1; p2 ! k1; k2Þ
	 �ð2�Þ�ðEp � EkÞi ~Vð ~qÞ; (31)

so that the potential in coordinate space corresponds to

Vð ~xÞ ¼ 1

2m1

1

2m2

Z d3q

ð2�Þ3 e
i ~q� ~x ~Vð ~qÞ: (32)

Inorder to solveEq. (32),wewill assume that the twopoint
masses m1 and m2 are located by the coordinate vectors ~x1
and ~x2 with ~x ¼ ~x1 � ~x2, in an inertial Cartesian coordinate
system (for example, taking m1 ¼ Sun mass, then this co-
incides with the canonical Sun-centered frame). Considering

the vectors ~x, ~q and ~b as depicted in Fig. 2, we can define the
following angular relations: cos� ¼ ~q � ~x=qr, cos �b ¼
~b � ~x=br, cos� ¼ ~b � ~q=bq with cos � ¼ sin � sin �b cos

ð’ � ’bÞ þ cos � cos �b, q ¼ j ~qj, r¼j ~xj and b ¼ j ~bj.
Thus, the background vector, ~b, sets up a fixed direction in
space,where�b and’b are the (fixed) angles that indicate the
directional dependence of the potentialVð ~xÞ in relation to the
background direction. These expressions allow the evalu-
ation of the angular integration on the � variable enclosed
in Eq. (32),

Z 1

0
dq

Z �

0
d� sin�

Z 2�

0
d’eiqr cos�cos 2� ¼ �2sin 2�b

r
:

(33)

Taking into account these preliminary results, we can
now calculate the momentum integral on the q-variable,
obtaining the following Newtonian potential:

FIG. 2. Definitions for the vectors and angles of interest in a
standard Cartesian coordinates system.

FIG. 1. The tree-level diagram of two scalar particles interact-
ing via the exchange of a graviton.
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Vð ~xÞ ¼ �GNm1m2

r

�
1� 3

2
� ~b2 � 1

2
�ð ~b � x̂Þ2

�

� GNm1m2

�
�2b20
2�GN

1

r
� �2

8�GN

�3ð ~xÞ
�
; (34)

where x̂ ¼ ~x=j ~xj. We note that to first-order corrections in
�, the Newton’s potential remains exhibiting the standard
behavior, inversely proportional to the separation distance
between the two point masses. Besides, it contains an
unusual directional dependence in terms of the angle �b
relative to the scalar product between the background ~b
and the unit vector x̂ (aligned along the direction from m1

to m2). The attractiveness of these corrections depend on
the sign of the coupling constant �: it will be attractive for
� < 0 or repulsive for � > 0. It is worth noting that, at
leading order in �, our results are in complete agreement
with those obtained in Refs. [23,28] from a direct calcu-
lation of the post-Newtonian metric for the pure-gravity
sector of the minimal SME. In fact, if we set �u¼�b	b	¼0

(such that ~b2 ¼ b20), but with � replaced by ��, then
the conditions (5) ensure that we can rewrite the potential
Vð ~xÞ as:

Vð ~xÞ ¼ �GNm1m2

r

�
1þ 3

2
�s00 þ 1

2
�sijx̂ix̂j

�
þ � � � ; (35)

which in turn has the same form as that achieved from the
equation (35) of Ref. [23].

In the literature [36] there are several discussions on
sensitive tests of gravity, able to establish experimental
bounds on the Lorentz-violating coefficients. Awell known
example of this kind of test involves accurate measurement
of the deflection angle in which a light ray is deflected by a
massive body [37]. A detailed investigation searching for
deviations from the standard GR result due to the Lorentz
violation has been recently performed in Ref. [29], where
the deflection angle was derived directly from the post-
Newtonian metric for the minimal SME. In this paper is
reported that the coefficient �sij is currently constrained at

the 10�5 � 10�6. These results can be used to set up

bounds on the background ~b, responsible for the aniso-
tropic effects present in our calculation for the gravitational
potential, and consequently we can assume a similar
restriction on the j�jbibj.

The last term in Eq. (34) provides a nontrivial contribu-
tion, involving a Dirac delta function. This short-ranged
correction looks like a gravitational Darwin term and it is
induced by higher derivative terms of order @4 contained in
the Lagrangian (12) at Oð�2Þ. Indeed, an analogue correc-
tion is observed when we add higher-order terms in the
curvature to the pure-gravity Lagrangian [33]. To gain
insight into the nature of this term, let us consider a
simplified model defined by the Lagrangian

Lgrav ¼ ffiffiffiffiffiffiffi�g
p �

2

�2
Rþ 	R2

�
; (36)

where the 	 parameter is a dimensionless constant which
must be determined by experiments. In the low-energy
limit the effect of R2 is add to the Newtonian potential a
Yukawa potential of the form

Vð ~xÞ ¼ �GNm1m2

2
41

r
� e�r=

ffiffiffiffiffiffiffi
�2	

p

r

3
5: (37)

Experimental constraints on the parameter 	 are very
poor and exploit deviations from the inverse square law,

bounding 	< 1060 [38]. For
ffiffiffiffiffiffiffiffiffi
�2	

p
small, which in prac-

tice should be considered for a perturbation in an effective
field theory, we can replace the Yukawa potential by a
representation of a delta function,

e�r=
ffiffiffiffiffiffiffi
�2	

p

r
! 4��2	�3ð ~xÞ;

which yields the following low-energy potential:

Vð ~xÞ ¼ �GNm1m2

�
1

r
� 128�2GN	�

3ð ~xÞ
�
: (38)

So, the higher-order term R2 gives rise to a very small and
short-ranged modification to the Newtonian potential and
has the same form as that obtained to the last term in
Eq. (34). In recent gravitational experiments, it is found
that the Newtonian gravitational interaction, seems to be
maintained up to�0:13–0:16 mm [39]. A detailed analysis
of this experiment on the presence of Lorentz violation
would help to set a new upper bound on the magnitude of
the Darwin-correction term, but establishing this lies
beyond our present scope.

V. CONCLUSIONS

In this paper, we presented the modifications produced
by the spontaneous breaking of Lorentz symmetry over the
Newtonian gravitational potential by means of the direct
calculation of the scattering amplitude between two
massive scalar particles interacting gravitationally.
First, we have introduced an action to the simplest

gravity model involving tensor fields, responsible for the
spontaneous local Lorentz breaking, coupled with the
gravitational field. To construct the gravitational sector
for the minimal SME, we take a particular case of the
so-called bumblebee model. After that, we separate the
dynamical fields into the vacuum expectation values and
the quantum fluctuations to analyze the effects of gravity-
bumblebee coupling on the graviton dynamics. Inserting
the solution of the equation of motion for the bumblebee
field in the LV action, we have determined the modified
kinetic term for the graviton field. Dealing these modifica-
tions in the form of a perturbative insertion, we have
obtained a corrected propagator for which ghosts and
tachyons are not present.
As a result, we observed at first order in LV coupling �,

an unconventional spatial dependence with respect to the
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separation vector between the two bodies and which agrees
with previous results obtained through post-Newtonian
approximations for the gravitational sector of the SME.
In second order in �, we verify the appearance of a Darwin-
like correction term, independent of the VEV b� of the

bumblebee field, reflecting the effect of the bumblebee
fluctuation ~B� on the graviton propagation. This result
corroborates the fact that at small distances where higher
terms in the curvature are relevant, the gravitational force
becomes much stronger and the local Lorentz symmetry
might be violated. Moreover, a similar correction was
obtained in a theory for the Hǒrava-Lifshitz gravity
containing higher spatial derivatives [40].

Finally, a detailed analysis about the graviton spectrum
corrections induced by the spontaneous Lorentz violation,

in the context of bumblebee models, seems to be a sensitive
issue and is a subject for a forthcoming article.
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