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When four scalar fields with global Lorentz symmetry are coupled to gravity and take a vacuum

expectation value, breaking diffeomorphism invariance spontaneously, the graviton becomes massive.

This model is supersymmetrized by considering four N ¼ 1 chiral superfields with global Lorentz

symmetry. The global supersymmetry is promoted to a local one using the rules of tensor calculus of

coupling the N ¼ 1 supergravity Lagrangian to the four chiral multiplets. When the scalar components of

the chiral multiplets zA acquire a vacuum expectation value, both diffeomorphism invariance and local

supersymmetry are broken spontaneously. The global Lorentz index A becomes identified with the

space-time Lorentz index, making the scalar fields zA vectors and the chiral spinors c A spin-3=2

Rarita-Schwinger fields. We show that the spectrum of the model in the broken phase consists of a

massive spin-2 field, two massive spin-3=2 fields with different mass and a massive vector.
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I. INTRODUCTION

Massive gravity was the attraction of many authors. In
1970, van Dam, Veltman and Zakharov [1,2] showed that
there is a discrete difference between theories with a zero-
mass graviton and theories with a small but nonzero mass.
It was concluded that the graviton mass is not some
extreme small value and that it should be rigorously zero.
They used the action of Fierz and Pauli [3], where general
coordinate invariance is broken by mass terms. Their
results do not go over into those of general relativity, in
particular for the bending of light by the Sun. Massive
gravity was first thought to be not physically possible
because of this van Dam-Veltman-Zakharov discontinuity
[2]. However, Vainshtein showed that the perturbation
theory is not suitable when the mass goes to zero because
of the singularity in the graviton mass in the higher-order
contributions. Then, he resolved this problem [4] by find-
ing that the massive graviton behaves like a massless
particle below a certain distance scale. So, the graviton
could have a small mass without contradicting experi-
ments. Further developments of this scale were considered
in Ref. [5] (see also Ref. [6]).

However, Boulware and Deser [7] investigated the
behavior of the massive Einstein theory, and they con-
cluded that it is ill behaved since the ghost scalar does
not decouple at the nonlinear level. They deduced that
general relativity is an isolated theory. Isham, Salam and
Strathdee [8] formulated a Lagrangian theory describing
the mixing of the graviton with a massive 2þf meson.
Chamseddine, Salam and Strathdee [9] generalized this
by introducing the mixing terms through a spontaneous
symmetry-breaking mechanism. Dvali, Gabadadze, and
Porrati [10] considered theories with extra dimensions
where they considered a five-dimensional model. Their

theory seems to be free of ghosts when considered around
a true background, but only in the decoupling limit.
It was believed that since there is no Higgs mechanism

that is free of ghosts and returns a mass for the graviton, it
fails to obtain consistent massive general relativity free of
ghosts in four dimensions. Siegel [11] considered open-
string field theories. He used four scalars to restore diffeo-
morphism invariance. However, studying his theory around
a trivial background shows that it is not free of ghosts. Then,
Arkani-Hamed, Georgi and Schwartz [12] applied this to
massive gravity to introduce general coordinate invariance,
but they did not obtain a ghost-free model. Later, ’t Hooft
[13] (see also Ref. [14]) considered the use of four scalar
fields breaking general coordinate invariance by their
vacuum expectation value. These scalars give mass to the
graviton where at the end a massive spin-2 boson and a
massive scalar survive. However, in the unbroken phase, the
scalar fields kinetic energies include a ghost. In the broken
symmetry phase, the massive graviton does not have a Fierz-
Pauli term, and the ghost state remains coupled.
In Ref. [15], Chamseddine and Mukhanov used four

scalars with global Lorentz symmetry. They showed how
to form massive gravity by using the Higgs mechanism.
The graviton will get mass after the four scalar fields
acquire nonzero expectation values as a consequence of
spontaneous symmetry breaking. Three scalar degrees of
freedom are absorbed by the graviton, while one remains
coupled. The graviton then becomes massive, with a Fierz-
Pauli mass term, and thus has five degrees of freedom. The
action is simply given by Einstein action plus the action of
the four extra scalar particles. The resulting theory is ghost
free below scales related to Vainshtein scales. In Ref. [16],
the limit of massive gravity, as the mass of the graviton
goes to zero, was studied below the Vainshtein scale. It was
shown that it goes smoothly to Einstein gravity. In
Ref. [17], massive gravity is presented by a simplified
reformulation where a simpler quadratic action is found.*omh09@aub.edu.lb
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Ghost-free theories of massive gravity were proposed in
four dimensions in Refs. [18,19]. In Ref. [19], nonlinear
theories were constructed and it was shown that the
Hamiltonian constraint which projects out the Boulware-
Deser ghost is maintained up to the quartic order. In
Ref. [20], nonlinear massive gravity models, for a flat
fiducial metric, were proposed, and the absence of the
Boulware-Deser ghost was proven (see also Ref. [21] for
a curved fiducial metric). Recently, the characteristics of
the ghost-free Wess-Zumino massive gravity model with
five degrees of freedom were analyzed in Ref. [22] (see
also Ref. [23]). It was shown that it admits superluminal
shock-wave solutions and is accordingly acausal, where
ironically this originates from the constraint that eliminates
the Boulware-Deser ghost.

In this paper, we generalize the Higgs mechanism used
in the formulation of massive gravity to obtain a theory of
massive supergravity. When massive gravity is supersym-
metrized, the graviton and the gravitino both become mas-
sive due to the breakdown of diffeomorphism invariance.
This theory is interesting because it will end up with a
massive spin-3=2 particle in addition to the gravitino.
Therefore, two spin-3=2 particles exist, which is similar
to what we have in N ¼ 2 supergravity. To write our
globally supersymmetric action, we use superfields and
write an action in superspace using D terms and F terms.
Then, we use the rules of tensor calculus to promote global
invariance to a local one. We will couple the supergravity
Lagrangian [24] to the chiral and vector multiplets by the
rules given in Ref. [25] (see also Ref. [24]) to get our final
action that is restricted by certain conditions that are dis-
cussed below. In Sec. II, we generalize the bosonic case
and write down the possible D terms and F terms. In
Sec. III, we use tensor calculus to couple to supergravity
and find the action in the linearized approximation that is
ghost free and returns a Fierz-Pauli term for the vierbein.
Section IV is the conclusion. In Appendix A, we list all the
possible D-type terms that can be used to form our action.
Appendix B presents the notation and convention used.

II. GENERALIZING THE BOSONIC CASE

To generalize the bosonic case, we use instead of four
scalar fields a set of four chiral superfields �Aðx; �; ��Þ
subject to the conditions

�D _��
Aðx; �; ��Þ ¼ 0;

where A ¼ 0, 1, 2, 3 is a global Lorentz index. These chiral
superfields are given by

�A ¼ ’A þ ið��� ��Þ@�’A � 1

4
�� �� �� @�@

�’A þ
ffiffiffi
2

p
�c A

� iffiffiffi
2

p ��ð@�c A�
� ��Þ þ ��FA; (1)

where ’A are complex scalar fields.

In the bosonic case [15], the action is written in terms of
an induced metric HAB ¼ g��@�’

A@�’
B, and it is found

to be

S ¼ � 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p

Rþm2

8

Z
d4x

ffiffiffiffiffiffiffi�g
p ðH2 �HA

BH
B
AÞ

þ 3

�
1

16
H2 � 1

�
2
;

where H ¼ HA
A and �2 ¼ 8�G.

There are many other actions, all of which agree at the
second-order level but differ at cubic or higher orders.
Expanding

’A ¼ ðxA þ �AÞ; g�� ¼ 	�� þ h��

after defining

HAB ¼ 	AB þ �hAB;

we find that

�h AB ¼ hAB þ ð@A�B þ @B�AÞ þ � � � :
The action then takes the form

S ¼ � 1

2

Z
d4x

ffiffiffiffiffiffiffi�g
p

R

þm2

8

Z
d4x

ffiffiffiffiffiffiffi�g
p ½ð �h2 � �hAB

�hBAÞ þ � � ��;

where �h ¼ �hAA.
The full action can be written in terms of �hAB, since the

metric perturbations around Minkowski transform simi-
larly to the infinitesimal transformations which keep
Einstein action invariant, ~xA ¼ xA þ 
A, with �A instead
of 
A. Therefore, the action up to second-order terms is
given by

S ¼ 1

2

Z
d4x½ �hA;CB

�hBA;C � 2 �hA;CC
�hDA;D þ 2 �hA;CC

�h;A � �h;A �h
;A

�m2ð �hAB �hBA � �h2Þ�:
The field H is quadratic in the field ’A, and thus the action
is at least quartic in the fields ’A. We note that the zero and
linear terms are canceled through the higher-order term
(in the above case it is quartic).
It would be interesting to generalize to the supersym-

metric case what was done in Ref. [19] using the quadratic
formulation in Ref. [17]; however, this is much more
complicated, and such a formulation needs a superspace
formulation of supergravity [26].
To form our generalized induced metric, we start by

writing a quartic interaction

D��AD��B
�D _���C �D

_���DM��AB

_� _�CD
;

where M��AB

_� _�CD
is a multispinor constructed in such a way

as to make the action invariant under Lorentz transforma-
tions. There are two possible strategies to adopt: to
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symmetrize and antisymmetrize with respect to the fermi-
onic indices �� and _� _� , or to use the equivalence of � _�
to a vector index

V� _� ¼ ��
� _�V�:

We thus define HABC as the basic field

HABC ¼ D��Að�BÞ� _�
�D _���

C ¼ D�A�B
�D��

C: (2)

Its Hermitian conjugate is

H�
ABC ¼ D�C�B

�D��
A ¼ HCBA:

We also denote HABC	
AB by HAAC, and we define the

contracted field

HC ¼ HAAC; H�
A ¼ HACC (3)

to simplify our expressions. The products that could be
formed from this H field are given in Appendix A.

We can therefore start from the action

c1HABCHABC þ c2HABCHACB þ c�2HABCHBAC

þ c3HABCHBCA þ c4HABCHCAB þ c5HABCHCBA

þ c6HAH
�
A þ c7HAHA þ c�7H�

AH
�
A

þ �ABCDHABCðc8HD � c�8H�
DÞ þ �ABCDðc9HABEHCDE

þ c�9HEABHECD þ c10HAEBHCED þ c11HAEBHECD

þ c�11HAEBHCDE þ c12HEABHCDEÞ:
In addition to the D-type terms, we can add to our action
F-type terms such as

c13 �D
2ðD�A�

ABD�BÞ þ c�13D2ð �D��
A ��AB �D��

BÞ
þ c14 �D

2ðD�AD�A �D��
B
�D�B�Þ

þ c�14D
2ð �D��

A
�D�A�D�BD�BÞ; (4)

where all the constants ci are real except for those whose
conjugates appear (i.e., c2, c7, c8, c9, c11, c13, c14 are
complex). Many more F-type terms can be written, but
we wrote only those we are going to use.

In the bosonic case [15] we have seen that the action
with the correct behavior is expressed in terms of the field
�hAB, where

�hAB ¼ HAB � 	AB � HAB � @�xA@
�xB;

so that in this case there is no need to consider higher-order
terms in HAB and it is enough to consider the terms

ð �hAB �hBA � �h2Þ:
For this, we instead work with

�HABC ¼ HABC �DxA�B
�Dx�C;

where xA are the coordinates, since this will avoid includ-
ing higher-order terms inHABC. As we will prove below, at
the end the action will be formed of threeD-type terms and
two F-type terms. It will be given by

m4
Z
ðc1 �HABC

�HBCA þ c2 �HABB
�HCCA

þ c3 �HAB
�H�
ABÞd�2d ��2d4x

þm2

�

Z
ðc4 �D2ðD�A�

ABD�BÞd�2d4xþ H:c:Þ

þm4
Z
ðc5 �D2ðD�AD�A �D��

B
�D�B�Þd�2d4xþ H:c:Þ;

(5)

where HAB ¼ D�AD�B, and m and � are used to fix the
dimensions.

III. COUPLING TO SUPERGRAVITY

To couple our supersymmetric action to supergravity, we
first start by writing down the supergravity Lagrangian. We
need first to define the vierbein

e
�
a ¼ g��e�a ¼ g��	abe

b
�; (6)

and its relation to the spin connection w�a
b is given by the

equation

@�e
�
a ¼ �w�a

be
�
b � �

�

�e



a : (7)

The supergravity Lagrangian field content consists of the
spin-2 field ea�, the spin-3=2 field c �, and the auxiliary

fields S, P, A�. This Lagrangian is given by [24]

LS:G ¼� e

2�2
Rðe;wÞ�e

3
juj2þe

3
A�A

��1

2
���R

�; (8)

where

u ¼ S� iP; (9)

R��
rs ¼ @�w�

rs þ w�
rpw�p

s �� $ �; (10)

R� ¼ �����
5
�D�ðwÞ��; (11)

R ¼ er
�es

�R��
rs; (12)

D� ¼ @� þ ð1=2Þw�rs�
rs; (13)

w�rs ¼ w�rsðeÞ þ K�rsðe;��Þ; (14)

K�rsðe;��Þ ¼ ð�2=4Þð ���
r�s � ���
s�r þ ��r
��sÞ;
(15)

and e is the determinant of the vierbein. This Lagrangian is
invariant under local supersymmetry transformations up to
a total divergence.
Next, we couple this to the supersymmetric action

using the rules of tensor calculus. These rules provide us
with equations showing how to couple the components
of chiral and vector multiplets to supergravity [24] (see
also Ref. [25]). The global supersymmetry will then be
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promoted to a local one. Below is a review of how this is
done. The component fields of a vector multiplet are
Majorana spinors (
 and �), two scalars (C and M), and
one auxiliary scalar field (D). It is given by

V ¼ ðC; 
;M; V�; �;DÞ: (16)

A left-handed chiral multiplet (F-type) contains a complex
scalar field z, left-handed Weyl spinors XL, and a complex
auxiliary field h. Then it is

F ¼ ðz; XL; hÞ: (17)

For the F-type multiplet the action formula is

e�1LF ¼ hþ �uzþ � ���

��þ i�2 ���


���vRzþ H:c:;

(18)

while for the D-type multiplet one has

e�1LD ¼Dþ i�

2
���


5
����

3
ðuM� þu�MÞ

þ i�2

8
����� ���
���

�
��

þ 2

3
�V�

�
A�þ 3

8
ie�1����� ���
���

�

� i
�

3
e�1 �

5
�R

�� 2

3
�2Ce�1LS:G:þ e�1LS:G:

(19)

To eliminate the auxiliary fields u and A�, we first find

their equations of motion. These are given, respectively, by

�z� �

3
M� � 1

3
u� ¼ 0;

2

3
�V� þ 1

3
A� ¼ 0: (20)

Plugging back the auxiliary fields u and A� (using their

equations of motion) into the Lagrangian, we get

e�1LFþe�1LD¼D� 1

2�2
Rðe;wÞ�1

2
e�1 ���R

�þh

þh���2ðMzþM�z�Þþ3�2zz�

þð� ���

��þ i�2 ���


���vRzþH:c:Þ:
(21)

Therefore, to write down the full Lagrangian, we have
first to express the supermultiplets in terms of their com-
ponent fields. Substituting for the metric g�� ¼ e�Ae

�A and

expanding the fields around the vacuum solution

’A ¼ xA þ �A; e
�
A ¼ �

�
A þ �e

�
A ; (22)

the components of our superfields, ignoring terms higher
than quadratic order, are given by

(1) For the superfield �HABC
�HBCA:

C ¼ 0; 
 ¼ 0; M ¼ �8ðc A�B ��Ac BÞ; V� ¼ quadratic; � ¼ quadratic;

D ¼ �16ð@��A@
��A þ @��

�
A@

��A�Þ þ 32ð@��A@
��A� þ @A�A@

B��
BÞ þ 80FAF

A� � 8�ABCDc A�B@C �c D

� 8iðc A�
A@B �c B þ c A�

B@A �c BÞ � 56ic A�
�@� �c A þ 32�e@A�

A þ 32 �e@A�
A� þ 32 �e2; (23)

where V� and � do not affect our results, since they will give terms with higher orders. In these calculations, indices are
lowered and raised by 	�A. Similarly, the components of the other vector multiplets are calculated. Below we list only the
two supermultiplets that at the end will enter into the action.

(2) For �HAB
B �HC

CA:

C ¼ 0; 
 ¼ 0; M ¼ 16ðc A�
A ��Bc BÞ; V� ¼ quadratic; � ¼ quadratic;

D ¼ 32ð@��A@
��A þ @��

�
A@

��A�Þ þ 32@A�A@
B��

B þ 128@��A@
��A� þ 272FAF

A�

þ 8�ABCDc A�B@C �c D � 8iðc A�
A@B �c B þ c A�

B@A �c BÞ � 200ic A�
�@� �c A þ 96�e2 þ 128�ea� �e

�
a

þ 96 �e@A�
A þ 96�e@A�

A� þ 128�e
�
A@��

A þ 128�e
�
A@��

A�: (24)

(3) For the third, ðD�AD�BÞð �D�B� �D�A�Þ:

C ¼ 0; 
 ¼ 0; M ¼ 0; V� ¼ 0; � ¼ quadratic;

D ¼ 32ð@A�A@
B��

B þ @��A@
��A�Þ þ 80FAF

A� � 8�ABCDc A�B@C �c D � 8iðc A�
A@B �c B þ c A�

B@A �c BÞ
� 56ic A�

�@� �c A þ 64�ea� �e
�
a þ 64�e

�
A@��

A þ 64�e
�
A@��

A�: (25)
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From the above vector multiplets, we can form an action with the following required conditions:

(1) It has a Fierz-Pauli term for the vierbeins ð �e�A �eA� � �e2Þ. This choice decouples the sixth degree of freedom of the

massive graviton.
(2) It contains no linear vierbein term.
(3) It gives a Maxwell form for the �A fields,

lð@��A@
��A� � @A�

A@B�
B�Þ; (26)

where l is a constant.
(4) It is ghost free where there should be no terms like

@��A@
��A or @A�

A@B�
B: (27)

(5) The gravitinos should be massive.

The first four conditions are well satisfied if we only consider D-type terms. However, to make the gravitino
massive, F-type terms should be included. It is found out that only such terms will return a mass term for the
gravitino.

Several F-type terms can be written. Calculations show that the two terms listed above will give us the required results.
Their components are given by

(1) �D2ðD�A�
ABD�BÞ:

z ¼ �96i� 48i@A�A � 48i �e� 16i �e@A�A � 32i �e�A@��
A þ 8i �eA� �e�A � 8i �e2;

X� ¼ �4
ffiffiffi
2

p ð�ABc AÞ�@�@��B � 16
ffiffiffi
2

p
ið@Ac AÞ�@B�B � 48

ffiffiffi
2

p
ið@Ac AÞ� þ 16

ffiffiffi
2

p
ið@Ac BÞ�@B�A;

h ¼ total derivative:

(28)

h is a total derivative; therefore it will not affect our calculations.
(2) �D2ðD�AD�A �D��

B
�D�B�Þ:

z ¼ �128 �c A
�c A;

X� ¼ 128
ffiffiffi
2

p
ið�B �c BÞ�@A�A þ 64� 4

ffiffiffi
2

p
ið�� �c BÞ�@���

B;

h ¼ �64� 4ð@��A@
��A þ @��

�
A@

��A� þ @A�A@
B��

BÞ � 64� 2FAF
A� � 64�ABCDc A�B@C �c D

þ 64iðc A�
A@B �c B þ c A�

B@A �c B þ c A�
�@� �c AÞ � 64� 16� 64� 16�e� 64� 8�eA� �e

�
A

� 64� 4�e2 þ 64ð �e@A�A þ �e@A�
A�Þ þ 64� 4ð �e�A@��A þ �e�A@��

A�Þ: (29)

Forcing the constraints mentioned above to obtain a well-behaved action, we can write a system of equations to solve for
the constants c1, c2, c3, c4 and c5. The equations are found to be

(1) No ghost: �16c1 þ 32c2 � 64� 4ðc5 þ c�5Þ ¼ 0.
(2) Maxwell: 32c1 þ 64� 2c2 þ 32c3 ¼ l and 32c1 þ 32c2 þ 32c3 þ 482 � 3c4c

�
4 � 64� 4ðc5 þ c�5Þ ¼ �l.

(3) Constant: �64� 16ðc5 þ c�5Þ þ 962 � 3c4c
�
4 ¼ 0.

The solution is

c1 ¼ l

24
� 432c4c

�
4; c2 ¼ l

48
; c3 ¼ � 3l

32
þ 432c4c

�
4; c5 ¼ 27

2
c4c

�
4: (30)

By normalizability of the kinetic term of the �A field, we have l ¼ �1=2. Moreover, c4 is arbitrary, but
we can choose it such that the term �c A


A
Bc B cancels out. This sets c4 to be i
48
ffiffi
6

p and reduces the full Lagrangian
ðe�1LF þ e�1LDÞ to
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� 1

2
m4ð@��A@

��A� � @A�A@
B��

BÞ þ
7

3
m4ð �eA� �e�A � �e2Þ �m4FAF

A� � 7

3
m4ð �e@A�A þ �e@A�

A�Þ

þ 7

3
m4ð �e�A@��A þ �e�A@��

A�Þ � 5

24
m4�ABCD �c A
B
5@Cc D � 29

ffiffiffi
6

p
i

36
m6� �c A


ABc B þ 3i

8
m4 �c A
�@

�c A

� 5
ffiffiffi
6

p
24

m6� �c A

A
Bc B þ 1

2
e�1����� ���
�
5@��� þ

ffiffiffi
6

p
i

3
m2� ���


���� þ
ffiffiffi
2

p
i

4
m4� ���


�
Ac A

�
ffiffiffi
2

p
i

4
m4� �c A


A
��� þ
ffiffiffi
3

p
6

m2 ���

�@Ac A þ

ffiffiffi
3

p
6

m2@A �c A

��� þ

ffiffiffi
3

p
12

m2� ���

�
A
B@Bc A

þ
ffiffiffi
3

p
12

m2�@B �c A

B
A
��� � 1

2�2
Rðe; wÞ: (31)

Now it is clear how m and � fix the dimensions, where we have ½�A� ¼ �1, ½ �e� ¼ 0, ½FA� ¼ 0, ½c A� ¼ �1=2 and the
gravitino ½��� ¼ 3=2.

The equations of motion for �c A and ��� are, respectively,

�5

24
m4�ABCD
B
5@Cc D þ 3i

8
m4
�@

�c A �
ffiffiffi
6

p
8

m6�c A � 5
ffiffiffi
6

p
36

m6�
B
Ac B þ
ffiffiffi
6

p
18

m6�
A
Bc B

�
ffiffiffi
3

p
6

m2
�@A�� �
ffiffiffi
2

p
i

4
m4�
A
��� �

ffiffiffi
3

p
12

m2�
B
A
�@B�� ¼ 0 (32)

and ffiffiffi
3

p
6

m2
�@Ac
A þ

ffiffiffi
2

p
i

4
m4�
�
�c � þ

ffiffiffi
3

p
12

m2
�
A
B@Bc A þ
ffiffiffi
6

p
i

3
m2�
���� þ 1

2
�����
5
�@��� ¼ 0: (33)

Next, we can decompose c A into a spin-3=2 helicity, ĉ A, and a spin-1=2 helicity, �:

c A ¼ ĉ A þ 1

4

A
5� ) �c A ¼ �̂c A þ 1

4
��
A
5; (34)

where 
A ĉ
A ¼ 0. Similarly, we decompose ��

�� ¼ �̂� þ 1

4

�
5	 ) ��� ¼ �̂�� þ 1

4
�	
�
5; (35)

where 
��̂
� ¼ 0 and again �̂� is a spin-3=2 helicity, while	 is spin-1=2 helicity. Using this decomposition, the equations

of motion become

�5

24
m4�ABCD
B
5@C ĉ D þ 5

96
m4�ABCD
B
D@C�þ 3i

8
m4
�@

� ĉ A þ 3i

32
m4
�
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ffiffiffi
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32
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ffiffiffi
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m4�
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5	�

ffiffiffi
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m2�
B
A
5@B	 ¼ 0 (36)

and ffiffiffi
3

p
3

m2
�@A ĉ
A þ

ffiffiffi
2
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i

4
m4�
�
5�þ

ffiffiffi
6

p
6

m2��̂� �
ffiffiffi
6

p
8

m2�
�
5	þ 1

2
�����
5
�@��̂� þ 1

2

5
��@�	 ¼ 0: (37)

To simplify these field equations, we multiply Eqs. (36) and (37) by 
A and 
�, respectively. Also, we trace these equations

by @A and @�, respectively. We can then write ĉ A in terms of � and 	:

@A ĉ
A ¼ 3

8

5
A@A�þ 9

ffiffiffi
6

p
i

8
m2�
5�þ 3

ffiffiffi
2

p
�
5	; (38)

and a similar equation for @A�̂
A:

@A�̂
A ¼ � ffiffiffi

3
p

i
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m2
5
A@A�þ 11

ffiffiffi
2

p
2

m4�
5�� 3

4

5
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A	� 7
ffiffiffi
6

p
i

2
m2�
5	: (39)

Also, an equation relating � and 	 is found. This is given by
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� 5
ffiffiffi
6

p
24

m4�
A@A�� 109i

4
m6�2�� 4

ffiffiffi
2

p
im2�
A@A	

� 137
ffiffiffi
3

p
6

m4�2	� 2
ffiffiffi
3

p
@A@

A	 ¼ 0: (40)

Since the action is invariant under local supersymmetry
transformations, we can choose the gauge to be 	 ¼ 0.
Then we get


A@
A�þ 109

ffiffiffi
6

p
5

im2�� ¼ 0: (41)

This gives a Dirac-type equation for the spin-1=2 helicities.

It should be noted that the divergence of �̂ is found

in terms of �. However, we can find a combination of �̂A

and ĉ A,

�̂0
A ¼ �̂A þ �ĉ A; (42)

such that the divergence of �̂0 equals zero (@A�̂0
A ¼ 0)

[27]. Then �̂0 has two helicities, 3=2 and �3=2.
To count degrees of freedom, we are coupling super-

gravity to a N ¼ 1 supersymmetry model similar to the
Wess-Zumino model. Before the coupling, supergravity
contains two bosonic degrees of freedom (massless
spin-2 graviton) and two fermionic degrees of freedom
(one massless spin-3=2 gravitino). The N ¼ 1 supersym-
metry model has four spin-0 particles, ’A, with only six
degrees of freedom (3 times 2), since ’0 decouples due to
Fierz-Pauli choice. For this, we have six fermionic degrees
of freedom forming a multiplet. Therefore, we started with
an overall eight fermionic degrees of freedom and eight
bosonic degrees of freedom.

After coupling to supergravity, we obtain N ¼ 1 mas-
sive representation, having the same number of degrees of
freedom as before coupling. Starting with the bosonic
degrees of freedom, we have a massive spin-2 particle,
with five degrees of freedom. Also, when coordinate
invariance is broken by the four scalars, the Lorentz sym-
metry of the tangent manifold gets identified with that of
space-time, and the four scalars become four-vectors.
Therefore, we add to the bosonic degrees of freedom a
massive vector field (spin-1 particle), having three degrees
of freedom. This will constitute the overall eight bosonic
degrees of freedom. The fermionic degrees of freedom
arise from having two massive spin-3=2 particles, ��

and c A, with four degrees of freedom each.
At the end, we are left with two massive spin-3=2

particles, �� and c A. From the full Lagrangian [Eq. (31)],

we can get the mass of each by comparing with the
Rarita-Schwinger Lagrangian. The gravitino, c A, can be
rescaled to get a normalized kinetic term, and then its mass

value is found to be 58
ffiffi
6

p
15 m2�, while the mass of the �� is

2
ffiffi
6

p
3 m2�. This is similar to the N ¼ 2 supersymmetry, in

which we have two gravitinos, but there they have the same

mass. However, in our case, supersymmetry is completely
broken. Since it is a space-time symmetry, it is broken
exactly at the same scale as the diffeomorphism breaking.
Before diffeomorphism breaking, we had spin-1=2 and
not spin-3=2; therefore the two gravitinos would not have
the samemass. We coupled a pure supergravity multiplet to
a matter multiplet, and we are left with two massive
spin-3=2 particles having completely different masses.
�� is a genuine gravitino, while the other, c A, becomes

identified with a gravitino after the breaking.

IV. CONCLUSION

In this paper, we gave a detailed derivation of super-
symmetrizing massive gravity. Generalizing the Higgs
mechanism used before to make the graviton massive, we
were able to form a massive supergravity action. We
started with fourN ¼ 1 chiral superfields that break diffeo-
morphism invariance and local supersymmetry by the sca-
lar component taking a vacuum expectation value. To write
the full Lagrangian, we wrote the supermultiplets in terms
of their component fields. First, we started by writing down
all the possible D-type terms. For this we added F-type
terms to satisfy all required conditions. This was coupled
to supergravity using the rules of tensor calculus for chiral
and vector multiplets. At the end, the degrees of freedom
were analyzed and the equations of motion were obtained.
In what done, wewere not able to see the ghost, because we
were not going to the nonlinear level, and any emergence
of such ghosts occurs at higher orders.
Much work remains to be done, as this paper shows that

it is possible to construct a sensible theory of supersym-
metric massive gravity with a Higgs mechanism. It remains
to be seen whether it is possible to construct the action
from the basic field HABC by adding higher-order terms.
Another possibility is to generalize the simpler quadratic
action [17] to the supersymmetric case. Also, one could
analyze higher orders where ghosts may be present.
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APPENDIX A: D-TYPE AND F-TYPE TERMS

The products that could be formed as D-type terms are
given by
(1) HABCHABC, where ðHABCHABCÞ� ¼ HCBAHCBA ¼

HABCHABC and is self-adjoint.
(2) HABCHACB, where ðHABCHACBÞ� ¼ HCBAHBCA ¼

HABCHBAC.
(3) HABCHBCA, where ðHABCHBCAÞ� ¼ HCBAHACB ¼

HABCHBCA and is self-adjoint.
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(4) HABCHCAB, where ðHABCHCABÞ� ¼ HCBAHBAC ¼
HABCHCAB is self-adjoint.

(5) HABCHCBA, where ðHABCHCBAÞ� ¼ HCBAHABC and
is self-adjoint.

(6) HAH
�
A is self-adjoint.

(7) HAHA, where ðHAHAÞ� ¼ H�
AH

�
A.

(8) �ABCDHABCHD, where ð�ABCDHABCHDÞ� ¼
��ABCDHABCH

�
D.

(9) �ABCDHABEHCDE, where ð�ABCDHABEHCDEÞ� ¼
�ABCDHEBAHEDC ¼ �ABCDHEABHECD.

(10) �ABCDHAEBHCED, where ð�ABCDHAEBHCEDÞ� ¼
�ABCDHAEBHCED is self-adjoint.

(11) �ABCDHAEBHECD, where ð�ABCDHAEBHECDÞ� ¼
�ABCDHAEBHCDE.

(12) �ABCDHEABHCDE, where ð�ABCDHEABHCDEÞ� ¼
�ABCDHBAEHEDC ¼ �ABCDHEABHCDE is self-
adjoint.

APPENDIX B: NOTATION AND CONVENTION

The conventions used are those byWess and Bagger [26]
with some differences, which are as follows:
(1) 	�� ¼ diagf1;�1;�1;�1g.

(2) ��� ¼ � _� _� ¼ 0 1

�1 0

 !
;

��� ¼ � _� _� ¼ 0 �1

1 0

 !
:

(3) 
5 � i
0
1
2
3 ¼ �1 0

0 1

 !
:

(4) ð���Þ�� � i
4 ð�� ��� � �� ���Þ��;

ð ����Þ _�
_�
� i

4 ð ����� � �����Þ _�
_�
.

(5) �0123 ¼ þ1.
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