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In a quantum system, there may be many density matrices associated with a state on an algebra of

observables. For each density matrix, one can compute its entropy. These are, in general, different.

Therefore, one reaches the remarkable possibility that there may be many entropies for a given state

[R. Sorkin (private communication)]. This ambiguity in entropy can often be traced to a gauge symmetry

emergent from the nontrivial topological character of the configuration space of the underlying system. It

can also happen in finite-dimensional matrix models. In the present work, we discuss this entropy

ambiguity and its consequences for an ethylene molecule. This is a very simple and well-known system,

where these notions can be put to tests. Of particular interest in this discussion is the fact that the change of

the density matrix with the corresponding entropy increase drives the system towards the maximally

disordered state with maximum entropy, where Boltzman’s formula applies. Besides its intrinsic

conceptual interest, the simplicity of this model can serve as an introduction to a similar discussion of

systems such as colored monopoles and the breaking of color symmetry.
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I. INTRODUCTION

Many years ago, Balachandran et al. [1,2] and Nelson
and Manohar [3] discovered that color symmetry is spon-
taneously broken in the presence of non-Abelian GUT
monopoles [4].

Subsequently, we discovered that this phenomenon is
quite common [5,6]. It can happen whenever wave func-
tions are sections of a twisted bundle over a configuration
space Q. If the group H associated with the bundle is
non-Abelian, then it is broken for the same reason that
the above mentioned monopole breaks color. Examples are
diverse and include the following:

(a) Molecules such as ethylene with non-Abelian
symmetry H [6].

(b) Systems of N identical particles with the represen-
tation of a braid or permutation group of dimension
2 or more [5].

(c) QCD [4,7,8] and GUT theories [9] with their gauge
groups as H.

(d) Non-Abelian mapping class diffeomorphism groups
H of quantum gravity [10–13].

It is often the case that such anomalous quantum break-
down of a classical symmetry is not desirable. With that in
mind, Balachandran and Queiroz [14] had suggested the use
of appropriate mixed states which restore the symmetry.

Summarizing, if H is a twisted non-Abelian gauge
symmetry, then it is anomalous on pure states. The use of
appropriate mixed states removes this anomaly.

The contribution of the present paper is to show that
such mixed states necessarily emerge in quantum theory.
We will show the result here for the simple quantum
mechanical system of the ethylene molecule C2H4. That
can be the basis for the future treatment of GUTmonopoles
and QCD.
The framework best adapted for this analysis is the

Gel’fand-Naimark-Segal (GNS) theory. It formulates
quantum theory using unital C� algebras of observables
A and states ! on A. The usual Hilbert space formula-
tion emerges from this theory. All results of physical
interest can be formulated in the latter, but certain ideas
and approaches become less transparent. With this in mind,
in Sec. II, we explain the aspects of the GNS theory of
interest here using the Hilbert space language.
Section III recalls the basic quantum theory of

ethylene. It then deals with the algebra A of observables
of this system. It shows that a ground-state wave function
induces a mixed state on A. It is not unique. That reflects
the fact that the (convex) set of states is not a simplex
[15,16].
The final Sec. IV examines what happens upon appro-

priately including the electronic observables in A. Then
one can actually prepare the molecule in one of the above
mixed states. Further time evolution becomes a stochastic
map, steadily increasing entropy towards its fixed point,
which is its maximum [16].

II. THE GNS CONSTRUCTION

In elementary quantum theory, a general state is identi-
fied with a density matrix �. It is represented in terms of
rank-1 (pure) orthogonal density matrices ��:
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� ¼ X

�

����; �� > 0;
X

�

�� ¼ 1; (2.1)

���� ¼ �����: (2.2)

These � and ��, as the (unital C
�) algebra of observables

A, are regarded as operators on a Hilbert space H . The
expectation value of a 2 A in the state specified by � is
then

hai� ¼ Tr�a: (2.3)

The entropy of � is

Sð�Þ ¼ �Tr� log� ¼ �X

�

�� log��: (2.4)

We now deduce the GNS language using the density
matrix description, first for the rank-1 density matrices and
then for general rank matrices.

A. Rank-1 density matrix

In this case,

� ¼ jc ihc j; c 2 H ; hc jc i ¼ 1: (2.5)

The expectation value of the product a1 � . . . � aN of N
observables for this density matrix is

Tr�ða1 � . . . � aNÞ ¼ hc ja1 � . . . � aNjc i: (2.6)

Further, for any observable a,

hc ja�ajc i � 0: (2.7)

From Eq. (2.7) we see that the set of vector states in H
excited by A from jc i is

Ajc i � H ¼ fjaic :¼ ajc i: a 2 Ag: (2.8)

The inner product on these vectors is given by Eq. (2.7).
It may happen that certain observables n annihilate jc i.

Such n have zero norm,

hc jn�njc i ¼ 0; (2.9)

and generate a left-ideal N in the algebra, as is readily
shown using the Schwarz inequality. We must remove this
‘‘Gel’fand ideal’’ N from A to convert Eq. (2.8) to a
Hilbert space. Thus, we consider

ðA=N Þjc i ¼ fj½a�ic :¼ ðaþN Þjc i: a 2 Ag;
(2.10)

where N jc i denotes the set fnjc i: n 2 N g. The scalar
product for these vectors is given by

h½a�j½b�ic ¼ hc ja�bjc i: (2.11)

Note that ½a� ¼ ½a0�, if a� a0 2 N . Also, by Schwarz
inequality, hc ja�njc i ¼ 0 for a 2 A, so that the rhs of

Eq. (2.11) does not depend on the chosen elements a, b
from [a], [b].
We can now complete ðA=N Þjc i using the norm of

Eq. (2.11) to obtain a variant ~H GNS of the canonical GNS
Hilbert space.

On ~H GNS, there is also a � representation ~� of A (the
star becoming the adjoint operator in the representation):

~�ðbÞj½a�ic ¼ j½ba�ic : (2.12)

The image of the density matrix � in ~H GNS is the vector

j½1�ic : (2.13)

(Recall that by assumption A is unital; that is, 1 2 A).
The density matrix

~�GNS ¼ j½1�ic c h½1�j (2.14)

for the algebra ~�ðAÞ is entirely equivalent to the density
matrix � of A:

Tr ~H GNS
~�GNS ~�ðaÞ ¼ TrH�a; for all a 2 A: (2.15)

B. Rank-N density matrix

In this case,

�� ¼ jc �ihc �j; c � 2 H ; hc �jc �i ¼ ���;

(2.16)

while Eqs. (2.6) and (2.7) are replaced by

Tr�ða1 � . . . � aNÞ ¼
X

�

��hc �ja1 � . . . � aNjc �i; (2.17)

X

�

��hc �jb�bjc �i � 0: (2.18)

The space Ajc i is replaced by the direct sum
M

�

Ajc �i: (2.19)

This space inherits the following inner product ð�; �Þ
from Eq. (2.18):

ðajc �i; bjc �iÞ ¼
X

�

�����hc �ja�bjc �i: (2.20)

Let us first assume that there are no vectors of zero norm
for this inner product. Then the completion of

L

� Ajc �i
using this scalar product gives the full Hilbert space
L

�
~H �, with ~H � being the completion of Ajc �i.

Thus,
L ~H � is an orthogonal direct sum with the

weighted inner product [Eq. (2.20)].

Also, while Ajc �i are subspaces �ð ~H �Þ of H as
vector spaces, the scalar product [Eq. (2.20)] differs from

that inherited by �ð ~H �Þ from H . That is because as

subspaces �ð ~H �Þ of H , they would in general have non-
trivial intersection for � � �:
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�ð ~H �Þ \ �ð ~H �Þ � f0g; (2.21)

and hence they would have vectors with nonzero scalar

product. Therefore, it is not appropriate to regard
L

�
~H �

as a subspace of H .
Suppose next that there are null vectors. Then we must

remove them first from
L

� Ajc �i. They come from the
n 2 A such that

hc �jn�njc �i ¼ 0; for all �: (2.22)

Such n form the Gel’fand ideal N of A.
The space

L

�ðA=N Þjc �i, with
ðA=N Þjc �i :¼ fðaþN Þjc �i � j½a�i�g; (2.23)

has the scalar product

h½a�j½b�i ¼ X

�

��hc �ja�bjc �i: (2.24)

On completion it gives a variant ~H GNS of the canonical
GNS Hilbert space.

We can write

1 ¼ X

�

jc �ihc �j ¼
X

�

�� (2.25)

so that the component of j½1�i in A=N jc �i is
j½1�i� :¼ j½jc �ihc �j�i� ¼ j½���i�: (2.26)

The Hilbert space ~H GNS carries a � representation ~�
of A:

~�ðaÞj½b�i ¼ j½ab�i; (2.27)

~�ðbÞj½1�i :¼ j½b�i: (2.28)

Since

�h½c�j ~�ðaÞj½b�i� ¼ ���hc �jc�abjc �i; (2.29)

so that each subspace j½A�i� is invariant under ~�, the
density matrix

~�GNS ¼ X

�

j½1�i�
X

�
�h½1�j (2.30)

is entirely equivalent to �:

Tr ~H GNS
~�GNS ~�ðaÞ ¼ TrH �a; for all a 2 A: (2.31)

The density matrix ~�GNS can in fact be rewritten discarding
the cross terms in Eq. (2.31) in view of Eq. (2.29):

~�GNS ¼ X

�

j½1�i��h½1�j: (2.32)

Since

�h½1�j½1�i� ¼ ��; (2.33)

in terms of density matrices

~�GNS;� � 1

��

j½1�i��h½1�j; (2.34)

Eq. (2.32) reads

~�GNS ¼ X

�

�� ~�GNS;�: (2.35)

C. A shift in perspective

A state ! on a unital �-algebra A is a non-negative
linear map from A to C normalized to 1 on 1 and
compatible with the � operation:

!ða�aÞ � 0; !ða�Þ ¼ !ðaÞ; (2.36)

!ð1Þ ¼ 1; a;1 2 A: (2.37)

Hence, a density matrix � defines a state !�:

!�ðaÞ ¼ Tr�a: (2.38)

It can and does happen in quantum theory that many
density matrices �i give the same state:

Tr�ja ¼ Tr�ka; �j � �k for j � k; (2.39)

so that

!�j
¼ !�k

: (2.40)

But their entropies can be different:

�Tr�j log�j � �Tr�k log�k; for j � k: (2.41)

We can capture such subtleties more elegantly by not
starting with a density matrix, but with a state ! on A,
presented now as a unital � algebra, shifting the focus away
from its representation on H by a density matrix.
In the original GNS approach, one introduces a vector

space Aj1i labeled by elements of A:

Aj1i :¼ faj1i ¼ jai: a 2 Ag: (2.42)

Then one uses ! to define inner products:

ðjbi; jaiÞ ¼ !ðb�aÞ: (2.43)

If ! ¼ !�, then this coincides with Tr�ðb�aÞ:
!�ðb�aÞ ¼

X

�

��hc �jb�ajc �i: (2.44)

As in the earlier approach, here too there can be null
vectors jni:

hnjni ¼ !ðn�nÞ ¼ 0: (2.45)

The set N of n 2 A creating the space N j1i of
null vectors is the Gel’fand ideal. We remove them by
considering

ðA=N Þj1i :¼ fj½a�ig; (2.46)
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where, as before, by [a] we mean the equivalence class of
elements in A differing by an element of N :

½a� ¼ ½b� , a� b 2 N : (2.47)

The scalar product in ðA=N Þj1i is also given by !:

h½b�j½a�i ¼ !ðb�aÞ: (2.48)

As before, by Schwarz inequality, the rhs does not depend
on the choice of the representatives b and a from their
equivalence classes. The completion of ðA=N Þj1i gives
the standard presentation of the GNS Hilbert spaceH GNS.

We emphasize that this process of completion can be
important, as it is for the ethylene molecule treated below
in Secs. III and IV.

As before, H GNS carries a representation � of A:

�ðaÞj½b�i ¼ j½ba�i: (2.49)

We can generate a dense subset ofH GNS by acting with
�ðaÞ’s on j½1�i. For this reason, j½1�i is called a ‘‘cyclic
vector.’’

It is an easy check that the density matrix

�̂GNS ¼ j½1�ih½1�j (2.50)

defines exactly the same state as !:

!ðaÞ ¼ TrH GNS
�̂GNS�ðaÞ: (2.51)

We can now quickly recover the decomposition of �̂GNS

in pure states. Let us reduce �ðaÞ into a direct sum of
irreducible representation (IRR),

� ¼ M

�;r

�ð�;rÞ (2.52)

with the corresponding orthogonal direct sum decomposi-
tion of H GNS:

H ¼ M

�;r

H ð�;rÞ: (2.53)

Here, if � � �, �ð�;rÞ and �ð�;sÞ are inequivalent:

�ð�;rÞ � �ð�;sÞ; if � � �; (2.54)

while for fixed �, �ð�;rÞ and �ð�;sÞ are equivalent:

�ð�;rÞ ’ �ð�;sÞ; r; s ¼ 1; . . .N�; (2.55)

where N� is the multiplicity of the representation �.

If Pð�;rÞ are projectors to H ð�;rÞ, then

j½1�i ¼ X

�;r

Pð�;rÞj½1�i ¼ X

�;r

j½Pð�;rÞ�i: (2.56)

Therefore

Tr �̂GNS�ðaÞ ¼
X

�;r

Tr j½Pð�;rÞ�ih½Pð�;rÞ�j�ðaÞ; (2.57)

so that as states, we can write

�̂GNS ’ �GNS :¼ X

�;r

�ð�;rÞ; (2.58)

�ð�;rÞ :¼ j½Pð�;rÞ�ih½Pð�;rÞ�j; (2.59)

with the corresponding entropy

Sð�GNSÞ ¼ �Tr�GNS log�GNS: (2.60)

The vectors j½Pð�;rÞ�i may not be of norm 1, which is to
be computed using !. Let

��;r ¼ ðj½Pð�;rÞ�i; j½Pð�;rÞ�iÞ ¼ !ððPð�;rÞÞ2Þ ¼ !ðPð�;rÞÞ:
(2.61)

Then, in terms of normalized density matrices

�ð�;rÞ ¼ 1

��;r

�ð�;rÞ; (2.62)

we can write

�GNS ¼ X

�;r

��;r�
ð�;rÞ (2.63)

and

Sð�GNSÞ ¼ �X

��;r log��;r: (2.64)

But if the same IRR � occurs more than once, then the
decomposition in Eq. (2.53) is not unique. We can replace

the subspace H ð�;rÞ by

H ð�;rÞðuÞ ¼ H ð�;sÞusr � f	ð�;sÞusr: 	ð�;sÞ 2 H ð�;sÞg;
uyu ¼ 1: (2.65)

As u ¼ ei
1 gives the same orthogonal decomposition for
all 
, we have UðN�Þ=Uð1Þ ’ SUðN�Þ=ZN�

worth of

distinct decompositions in the above.

Here if fj½�ð�;rÞ
j �ig is an orthonormal basis for H ð�;rÞ,

then an orthonormal basis for H ð�;rÞðuÞ is
fj½�ð�;sÞ

j �iusrg: (2.66)

In quark model language, one says that if � is a color
index, then r is a flavor index.
Since

�ðaÞH ð�;rÞðuÞ � H ð�;rÞðuÞ; (2.67)

we can repeat the construction of �GNS using projectors

Pð�;rÞðuÞ on H ð�;rÞðuÞ, getting generically a new density
matrix �GNSðuÞ,

�̂GNS ’ �GNSðuÞ; (2.68)

and the new entropy

Sð�GNSðuÞÞ ¼ �Tr�GNSðuÞ log�GNSðuÞ: (2.69)
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Reference [16] discusses the dependence of the entropy
on u in detail. We shall return to it later.

We have now captured the relevant features of states
using the original GNS approach as well.

D. The emergent ‘‘gauge’’ symmetry

For the IRR � with degeneracy N�, the set of unitary
transformations fug modulo Uð1Þ forms the group
SUðN�Þ=ZN�

� G�. It commutes with the algebra of

observables A. It is therefore a ‘‘gauge’’ symmetry. The
full gauge symmetry is ��G�.

EachG� generates an algebraCG�, the group algebra of
G�, in the commutant A0 of A. We identify A0 with
L

� CG�.
Remark: It is worth pointing out an important subtlety

related to the role of Pð�;rÞ’s, the projectors to the H ð�;rÞ.
Considerations based purely on A allow us to construct

only the central projectors Pð�Þ � P

rP
ð�;rÞ. Their further

‘‘splitting’’ into different Pð�;rÞ’s is impossible to construct
if one makes use of only elements a 2 A. To decompose

Pð�Þ further, we need to enlarge the algebra A to a larger

algebra �A containing the commutant A0 ¼ L

� CG�.
Using u 2 A0, we can construct the noncentral projectors
Pð�;rÞ and subsequently subspaces H ð�;rÞðuÞ of Eq. (2.65).
The u dependence of the entropy [Eq. (2.69)] then follows
easily.

The above considerations will play an important role in
understanding the example of the ethylene molecule dis-
cussed in the next section.

Alternatively, if we were to restrict ourselves just to the
algebra A, we would still be able to deduce if the state
is mixed or pure by computing the trace of the central

projector Pð�Þ. So if

TrPð�Þ

dim��
> 1; (2.70)

then the associated state is mixed, or else it is pure. This
trace can be computed just from the representation of A
on the Hilbert space.

The emergence of a gauge symmetry andA0 are among
the remarkable insights from the GNS approach and the
Tomita-Takesaki theory [17].

We will see that the twisted gauge symmetries in the
conventional sense are transmuted to the role of UðN�Þ.
Further, since only the elements of A \A0, which are
contained in the center of A, are observable, mixed states
of the sort in Refs. [14,18] naturally emerge, eliminating
the gauge anomalies.

III. CONFIGURATION SPACE OF ETHYLENE

Polyatomic molecules can be approximated by rigid
shapes in three dimensions at energies much smaller
than, say, the dissociation energy of the molecule. The
success of molecular spectroscopy, which uses the

quantum theory of molecular shapes, bears out the validity
of this approximation. Molecular shapes possessing some
symmetry [subgroups of the rotation group SOð3Þ] are of
particular interest, not only because of the simplification
that group theory offers, but also because a large number of
interesting molecules possess some symmetry.
Let us briefly describe the configuration space of a

molecular shape that has H 	 SOð3Þ as its symmetry
group [6]. A conveniently chosen configuration C0 will
be denoted as its standard configuration. Then all its other
configurations can be obtained from C0 by applying all
rotations to it. It is easy to see that its configuration space
Q obtained in this manner is

Q ¼ SOð3Þ=H: (3.1)

It is multiply connected ifH is discrete. Since ethylene, the
molecule we focus on, has a discrete H, we assume hence-
forth thatH is discrete. For concreteness, we think ofQ as
the set of right cosets of H in SOð3Þ.
A convenient way to think of Q is to recognize that the

universal cover of SOð3Þ is SUð2Þ, which allows one to
write

Q ¼ SUð2Þ=H�; (3.2)

where H� is the double cover of H. Since SUð2Þ is simply
connected, �1ðQÞ ¼ H�.
The universal cover �Q of Q is SUð2Þ.
The observables for this system are generated by two

types of observables:
(1) Functions on Q.
(2) Generators of translations on Q (i.e. generators of

physical rotations), or more generally, the group
algebra CSUð2Þ associated with physical rotations.

To construct the Hilbert space of wave functions for the

molecule, it is convenient to start with �Q ¼ SUð2Þ and
functions on it. These are spanned by components of the

rotation matrices Dj
��, with j 2 Zþ=2, and �, � 2

f�j;�jþ 1; . . . ; j� 1; jg. The scalar product is

ðDj0
�0�0 jDj

��Þ ¼
Z

s2SUð2Þ
d�ðsÞ �Dj0

�0�0 ðsÞDj
��ðsÞ; (3.3)

where d�ðsÞ is the invariant SUð2Þ measure.

The group �1ðQÞ acts on �Q by right multiplication:

g ! gh� for g 2 SUð2Þ; h� 2 H�: (3.4)

On the other hand, a physical rotation (see item 2 above)
induced by g 2 SUð2Þ acts on the left:

ðUðgÞDj
��ÞðsÞ ¼ Dj

��ðgsÞ: (3.5)

Since left and right multiplications commute, we see that
physical rotations (and more generally, all physical observ-
ables) commute with the action of H�. Thus, H� is the
gauge group for this system.
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Thus, molecules provide realistic examples of physical
systems with discrete gauge groups.

In quantum theory, wave functions are thus functions on
SUð2Þ that transform by a fixed unitary irreducible repre-
sentation � of H�, different � describing different intrinsic
states of the molecule. These are spanned by the matrix

elements Dj
��, with the index � now restricted to a subset

of f�j . . . ; jg. We will henceforth denote the restricted
values of � by m. On this basis, the action of H� is

Dj
�mðsÞ ! Dj

�mðsh�Þ ¼ Dj
�m0 ðsÞ�m0mðh�Þ: (3.6)

It is easily seen that functions on Q are generated by
P

m
�Dj
�mD

j0
m: they are invariant under the H� action

[Eq. (3.6)].
(The above paragraphs are only meant to indicate how

wave functions and functions on Q are constructed in
general. The unitary irreducible representation � may oc-
cur more than once for a fixed j, and that is not shown here.
Also, the above presentation is a version with no gauge
fixing. The ethylene case, including the problem of gauge
fixing, is worked out in full detail below, so that such issues
are covered there.)

The Hamiltonian for the system is proportional to the
square of the angular momentum, or more realistically,

H ¼ X

3

i¼1

J2i
2Ii

; (3.7)

where Ii are the three principal moments of inertia and Ji
are angular momentum operators which generate rotations
on the left of g [cf. Eq. (3.5)]:

ðei
JiDj
�mÞðgÞ ¼ Dj

�mðe�i

�i
2gÞ; �i ¼ Pauli matrices:

(3.8)

They hence commute with elements of H�.
The Hamiltonian [Eq. (3.7)] is unbounded, and hence

defined only on a dense domain in the Hilbert space. It is

determined by the linear span of Dj
�m, as we explicitly see

below for the ethylene.
Our interest is in situations whenH� is non-Abelian. We

will restrict our attention to the case of ethylene C2H4,
which is a planar molecule with H� as the binary dihedral
group D�

8:

D�
8 ¼ f
12;
i�i: i ¼ 1; 2; 3g: (3.9)

The configuration space is Q ¼ SUð2Þ=D�
8 with the non-

Abelian fundamental group �1ðQÞ ¼ D�
8. The domain of

the Hamiltonian is fixed to come from the two-dimensional
representation of this group. (Here we do not consider the
one-dimensional representations of H�.)

This domain can be constructed by starting from the
complex linear span in � of the SUð2Þ rotation matrices,

Dj
�
m; � 2 f�j; . . . ; jg; j 2 Zþ=2: (3.10)

If h 2 D�
8, then h acts on these functions by

Dj
�mðgÞ ! Dj

�mðghÞ ¼
X

m02fm;�mg
Dj

�m0 ðgÞDj
m0mðhÞ: (3.11)

These are, for fixed j, �, two-dimensional representations
ofD�

8 acting on the indices
m. They are all isomorphic to

Eq. (3.9). For fixed j, there are ð2jþ 1Þ=2 such represen-
tations. As explained earlier, physical rotations act on the
left and commute with the action of D�

8, and are hence

gauge invariant.
In the Hamiltonian [Eq. (3.7)], we assume hereafter for

simplicity that all Ii are equal to a common I. Then the

ground-state wave functions are obtained from D1=2
�;
1=2

after gauge fixing (see below).

A. The algebra A

It consists of two parts:
(a) Continuous functions C0ðQÞ on Q. They are gen-

erated by

X

m02fm;�mg
�Dj
�m0D

j0
�0m0 ; (3.12)

with the bar denoting complex conjugation.
As they are invariant underD�

8 (the two-dimensional

matrices are arranged to transform by the same � for
all j, �), they are functions on Q. Other functions
are obtained by taking products of linear combina-
tions of Eq. (3.12).
Note that the first m0 can take on ð2jþ 1Þ=2 values,
while the second can take on ð2j0 þ 1Þ=2 values.

(b) The group algebra CSUð2Þ.
The algebra A is generated by C0ðQÞ and CSUð2Þ.

1. Gauge fixing

After gauge fixing, the domain of the Hamiltonian
should come from functions ofQ. If global gauge fixation
is possible, then there will exist a map’: Q ! SUð2Þ such
that if � is the projection map SUð2Þ ! Q ’ SUð2Þ=D�

8,

then

� � ’ ¼ identity map onQ: (3.13)

Then we can fix the gauge as follows: Restrict Dj
�� to

’ðQÞ; then the domain would be spanned by Dj
��j’ðQÞ.

But for the case at hand, there is no such smooth global
map ’. Instead, as explained in Ref. [14], we will coverQ
by open sets Q� and find maps ’�: Q� ! SUð2Þ such
that � � ’� ¼ idjQ�

, the identity map on Q�. Then, on

Q�

T

Q�, we get transition functions h�� 2 D�
8: if q 2

Q�

T

Q�, then ’�ðqÞ ¼ h��’�ðqÞ.
Let us return to Eq. (3.12) and restrictDj

�;
m to’�ðQ�Þ.
In this patch, we can mix
m by an action of h 2 D�

8 as in

Eq. (3.6). It changes the local section and mixes
m. Thus,
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there is a quantum internal multiplicity of 2 even though
there is no such internal multiplicity indicated in A [5].

But this h cannot be globally defined, since, D�
8 being

non-Abelian, it does not commute in general with h��. So

in general, h��hh
�1
�� � h, and h cannot be used to imple-

ment the D�
8 action in Q�.

Another way to say this is that D�
8 changes the domain.

Now the puzzle arises: what ‘‘symmetry’’ group, pre-
serving the domain of H and commuting with it, mixes
the indices m?

We approach the problem using a state and GNS
construction.

In Ref. [5], while discussing quantization on configura-
tion spaces with non-Abelian fundamental groups, the
emergence at the quantum level of a multiplicity of states,
all localized at the same point of the configuration space,
has been discussed using an approach equivalent to, but not
identical with the GNS one. That discussion adapted to
ethylene reaches conclusions similar to the present one.

B. The GNS construction for C2H4

The ground-state wave functions have j ¼ 1=2 when all
the Ii’s in Eq. (3.7) are equal. As said earlier, we will
assume this condition.

Recall that an automorphism � ofA acts on any state!
via duality:

!ð�ðaÞÞ :¼ !�ðaÞ; 8 a 2 A: (3.14)

In the present case, since the algebra is invariant under the
action of the gauge group, it also acts trivially on !. Its
apparent lack of gauge invariance (if any) when written in
terms ofwave functions ismisleading and should be ignored.

If d�ðgÞ is the invariant volume form on SUð2Þ normal-
ized to 8�2,

Z

SUð2Þ
d�ðgÞ ¼ 8�2; (3.15)

then with the scalar product given by

ðDj
��jDj0

�0�0 Þ ¼ 1

8�2

Z

d�ðgÞ �Dj
��ðgÞDj0

�0�0 ðgÞ
¼ �jj0���0���0 ; (3.16)

we see that

!þþð1Þ ¼ ðD1
2þþjD

1
2þþÞ ¼ 1: (3.17)

We can therefore start with the following rank-1 density
matrix �þþ of a ground state for our GNS construction:

!þþð�Þ ¼ Tr�þþð�Þ; (3.18)

�þ
 ¼
�

�

�

�

�

�

�

�

1

2
;þ


��

1

2
;þ


�

�

�

�

�

�

�

�

; (3.19)

�

�

�

�

�

�

�

�

1

2
;þ


�

� jD1
2þ
Þ: (3.20)

Remark: The Hilbert space with the scalar product given
by Eq. (3.16) is H SUð2Þ � L2ðSUð2Þ;d�ðgÞÞ. We denote

its kets and bras by j�Þ and ð�j.
The vectors and scalar product of the GNS Hilbert space

H GNS are different. The definition of the scalar product in
particular involves the state. We denote kets and bras of
H GNS by j�i and h�j.
Thus, in this section, we are working with two Hilbert

spaces H SUð2Þ and H GNS. Their corresponding ‘‘traces’’

are distinguished by subscripts on Tr.
The algebra A of observables is invariant under the

action of the symmetry group SUð2Þ acting on the right of
g [cf. Eq. (3.11)]. Hence, for a 2 A,

!þþðaÞ ¼ TrH SUð2Þ �þþa ¼ TrH SUð2Þ �þ�a � !þ�ðaÞ;
(3.21)

where !þ� is the state defined by �þ�.
The states

! ¼ �!þþ þ ð1� �Þ!þ�; 0 � � � 1 (3.22)

are thus entirely equivalent to !þþ when restricted to A.
It is here that the remark of Sec. II D assumes significance.

By enlarging the algebra A to �A, which includes the
commutantA0, we can distinguish between theþ and the
� of the second index in !þ
.
We have

!ðaÞ ¼ �ð1=2;þþ jaj1=2;þþÞ
þ ð1� �Þð1=2;þ� jaj1=2;þ�Þ; (3.23)

so that! seems amixed state invariant under the symmetry
or gauge group SUð2Þ. It is represented by the density
matrix

� ¼ �j1=2;þþÞð1=2;þþ j
þ ð1� �Þj1=2;þ�Þð1=2;þ� j: (3.24)

We can now proceed with the GNS construction using
the state in Eq. (3.22). Its next step is the determination of
the null space N . If n 2 N , then

TrH SUð2Þ �ðn�nÞ ¼ 0 (3.25)

or

nj1=2;þ
Þ ¼ 0: (3.26)

Hence, if

Pþ ¼ j1=2;þþÞð1=2;þþ j þ j1=2;þ�Þð1=2;þ� j
(3.27)

is the projector to the subspace spanned by j1=2;þ
Þ,
then

n ¼ nð1� PþÞ: (3.28)
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Thus, the full null space is

N ¼ Að1� PþÞ: (3.29)

Note that N is a left ideal, as it should be.
It follows that the component of 1 2 A in A=N is

½Pþ� ¼ Pþ þN ; (3.30)

and the cyclic vector of GNS is

j½Pþ�i: (3.31)

1. Impurity from gauge invariance

We just saw from Eq. (3.31) that the cyclic vector or
‘‘ground state’’ in the GNS construction is j½Pþ�i. The
mean value of a 2 A in this ‘‘ground state’’ is

h½Pþ�jaj½Pþ�i ¼ TrH SUð2Þ �PþaPþ

¼ �ð1=2;þþ jaj1=2;þþÞ
þ ð1� �Þð1=2;þ� jaj1=2;þ�Þ:

(3.32)

Thus, the cyclic vector gives an impure state onAwhen
we take into account the gauge invariance of A.

This state is a prototype of the mixed states proposed
in Ref. [14] to restore gauge symmetry. The projector Pþ
is of rank 2. It suggests a two-foldmultiplicity of statevectors
localized at a point of the configuration space. This observa-
tion is confirmed by the analysis of Ref. [5] as well.
Remark: Although Pþ 2 A, that is not the case for �þþ
and �þ� on the rhs of Eq. (3.32). This expression for
precision should be understood as follows: We first re-
place j1=2;þ
Þwith sections of theH� bundle. They will
then not be smooth functions on SUð2Þ=D�

8. But the

corresponding [�þþ] and [�þ�] generate vectors con-
tained in H GNS, which involves the completion in norm
of A=N j½1�i. The state ! trivially extends to this com-
pletion. It is in this sense that Eq. (3.32) is to be under-
stood. Note that since A commutes with gauge
transformations, the above rhs is independent of the
sections used to define j1=2;þ
Þ. For the same reason,
the use of functions on SUð2Þ and not sections in �þ;

does not lead to errors.

2. Entropic ambiguities

The representation of A on �ðAÞj½Pþ�i is reducible,
each subspace

H m � H mð1Þ ¼ �ðAÞj½j1=2;þmÞð1=2;þmj�i;
m ¼ 
 (3.33)

being invariant under �ðAÞ. The GNS Hilbert space

H GNS ¼
M

m

H m (3.34)

is an orthogonal direct sum. Further, the representations �
of A on H m are both isomorphic.
We note that there are no projectors in the algebra of

observables A projecting toH m. So we cannot prepare a
quantum state by observations of elements ofA. But Pþ is
in A, and we can find its rank, namely 2, from Eq. (2.70).
We can thus tell using just A that the state it defines is
mixed. For preparing states associated with H m, we must
introduce new operators—that is, projectors ontoH m, and
thereby enlarge A. We thereby introduce new degrees of
freedom. Their meaning for ethylene is discussed in the
following section: they are associated with the electronic
degrees of freedom.
For these reasons, we can make another orthogonal

direct sum decomposition

H GNS ¼ M

H mðuÞ; (3.35)

H mðuÞ ¼ �ðAÞX
s

umsj�sð1Þi � �ðAÞj�mðuÞi; (3.36)

�þð1Þ ¼ 1
ffiffiffiffi

�
p �þþ; ��ð1Þ ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �
p �þ�;

h�mð1Þj�nð1Þi ¼ �mn;
(3.37)

with uyu ¼ 1, where s is summed over
. EachH mðuÞ is
invariant under �ðAÞ. Also,

h�mðuÞj�nðuÞi ¼ TrH SUð2Þ ��mðuÞ��nðuÞ
¼ h�mð1Þj�nð1Þi ¼ �mn; (3.38)

as follows from Eq. (3.36).
Now

!ðaÞ ¼ TrH GNS
�ð1Þa; a 2 A; (3.39)

where

�ð1Þ ¼ �þð1Þj�þð1Þih�þð1Þj þ ��ð1Þj��ð1Þih��ð1Þj;
(3.40)

�þð1Þ ¼ �; ��ð1Þ ¼ 1� �: (3.41)

Using the above results, we have also proved elsewhere
[16] that

h½Pþ�jaj½Pþ�i ¼
X

m

�mðuÞh�mðuÞjaj�mðuÞi; (3.42)

�mðuÞ ¼
X

n

jumnj2�nð1Þ; (3.43)

and hence that the density matrix

�ðuÞ¼X

m

�mðuÞj�mðuÞih�mðuÞj :¼
X

m

�mðuÞ�mðuÞ (3.44)

for all u defines the same state on A.
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But in general,

�mðuÞ � �mð1Þ: (3.45)

We can write

�ðuÞ ¼ X

m

�mðuÞ�mðuÞ; TrH GNS
�mðuÞ ¼ 1; (3.46)

where �mðuÞ are rank-1 density matrices. Hence, the
entropy

Sð�ðuÞÞ ¼ �X

m

�mðuÞ log�mðuÞ (3.47)

depends on u.
When u is changed to, say, vu, we get from Eq. (3.43)

�mðvuÞ ¼
X

s

jvmsj2�sðuÞ ¼ TrsðvÞ�sðuÞ: (3.48)

Accordingly, the entropy is in general changed when u is
changed.

In fact, it generally increases, as TðvÞ is a stochastic
map [16].

The �ð1Þ for � ¼ 1=2 [see Eq. (3.24)] in our example is
an exception. It has �sð1Þ ¼ 1=2 for both s. It is the
maximally disordered state where the Boltzmann formula
for entropy applies. It is the fixed point of the stochastic
map.

IV. DYNAMICS ON u: THE ELECTRON CLOUD

It is clearly interesting to see if we can put dynamics on
u. If that can be done, the molecular entropy will undergo
stochastic maps, tending to increase steadily in time. It will
be constant only at the exceptional fixed points. Thus, we
would have a version of Boltzmann’s theorem that entropy
in general keeps increasing.

We claim that such dynamics can be induced from that
of the electronic cloud. The observations are based on the
work of Balachandran and Vaidya [19].

We assume as usual that all Ii’s in the Hamiltonian
[Eq. (3.7)] are equal, and that the symmetry group D�

8

has the two-dimensional spinorial representation for the
molecule.

For definiteness, we assume that the molecule is in the
ground state. Then a full eigenstate of the Hamiltonian
including the electronic part is

�r ¼
X

m

D
1
2
rm�mð� � �Þ; r ¼ 
 1

2
; (4.1)

where � � � denote the electronic variables.
The index m in �m denotes the component of total

angular momentum of electrons along the ‘‘third axis’’ of
the body-fixed frame of the molecule.
The normalization condition on �r shows that

X

m

�m ¼ 1; (4.2)

�m ¼
Z

j�mð� � �Þj2; (4.3)

where the integral is over the variables not shown.
If we now perform only molecular observations, we get

the mixed state
X

m¼

�m�r;m: (4.4)

Comparing with Eq. (3.46), we see that�m plays the role
of �mðuÞ.
Under a rotation v of the electrons by total angular

momentum,

�mð� � �Þ � vmr�
rð� � �Þ (4.5)

and

�m � �mðvÞ ¼ jvmrj2�r: (4.6)

This matches Eq. (3.48).
Thus, by dynamically rotating the electronic angular

momentum by electric or magnetic fields, and then restrict-
ing observables to the molecular variables, we can steadily
evolve the molecular entropy.

ACKNOWLEDGMENTS

A. P. B. was supported by the Institute of Mathematical
Sciences, Chennai. A. R. Q. is supported by CNPq under
Process No. 307760/2009-0.

[1] A. P. Balachandran, G. Marmo, N. Mukunda, J. S. Nilsson,
E. C. G. Sudarshan, and F. Zaccaria, Phys. Rev. D 29, 2919
(1984).

[2] A. P. Balachandran, G. Marmo, N. Mukunda, J. S. Nilsson,
E. C. G. Sudarshan, and F. Zaccaria, Phys. Rev. D 29, 2936
(1984).

[3] P. C. Nelson and A. Manohar, Phys. Rev. Lett. 50, 943
(1983).

[4] A.P. Balachandran, G. Marmo, N. Mukunda, J. S. Nilsson,
E.C.G. Sudarshan, and F. Zaccaria, Phys. Rev. Lett. 50, 1553
(1983).

[5] A. P. Balachandran, G. Marmo, B. S. Skagerstam, and
A. Stern, Classical Topology and Quantum States
(World Scientific, Singapore, 1991).

[6] A. P. Balachandran, A. Simoni, and D.M. Witt, Int. J.
Mod. Phys. A 07, 2087 (1992).

QUANTUM ENTROPIC AMBIGUITIES: ETHYLENE PHYSICAL REVIEW D 88, 025001 (2013)

025001-9

http://dx.doi.org/10.1103/PhysRevD.29.2919
http://dx.doi.org/10.1103/PhysRevD.29.2919
http://dx.doi.org/10.1103/PhysRevD.29.2936
http://dx.doi.org/10.1103/PhysRevD.29.2936
http://dx.doi.org/10.1103/PhysRevLett.50.943
http://dx.doi.org/10.1103/PhysRevLett.50.943
http://dx.doi.org/10.1103/PhysRevLett.50.1553
http://dx.doi.org/10.1103/PhysRevLett.50.1553
http://dx.doi.org/10.1142/S0217751X92000934
http://dx.doi.org/10.1142/S0217751X92000934


[7] A. P. Balachandran, A. R. de Queiroz, and S. Vaidya
(to be published).

[8] A. P. Balachandran and S. Vaidya, arXiv:1302.3406.
[9] A. P. Balachandran, G. Marmo, B. Skagerstan, and

A. Stern, Gauge Theories and Fiber Bundles:
Applications to Particle Dynamics, Lecture Notes
in Physics Vol. 188 (Springer-Verlag, Berlin,
1983).

[10] J. L. Friedman and R.D. Sorkin, Phys. Rev. Lett. 44, 1100
(1980).

[11] J. L. Friedman and R.D. Sorkin, Phys. Rev. Lett. 45, 148
(1980).

[12] A. P. Balachandran and A. R. de Queiroz, J. High Energy
Phys. 11 (2011) 126.

[13] A. P. Balachandran, A. R. de Queiroz, and S. Vaidya
(to be published).

[14] A. P. Balachandran and A. R. Queiroz, Phys. Rev. D 85,
025017 (2012).

[15] B. Schroer, arXiv:hep-th/9805093.
[16] A. P. Balachandran, A. R. de Queiroz, and S. Vaidya,

arXiv:1212.1239.
[17] R. Haag, Local Quantum Physics: Fields, Particles,

Algebras, Texts and Monographs in Physics (Springer-
Verlag, Berlin, 1992).

[18] A. P. Balachandran, T. R. Govindarajan, and A. R. de
Queiroz, Eur. Phys. J. Plus 127, 118 (2012).

[19] A. P. Balachandran and S. Vaidya, Int. J. Mod. Phys. A 12,
5325 (1997).

A. P. BALACHANDRAN, AMILCAR QUEIROZ, AND S. VAIDYA PHYSICAL REVIEW D 88, 025001 (2013)

025001-10

http://arXiv.org/abs/1302.3406
http://dx.doi.org/10.1103/PhysRevLett.44.1100
http://dx.doi.org/10.1103/PhysRevLett.44.1100
http://dx.doi.org/10.1103/PhysRevLett.45.148
http://dx.doi.org/10.1103/PhysRevLett.45.148
http://dx.doi.org/10.1007/JHEP11(2011)126
http://dx.doi.org/10.1007/JHEP11(2011)126
http://dx.doi.org/10.1103/PhysRevD.85.025017
http://dx.doi.org/10.1103/PhysRevD.85.025017
http://arXiv.org/abs/hep-th/9805093
http://arXiv.org/abs/1212.1239
http://dx.doi.org/10.1140/epjp/i2012-12118-7
http://dx.doi.org/10.1142/S0217751X97002851
http://dx.doi.org/10.1142/S0217751X97002851

