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So far analysis of the quasinormal spectrum of a massive charged scalar field in the black hole

background has been limited by the regime of small �M and qQ, where �, q ðM;QÞ are mass and charge

of the field (black hole). Here we shall present a comprehensive picture of quasinormal modes, late-time

tails and stability of a massive charged scalar field around Kerr-Newman black holes for any physically

meaningful values of the parameters. We shall show that despite the presence of the two mechanisms of

superradiance (owing to black hole’s rotation and charge) and the massive term creating growing bound

states, there is no indication of instability under the quasinormal modes’ boundary conditions. We have

shown that for some moderate values of qQ dominant quasinormal modes may have arbitrarily small real

oscillation frequencies Reð!Þ. An analytic formula for the quasinormal modes has been derived in the

regime of large qQ. The larger the field’s charge, the sooner asymptotic tails dominate in a signal, making

it difficult to extract quasinormal frequencies from a time-domain profile. Analytic expressions for

intermediate and asymptotically late-time tails have been found for the Reissner-Nordström black hole.

For the near extremal Kerr-Newman black holes we have obtained a more general picture of the mode

branching found recently for massless fields [arXiv:1212.3271] in the Kerr background.
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I. INTRODUCTION

The general solution for an asymptotically flat black
hole in the Einstein-Maxwell theory is given by the
Kerr-Newman solution. It describes an electrically charged
rotating black hole with its three parameters: mass,
charge, and angular momentum. A systematic study of
the fields’ dynamic in the vicinity of a black hole is
essential for understanding black-hole evaporation, quasi-
normal modes, and stability. The linear dynamics of a
charged massive scalar field in the background of a charged
black hole is characterized by the two dimensionless
parameters �M and qQ. A black hole is not believed to
be formed possessing considerable electric charge, and,
once it is formed, it undergoes a rather quick discharging
[1,2]. Yet, even if a black hole has a very small charge of
order 102e, the parameter qQ need not be small. In addi-
tion, a charge induced by an external magnetic field may be
formed at the surface of an initially neutral, but rotating
black hole [3,4]. Thus, the complete analysis of a massive
charged scalar field dynamics should include consideration
of the whole range of values qQ and �M.

In this work we shall study the stability and evolution
of perturbation of a massive charged scalar field in the

Kerr-Newman background in terms of its quasinormal
modes and asymptotic tails at late times. It is believed
that if the quasinormalmodes are damped, the system under
consideration is stable, though a rigorous mathematical
proof of stability is usually complicated and sometimes
includes a nontrivial analysis of the initial value problem.
By now, quite a few papers have been devoted to scalar field
perturbations in the black-hole background, yet, while the
behavior of the massless neutral scalar field is indeed very
well studied, the quasinormal modes of charged fields was
studied only in the regime �M � 1, qQ � 1 [5–11], ex-
cept for [12], where the WKB estimation for quasinormal
modes (QNMs) of a massless charged scalar field around
the Reissner-Nordström black hole was given in the regime
‘ � qQ � ‘2, where ‘ is the multipole number. The com-
plete analysis of quasinormalmodes (allowing also to judge
about stability) for a massive charged scalar field for arbi-
trary values qQ and�M has been lacking so far not only for
the Kerr-Newman, but even for Reissner-Nordström solu-
tions. Here we shall solve this problem by adopting the two
numerical methods of computation (the Frobenius method
and the time-domain integrations) based on convergent
procedures, which allow us to find quasinormal modes
accurately and with no restriction on the parameters of
the system.
Perturbation of a charged massive field in the back-

ground of a rotating charged black hole has rich physics,
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because there are a number of phenomena which must be
taken into consideration:

(i) Superradiance, that is the amplification of waves
with particular frequencies reflected by a black
hole, if it is rotating [13] or electrically charged
[14]. Thus, there will be the two regimes of super-
radiance for Kerr-Newman black holes, owing to
charge and rotation [15].

(ii) Superradiant instability of bound states around
black holes owing to the massive term, which cre-
ates a local minimum far from the black hole, so that
the wave will be reflected repeatedly and can grow.
It is essential that this instability occurs under the
bound states’ boundary condition, which differ from
the quasinormal modes’ ones [15].

(iii) Quasiresonances.—When a field is massive, quasi-
normal modes with arbitrarily long lifetimes, called
quasiresonances, appear, once some critical value
of mass of the field is achieved [16]. When the
damping rate goes to zero, the quasinormal asymp-
totically approach the bound state, but still remain
quasinormal modes for whatever small but nonzero
damping [16].

(iv) Instability of the extremal black holes that appar-
ently occurs for fields of any spin and both for
extremal Reissner-Nordström and Kerr black holes
[17–20], and therefore, must be expected for the
extremal Kerr-Newman solution as well. However,
in the linear approximation this instability develops
only on the event horizon and cannot be seen by an
external observer.

(v) Mode branching.—Quasinormal modes of Kerr
black holes were believed to be completely studied
until a few months ago when an interesting obser-
vation has been made [21]. It was shown that, for the
near-extremal rotation there are two distinct sets of
damped quasinormal modes, which merge to a
single set in the exactly extremal state [21].

Here, through the numerical analysis of quasinormal
modes and asymptotic tails we have shown that a massive
charged scalar field is stable in the vicinity of the
Kerr-Newman black hole, in spite of the instability of
the corresponding bound states. We found that at some
values of the field’s charge q quasinormal modes may
behave qualitatively differently from those of the neutral
field: the fundamental mode (dominating at late times)
may have an arbitrarily small real part (real oscillation
frequency) which appears in the time domain as a very
short period of quasinormal ringing consisting of damped
oscillations and the quick onset of asymptotic power-law
tails. In addition, we generalized earlier results on mode
branching of massless fields around nearly extremal Kerr
black holes to the massive fields and Kerr-Newman solu-
tions. An analytic formula has been obtained for
large qQ.

The paper is organized as follows. In Sec. II the basic
formulas for a charged massive scalar field in the
Kerr-Newman background is given. The wave equation is
reduced to the Schrödinger-like form with an effective
potential. Section III describes the numerical methods
which we used: the Frobenius methods, two schemes of
time-domain integration (for neutral and charged fields)
together with the method for extraction of frequencies from
the time-domain profiles, called the Prony method, and the
WKB approach. We have related separately perturbations
of nonextremal black holes (Sec. IV) and nearly and
exactly extremal ones (Sec. V), as near extremal black
holes show new phenomena, such as mode branching. In
Sec. VI we discuss some technical difficulties which
appear when one considers higher overtones of a charged
scalar field or approach closely to the extremal state, keep-
ing q nonzero. In Sec. VII we summarize the results
obtained.

II. KERR-NEWMAN BACKGROUND

In the Boyer-Lindquist coordinates the Kerr-Newman
metric has the form

ds2 ¼ �r

�2
ðdt� asin 2�d’Þ2 � �2

�
dr2

�r

þ d�2

��

�

� ��sin
2�

�2
½adt� ðr2 þ a2Þd’�2; (1)

where

�r ¼ ðr2 þ a2Þ � 2MrþQ2; �2 ¼ r2 þ a2cos 2�;

(2)

and Q is the black-hole charge; M is its mass. The elec-
tromagnetic background of the black hole is given by the
four-vector potential,

A�dx
� ¼ �Qr

�2
ðdt� asin 2�d’Þ: (3)

We shall parametrize the metric by the following three
parameters: the event horizon rþ, the inner horizon r�,
and the rotation parameter a,

0 � a2=rþ � r� � rþ:

The black hole’s mass and charge are then

2M ¼ rþ þ r�; Q2 ¼ rþr� � a2:

A massive charged scalar field satisfies the Klein-
Gordon equation,

1ffiffiffiffiffiffiffi�g
p @

@x�

�
g��

ffiffiffiffiffiffiffi�g
p @c

@x�

�
þ 2iqA�g

�� @c

@x�

þ ð�2 � q2g��A�A�Þc ¼ 0; (4)

where q and� are the field’s charge and mass respectively.
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One separates variables by the following ansatz:

c ¼ e�i!tþim�Sð�ÞRðrÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
; (5)

where Sð�Þ obeys the following equation:

�
@2

@�2
þ cot �

@

@�
� m2

sin 2�
� a2!2sin 2�

þ 2ma!þ ���2a2cos 2�

�
Sð�Þ ¼ 0; (6)

and � is the separation constant.
This equation can be solved numerically for any value of

! in the sameway as the equation for a massive scalar field
in the Kerr black-hole background [22]. Let us note that,
when � ¼ 0, Eq. (6) can be reduced to the well-known
equation for the spheroidal functions. In this case, for any
fixed value of ! the separation constant � can be found
numerically using the continued fraction method [23].
When the effective mass is not zero, the separation con-
stant �ð!;�Þ can be expressed, in terms of the eigenvalue
for spheroidal functions �ð!Þ [10], as

�ð!;�Þ¼�

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2��2

q
;0

�
þ2ma

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2��2

q
�!

�
þ�2a2:

When a ¼ 0, one has � ¼ ‘ð‘þ 1Þ, ‘ ¼ 0; 1; 2 . . . . For
nonzero values of a, the separation constant can be enum-
erated by the integer multipole number ‘ � jmj.

The radial function satisfies a Schrödinger equation,

�
d2

dx2
� VðxÞ

�
RðxÞ ¼ 0; (7)

where x is the tortoise coordinate,

dx ¼ ðr2 þ a2Þ
�r

dr;

and the effective potential is

V ¼ �r

ðr2 þ a2Þ2
�
�þ�2r2 þ ðr�rÞ0

r2 þ a2
� 3�rr

2

ðr2 þ a2Þ2
�

�
�
!�maþ qQr

r2 þ a2

�
2
: (8)

The asymptotics of the effective potential near the event
horizon and at spatial infinity are

V!��2; r!1ðx!1Þ; �¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2��2

q
;

V!� ~!2; r! rþðx!�1Þ; ~!¼!�maþqQrþ
a2þr2þ

;

(9)

where we fix the sign of � such that Reð�Þ is of the same
sign as Reð!Þ.

Note that Reð ~!Þ and Reð!Þ can have different signs.
This corresponds to the superradiant regime in which
one has

0< Reð!Þ<maþ qQrþ
a2 þ r2þ

or

maþ qQrþ
a2 þ r2þ

< Reð!Þ< 0:

By definition, quasinormal modes (QNMs) are proper
oscillation frequencies which correspond to purely incom-
ing wave at the event horizon and purely outgoing wave at
infinity, so that no incoming waves from either of the
‘‘infinities’’ are allowed. Thus, the boundary conditions
for the QNMs can be written as follows:

R / exp ði�xÞ; x ! 1;

R / exp ð�i ~!xÞ; x ! �1:
(10)

III. NUMERICAL TECHNIQUES

Here, we shall briefly relate the three numerical methods
used for finding quasinormal frequencies:
(i) Leaver method, which is based on a convergent

procedure and, thereby, allowing one to find QN
modes accurately,

(ii) WKB method (accurate in the regime of high multi-
pole numbers),

(iii) time-domain integration which includes contribu-
tion of all modes, and, together with the Prony
method, usually allows extracting a few lower
dominant frequencies from a time-domain profile.

We shall see that in some ranges of parameters, when one
method becomes slowly convergent or inapplicable, the
other can be used, so that the use of a few alternative
methods is necessary here not only for an additional check-
ing, but also for getting the complete picture of quasinor-
mal modes and stability in the full range of parameters.

A. Leaver method

Equation (7) has an irregular singularity at spatial infin-
ity and four regular singularities at r ¼ rþ, r ¼ r� ¼
ðQ2 þ a2Þ=rþ and r ¼ �ia. The appropriate Frobenius
series is determined as

RðrÞ ¼
�
r� rþ
r� r�

��i ~!=4�TH

ei�rðr� r�Þi	yðrÞ;

where

	 ¼
�
�þ �2

2�

�
ðrþ þ r�Þ;

and TH is the Hawking temperature

TH ¼ �0ðrþÞ
4�ðr2þ þ a2Þ :

The function yðrÞmust be regular at the horizon and spatial
infinity, so that the series in the vicinity of the event
horizon
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yðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p

r� r�

X1
k¼0

akð!Þ
�
r� rþ
r� r�

�
k

satisfies both these requirements. This series converges
everywhere outside the event horizon (rþ � r <1).
When boundary conditions (10) are satisfied, that is when
! is a quasinormal (QN) frequency, the series convergence
also at the spatial infinity [24]. The coefficients ak satisfy
the three-term recurrence relation,

�nanþ1 þ �nan þ 
nan�1 ¼ 0; n � 0; 
0 ¼ 0;

(11)

where �n, �n, 
n can be found in an analytic form.
By comparing the ratio of the series coefficients

anþ1

an
¼ 
n

�n

�n�1

�n�1 � �n�2
n�1

�n�2��n�3
n�2=...

� �n

�n

;

anþ1

an
¼ � 
nþ1

�nþ1 � �nþ1
nþ2

�nþ2��nþ2
nþ3=...

;
(12)

we obtain an equation with a convergent infinite continued
fraction on its right side:

�n � �n�1
n

�n�1 � �n�2
n�1

�n�2��n�3
n�2=...

¼ �n
nþ1

�nþ1 � �nþ1
nþ2

�nþ2��nþ2
nþ3=...

;

(13)

which can be solved numerically by minimizing the abso-
lute value of the difference between its left and right sides.
Equation (13) has an infinite number of roots, but the most
stable root depends on n. The larger number n corresponds
to the larger imaginary part of the root! [24]. As we study
QNMs with slower decay rate, we usually choose n ¼ 0. In
order to improve convergence of the infinite continued
fraction for nonzero mass of a scalar field, we use the
Nollert procedure [25].

B. WKB formula

As for the study of mode branching we are also inter-
ested in modes with high multipole numbers, the WKB
approach is useful here, which is accurate in the eikonal
regime ‘ � n and usually provides very good accuracy at
moderate ‘ > n. The WKB formula for calculation of
QNMs has the following form:

iV0ffiffiffiffiffiffiffiffiffi
2V 00

0

q �Xi¼6

i¼2

�i¼nþ1

2
; n¼0;1;2... ; (14)

where V0 and V
00
0 are the values of the effective potential (8)

and its second derivative with respect to the tortoise coor-
dinate x at the potential’s peak. The terms �i depend on
higher derivatives of V at its maximum, and n labels the
overtones. The WKB approach was developed by Schutz
and Will [26] and later extended to higher orders [27].
Since there is implicit dependence on! [either through the
separation constant � for nonvanishing rotation or due to

the qQ coupling in the effective potential (8)], one has to
search for the roots of Eq. (14) by minimizing the absolute
value of the difference between its left and right sides.

C. Time-domain integration

For nonrotating black holes we are able to construct a
time-dependent profile of the wave function at a fixed x.
The recently found instability of the exactly extremal
Reissner-Nordström black hole [17] makes it important
to check stability of the nearly and exactly extremal black
holes. Even when the Frobenius method finds no growing
quasinormal modes, one could think that the growing
modes were simply missed in the frequency domain at
the stage of search for the roots of the equation with
continued fractions [Eq. (13)], or, that a different boundary
condition should be imposed at the event horizon in the
extremal case. In order to eliminate both these suspicions,
we will use the numerical characteristic integration method
in the time domain. Here, two different schemes of inte-
gration were used for neutral and charged fields.
A scheme for a neutral field.—The wave equation can be

written in time-dependent form as follows:

@2�

@t2
� @2�

@x2
þ Vðt; xÞ� ¼ 0: (15)

The technique of integration of the above wave equation in
the time domain was developed in [28]. The method uses
the light-cone variables u ¼ t� r�, v ¼ tþ r�, so that the
wave equation reads

�
4

@2

@u@v
þ Vðu; vÞ

�
�ðu; vÞ ¼ 0: (16)

The initial data are specified on the two null surfaces
u ¼ u0 and v ¼ v0. Acting by the time evolution operator
exp ðh @

@tÞ on � and taking account of (16), one finds

�ðNÞ ¼�ðWÞþ�ðEÞ��ðSÞ� h2

8
VðSÞð�ðWÞþ�ðEÞÞ

þOðh4Þ; (17)

where one introduced letters to mark the points as follows:
S ¼ ðu; vÞ, W ¼ ðuþ h; vÞ, E ¼ ðu; vþ hÞ, and N ¼
ðuþ h; vþ hÞ. Equation (17) allows us to calculate the
values of � inside the rhombus, which is built on the two
null surfaces u ¼ u0 and v ¼ v0, starting from the initial
data specified on them. As a result we can find the time
profile data f�ðt¼ t0Þ;�ðt¼ t0þhÞ;�ðt¼ t0þ2hÞ; . . .g in
each point of the rhombus.
The time domain integration includes a contribution

from all overtones, and, thus, missing some mode is
excluded. This method is based on the scattering of the
Gaussian wave on the potential barrier and therefore does
not specify the boundary condition on the event horizon,
so that the potentially missed instability due to possibly
different boundary conditions must be also discarded.
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A scheme for a charged field.—When the scalar field is
charged, an extra term containing the first derivative in
time appears. Therefore, a different integration scheme is
required. We shall use the finite difference scheme pro-
posed in [29]. First we rewrite the wavelike equation (7)
for the Reissner-Nordström black hole (a ¼ 0) in the time-
dependent form,

�
@2

@x2
� @2

@t2
þ 2i�ðxÞ @

@t
� VðxÞ

�
�ðt; xÞ ¼ 0; (18)

where

VðrÞ ¼ �r

r4

�
�þ�2r2 þ r�0

r � 2�r

r2

�
��ðrÞ2;

�ðrÞ ¼ �qQ

r
; � ¼ ‘ð‘þ 1Þ ¼ 0; 2; 6; 24 . . . :

(19)

Following [29], one can derive the evolution of � in an
isosceles triangle with the base on the axis x, where initial
conditions are imposed. Then, one has

�j;iþ1 ¼
ð1þ i�j�tÞ�j;i�1 þ ð2� �t2VjÞ�j;i

1� i�j�t

þ �t2

�x2
�jþ1;i þ�j�1;i � 2�j;i

1� i�j�t
: (20)

Indexes i and j enumerate, respectively, the coordinates t
and x of the grid:

xi ¼ x0 þ i�x; tj ¼ t0 þ j�t:

We choose the initial conditions again as a Gaussian
distribution whose maximum is near the maximum of the
effective potential. Since Von Neumann stability condi-
tions require �t < �x, in this scheme we chose �x ¼
2�t. In order to achieve convergence we decrease �x.
Note that as qQ grows the convergence becomes seem-
ingly slower, requiring smaller �x, which increases the
computation time. When q ¼ 0 this scheme is reduced to
the one above for the neutral field, yet, the codes for both
schemes differ, so that letting q ¼ 0 in the MATHEMATICA

code for the second scheme leads to a much longer com-
puting than the first scheme.

Prony method for mode extraction.—Once a time
domain profile is found, one can extract dominant frequen-
cies from it with the help of the Prony method. We fit the
profile data by superposition of damped exponents

�ðtÞ ’ Xp
i¼1

Cie
�i!it (21)

and look for the convergence of the obtained frequencies at
the increasing p. We shall show that although the fit works
well for the neutral scalar field, it cannot be effectively
used once modes with very small Reð!Þ dominate in the
spectrum at late times.

IV. QUASINORMAL MODES AND LATE-TIME
TAILS OF NON-EXTREMAL BLACK HOLES

A. Regime of large qQ

In the regime of large qQ and nonextremal Q, the
Frobenius method allows us to find an approximate
analytic expression for the quasinormal frequencies.
When qQ � 1 one can observe that �n ¼ OðqQÞ,
�n ¼ OðqQÞ2, and 
n ¼ OðqQÞ2. Then, we can rewrite
Eq. (13) as

�n

ðqQÞ2 þO
�
1

qQ

�
¼ 0: (22)

Considering � � ðqQÞ2, from (22) we find that
! ¼ OðqQÞ. We observe that � / a! when a! � 1.
Then, we can write down � as

� ¼ �0a!þOð1Þ
and find the asymptotic formula for the QNMs:

!ða2 þ r2þÞ ¼ qQrþ þ a

�
mþ rþðrþ � r�Þ

r2þ � a2
�0

4

�

� iðrþ � r�Þ 2nþ 1

4
þO

�
1

qQ

�
: (23)

Here n ¼ 0; 1; 2; 3; . . . is the overtone number. From the
data given in Fig. 1 one can find that �0 	 2 for ‘ ¼ 0. In
order to find �0 as a function of ‘ and m we have analyzed
numerically the asymptotic behavior of the eigenvalue of
(6) and found that

�0 	 4

�
‘�m

2

�
þ 2;

where the brackets denote the integer part.
WhenQ is not very close to its extremal value, the above

analytical formula (in the limit of vanishing rotation) can
be verified by the time-domain integration for a few lower
modes, as it is shown in Fig. 2. There one can see that the
analytic formula (23) works very well already at moderate
values of qQ. Nevertheless, even though we are able to
obtain a stable time-domain profile for any values of q and
Q, the Prony method does not converge for high overtones
as well as near extremal black holes. We shall discuss
this in detail in the last section. For a ¼ 0 (23) coincides
with the asymptotic formula found in [12] in the regime
‘ � qQ � ‘2 with the help of the WKB approximation.
Unlike [12] in our calculations one does not need to be
limited by the regime qQ � ‘2.

B. Regime of small and moderate qQ

It is well known that due to a symmetry of the Kerr-
Newman metric (t ! �t, � ! ��) quasinormal modes
of a neutral scalar field come in within a degenerate pair,
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Reð!ðmÞÞ ¼ �Reð!ð�mÞÞ;
Imð!ðmÞÞ ¼ Imð!ð�mÞÞ:

(24)

When the scalar field is charged, in addition to (24) one
needs to take q ! �q for the symmetry to be restored.
That is why we study only QNMs with positive real parts.

The degeneration (24) does not exist as soon as the
coupling qQ is not zero (Figs. 2 and 3). Then, at negative
values of qQ, the mode with a positive real part has slower
decay rate than the one with the negative one (while for
positive qQ the situation is opposite). Moreover, when the
absolute value of qQ increases (Figs. 2 and 3), the real
oscillation frequency [given by Reð!Þ] approaches zero
and then the mode ‘‘disappears’’ from the spectrum at qQ
larger than some critical value. Such disappearing of a
mode in some range of parameters is not unusual and
happens, for example, for arbitrarily long living modes
(quasiresonances) of a massive neutral scalar field [16].

C. Late-time tails and stability

We observe that at asymptotically late times, a neutral
massless scalar field decays as

� / t�2‘�3; t ! 1 (25)

in concordance with [30], while for the charged massless
field, the dominant asymptotical tail is

� / t�2‘�2; t ! 1 (26)

as it was first found in [31]. Note, that in the regime of large
qQ the correction formula to (26) was reported in [32],
which might be correct, and, then, should appear at larger
values of qQ than those we considered in the numerical
time-domain evolution here. The late-time tails in the
background of the extremally charged black hole obey
the same law (see Fig. 4). At intermediately late times, a
massive charged scalar field decays as (see Fig. 5)
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FIG. 2 (color online). Real and imaginary part of the fundamental mode (‘ ¼ 1) of the massless scalar field as a function of qQ for
the quasiextremal Reissner-Nordström black hole (r� ¼ 0:95). Red dots correspond to the fit of time-domain profiles. Due to the
symmetry of the equation the negative values of charge q correspond to the negative values of real part of the oscillation frequency.
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FIG. 1 (color online). Real (left panel) and imaginary (right panel) parts of the fundamental (‘ ¼ n ¼ 0) quasinormal frequency
(in units of rþ þ a2=rþ) as functions of qQ for the Kerr-Newman black holes r� ¼ 0:8rþ with a ¼ 0 (blue), a ¼ 0:3rþ (green),
a ¼ 0:6rþ (red), and a2 ¼ r�rþ (magenta). The bigger rotation parameter (a) corresponds to the larger absolute values of the real and
imaginary parts, and the asymptotical regime is achieved at a larger charge q.
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� / t�1 sin ð�tÞ; (27)

while at asymptotically late times, the decay law is

� / t�5=6 sin ð�tÞ; t ! 1: (28)

Thus, the power laws of a massive charged scalar field’s
decay at intermediate and asymptotically late times do not
depend on multipole ‘ or charges q and Q. The same law
was obtained in [33] for the massive Dirac field. We
suppose thereby that the asymptotic behavior of the
charged massive fields does not depend on spin.

The decaying time-domain profiles for various values of
the parameters q, Q and � show that no instability exists
for nonextremal Reissner-Nordström black holes. The
complementary frequency domain data gives no indication
of growing modes when the rotation is not vanishing.
Therefore, we conclude that there are no signs of instability
for a massive charged scalar field in the nonextremal
Kerr-Newman background under the quasinormal modes’
boundary conditions.

V. QNMS OF A NEUTRAL FIELD FOR NEARLY
AND EXACTLY EXTREMAL BLACK

HOLES: MODE BRANCHING AND STABILITY

A. A massless scalar field

We shall measure all quantities in units of rþ, that is we
take rþ ¼ 1. In order to keep staying near the extremal
state, it is sufficient to keep r� close to rþ.
Here we shall start from the generalization of level plots

of [21], which show the branching of modes. In [34] it was
found that, in the near-extremal Kerr limit, zero damped
mode satisfies

! ¼ m

2
� �

ffiffiffi
�

p
ffiffiffi
2

p � i

�
nþ 1

2

� ffiffiffi
�

p
ffiffiffi
2

p þOð�Þ; � ! 0; (29)

where � ¼ 1� a, � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið7m2 � 1Þ=4� �ð! ¼ m=2Þp
.

Therefore, in Fig. 6 the same multipole ‘ and azimuthal
m numbers were chosen as in [21]. In Fig. 6 it is shown the
logarithm of the absolute value of difference between the

1.0 0.5
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0.8

Re
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qQ
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FIG. 3 (color online). Real and imaginary part of the fundamental mode (‘ ¼ m ¼ 1) of the massless scalar field as a function of qQ
for the quasiextremal Kerr-Newman black hole (r� ¼ 0:95): a ¼ 0 (black, bottom), a ¼ 0:3 (blue), a ¼ 0:6 (magenta, top).

FIG. 4 (color online). Late-time tails for a charged (qQ ¼ 0:5) scalar field for ‘ ¼ 1 (left panel) and ‘ ¼ 2 (right panel) in the
background of the extremally charged Reissner-Nordström black hole (r� ¼ rþ). Blue and red lines correspond to the real and
imaginary part respectively, green lines correspond to the power-law fit /t�2‘�2.
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left- and right-hand sides of the continued fraction equa-
tion (13) as a function of real and imaginary parts of !. In
Fig. 6 we can see that at some near-extremal r�, and a,
which starts from a ¼ 0:955 until its extremal value, the
new branch of modes appears: the two branches of modes,

which take place for high rotation (a * 0:970), merge into
a single one at slower rotation (a & 0:960). As it is
expected, for small values of black hole’s charge Q, the
obtained in Fig. 6 zero-damped mode is close to the one
described by Eq. (29). The mode branching is owing to

FIG. 5 (color online). Asymptotic tails for r� ¼ 1, l ¼ 2, qQ ¼ 0:5,� ¼ 1. Blue and red lines correspond to the real and imaginary
part respectively, green lines correspond to the power-law fit /t�1 (left panel) and asymptotic power law /t�5=6 (right panel).

FIG. 6 (color online). Level plots of the logarithm of the absolute value of the difference between the left and right sides of the
equation with continued fraction as a function of the real (horizontal axis) and imaginary (vertical axis) parts of the frequency for the
scalar field (‘ ¼ 10, m ¼ 7) in the background of a near-extremal Kerr-Newman black hole (r� ¼ 0:972111205849). From left to
right: a ¼ 0:955, a ¼ 0:960, a ¼ 0:970, a ¼ 0:975, a ¼ 0:980, a ¼ 0:985957 (extremal rotation).
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extremal rotation and not owing to extremal charge.
Indeed, a neutral scalar field around the near-extremal
Reissner-Nordström black hole shows no mode branching.

We have checked that the time-domain profile of scalar
and gravitational perturbations of the exactly extremal
Reissner-Nordström black hole consists of damped quasi-
normal oscillations, which proves stability of the extremal
Reissner-Nordström solution from the point of view of an
external observer, because (1) the profile includes contri-
bution from all the modes, so that none can be missed,
(2) the method of calculations does not imply any specific
boundary conditions at the event horizon. This does not
contradict a special instability of the extremal Reissner-
Nordström black holes [17,18] as this instability develops
only on the event horizon and cannot be observed by an
external observer [19].

The exactly extremal Kerr-Newman black hole is also
stable against scalar-field perturbations, as it can be seen
from the damped fundamental quasinormal modes in
Table I. The real oscillation frequency and the damping
rate of the fundamental ‘ ¼ m ¼ n ¼ 0 mode monotoni-
cally decrease, as the rotation parameter a grows. The
quasinormal modes of the near-extremal Kerr-Newman
black-hole approach their exactly extremal values. The
Reð!Þ and Imð!Þ monotonically decreases, as r� grows
in the near-extremal regime.

B. A massive scalar field

A massive field has a number of qualitative distinctions
from the massless case. First, there are arbitrarily long
living modes—quasiresonances—which approach asymp-
totically the bound states at the zero damping rate limit. Let
us explain this in more detail. ‘‘Ordinary’’ quasinormal
modes with however small but finite damping rate satisfy
the boundary condition of purely ingoing wave at the
horizon and at infinity. This means that the wave function
diverges at the horizon. Yet, when Imð!Þ approaches zero,
energy conservation requires that the amplitude vanishes

both at the event horizon and at infinity, which means
approaching the bound-state problem in the limit
Imð!Þ ¼ 0. As quasiresonances have arbitrarily small but
nonzero damping rate, they are not bound states. However,
their relation to another phenomena, superradiance [13],
could be essential. A superradiance is a channel of extrac-
tion of rotational energy from a black hole by a wave
reflected from it with larger amplitude than the initially
incident wave. When the field has mass �, a local mini-
mum of the effective potential appears far from the black
hole. The repeated reflection from the local maximum
could create an instability, yet, as it was shown in [22]
for the Kerr solution, a massive scalar field is stable under
the quasinormal modes’ boundary conditions, so that, in
order to gain an instability, a Dirichlet boundary condition
(that is an effective confining box for perturbation) far from
the black hole must be imposed. Such a confining condi-
tion is asymptotically achieved in quasiresonances, so that,
if quasiresonant modes were superradiant, an instability
could be expected. Apparently, in the near-extremal
regime, the mode branching would ‘‘interfere’’ with qua-
siresonances. Therefore, we shall consider here a massive
scalar field for the near-extremal rotation in detail.
As illustrated in Fig. 7, quasiresonances exist even for

very quick and near-extremal rotation for nonpositive val-
ues of m. For positive m and near-extremal rotation, we
observe that as the field mass � grows, the fundamental
mode (with larger oscillation frequency and the slowest
damping rate) does not go over to the quasiresonance limit
while the first overtone does (see Fig. 8). Therefore, at some
value of the field mass � the first overtone has the same
decay rate as the fundamental mode. For masses above
this threshold the fundamental mode and first overtone
‘‘exchange’’: the lower-damped mode corresponds to the
first overtone of the massless field. Thus, the actual oscil-
lation frequency of the lowest damping mode as a function
of the field mass has a discontinuity at this point.
An extensive search in the frequency domain has not

shown any signs of instability of a neutral massive scalar
field in the near-extremal regime up to masses �M
 3.

VI. QNMS OF A CHARGED FIELD: TECHNICAL
DIFFICULTIES IN THE NEAR EXTREMAL AND

HIGHER OVERTONE REGIMES

When the value of the black hole’s charge is not very
close to its extremal values, say, up to around Q 	 0:99M,
we were able to compute the dominant quasinormal fre-
quencies for the full range of parametersQ, q, a,�, and, in
the limit of vanishing rotation, QN frequencies extracted
from the time-domain profiles with the help of Prony
method were in a good agreement with the modes obtained
by the Frobenius method. Yet, when the field’s charge q is
not zero, one meets two difficulties when he is trying to
compute higher overtones or to approach quite closely the
extremal regime. The first problem is the existence of new

TABLE I. Fundamental quasinormal modes (‘ ¼ 0) of the
scalar field for the extremal Kerr-Newman black hole
(rþ ¼ r� ¼ 1).

a !

0.0 0:133459� 0:095844i
0.1 0:133124� 0:095779i
0.2 0:132137� 0:095582i
0.3 0:130555� 0:095252i
0.4 0:128456� 0:094788i
0.5 0:125938� 0:094188i
0.6 0:123100� 0:093458i
0.7 0:120035� 0:092605i
0.8 0:116826� 0:091641i
0.9 0:113554� 0:090578i
1.0 0:110246� 0:089433i
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poles of the continued-fraction equation (13) (shown as
dashed lines in Fig. 9) for nonzero q which have odd
behavior: Reð!Þ of these new ‘‘modes’’ proportional
approximately to qQ=rþ for small and moderate qQ. In
the limit qQ ! 0, Reð!Þ does not go zero, because the
‘‘mode’’ disappears at some small critical value of qQ. For
larger values of Q, the critical value of qQ is smaller.
Thus, for r� ¼ 0:5, ðqQÞcrit 	 0:18, while for r� ¼ 0:95,
ðqQÞcrit < 0:01. As these special poles of Eq. (13) do not go
over into quasinormal modes of a neutral scalar field when
q ! 0, they should be checked by alternative calculation.
These strange modes exist for all values of the black-hole
charge Q, yet, at smaller Q they correspond to higher
overtones which therefore decay very quickly.

The second problem, already mentioned above, is
absence of convergence of the Prony method in the regime
when modes with very small real part dominate in the
spectrum. This makes it impossible to check with the
time-domain integration if the poles observed through
the Frobenius method are true quasinormal modes or not
(see Table II). Nevertheless, this technical problem does
not affect the issue of stability, as neither frequency domain
nor time domain show any signs of growing modes.
In order to find the dominant modes accurately with the

help of the Prony method, one must fit the time-domain
profile by the exponents (21) in the certain time interval
when the quasinormal ringing is observed. The interval
must be chosen in such a way that the initial outburst is
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FIG. 8 (color online). Left plot: Quasinormal modes which are fundamental at � ¼ 0, parametrized by mass (dotted values: � ¼ 0,
� ¼ 0:3, � ¼ 0:6, � ¼ 0:9 . . . ) from right to left: a ¼ 0:90 (blue), a ¼ 0:95 (cyan), a ¼ 0:96 (green), a ¼ 0:97 (orange),
a ¼ 0:985957 (magenta). Right plot: Quasinormal modes which are first overtones at � ¼ 0 from right to left: a ¼ 0:97 (orange),
a ¼ 0:98 (red), a ¼ 0:985957 (magenta). The orange and magenta lines show that for the selected values of rotation and mass the
initially (at � ¼ 0) fundamental mode becomes the first overtone. The quasiresonances exist for all values of � and a.
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FIG. 7 (color online). The fundamental mode as a function of mass for a near-extremal Kerr black hole (r� ¼ 0:972111205849,
a ¼ 0:985957): ‘ ¼ m ¼ 0 (left panel); ‘ ¼ 1, m ¼ 0 (middle panel); ‘ ¼ 1, m ¼ �1 (right panel).
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already damped and, at the same time, the late-time tail is
still not dominant in the signal. The natural criterium to
learn if we chose the correct time interval, is convergence
of indexes of the exponents (obtained modes) with respect
to the increasing number of exponents p in (21). At the
quasinormal-ringing stage the dominant frequencies do
not depend on p because contributions of higher overtones
are exponentially damped. Therefore, we can fit the
time-domain profiles in such time intervals which provide
convergencewith respect to p. However, for a charged field
[or even for a neutral one if the black hole is highly charged
(as in Fig. 10)], in addition to the convergent complex
frequencies, which correspond to the quasinormal modes,
we find damped purely imaginary frequencies, which do

not converge with respect to p, but nevertheless have large
amplitude. Appearing of these frequencies in the fit could
be an indication of existence of a number of (almost)
purely imaginary modes in the quasinormal spectrum
which cannot be well fit by only a few exponents. Yet,
these modes could appear due to a remnant noise from the
initial stage or due to the subdominant contributions from
the late-time tails that might reveal themselves at the
quasinormal stage. We believe that a further thorough
study of this question could tell if these frequencies are a
new kind of quasinormal modes with vanishing real part or
just a numerical artifact.

VII. CONCLUSIONS

In this paper we have generalized results of Yang et al.
[21] on mode branching of Kerr space-time in two ways.
We considered quasinormal modes of a neutral massive
scalar field around the near-extremal Kerr-Newman black
hole and showed that a similar branching takes place for
the near extremal rotation. The fundamental quasinormal
modes of the Kerr-Newman black hole are shown to be
damped which implies stability and quasinormal modes of
near extremal black-hole approach their extremal values.

TABLE II. The four dominant QNMs for the Reissner-
Nordström black hole (r� ¼ 0:5).

Mode Time-domain fit Leaver

n ¼ 0 0:17937� 0:13257i 0:17945� 0:13250i
n ¼ 1 0:122� 0:430i 0:13151� 0:42639i
im. limit ? �0:66796i
n ¼ 3 0:1� 0:8i 0:08846� 0:80911i
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FIG. 9 (color online). Real (left panels) and imaginary (right panels) part of the four dominant QNMs of the charged scalar field
(‘ ¼ 0) for the Reissner-Nordström black hole: r� ¼ 0:50rþ (top) and r� ¼ 0:95r� (bottom). Dashed lines mark the modes which
correspond to the purely imaginary limits for the noncharged scalar field, that are not solutions to (13). For large field charge q the
frequencies satisfy the analytical formula (23).
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We also showed that arbitrarily long living modes, quasir-
esonances, exist, obey mode branching and show no sign of
instability.

These results do not contradict the instability found in
[17,18], because the quasinormal mode formulation of the
perturbation problem implies that the perturbation is
formed and propagates outside the event horizon, while
the instability found in [17,18] propagates only along the
null cone. Thus, an external observer will never see such
an instability, which, apparently, could be seen by an
in-falling into the black-hole observer. The linear stability
of the extremal configuration for an external observer
is illustrated here by damped time-domain profiles of
perturbation propagating outside the extremal Reissner-
Nordström black hole (see Fig. 4). However, nonlinear
perturbations might produce an instability which develops
in the time cone as well, leading to a physical consequence
for an external observer [35].

Our main conclusion here is that a massive charged
scalar field in the Kerr-Newman background is stable for
any physically meaningful values of the parameters q, �,
Q, a, M, because an extensive search of quasinormal
modes showed no signs of growing modes in the spectrum.
We have found that at some values of qQ, the fundamental
quasinormal mode may have vanishing real part. This does
not happen for neutral fields.

We have also showed that the decay of a scalar field (be
it charged or neutral, massive or massless) is dominated by
the power-law tails (see Table III) which are the same for
the nonextremal black hole as for the extremal one. Here
we have considered an already formed black hole and the
perturbation propagating outside of it, while the modeling

of collapse of charged matter leads to a different result for
the late-time decay of the extremal Reissner-Nordström
black hole [31]. Thus, we complement earlier results
on late-time tails of neutral massive [36] and massless
fields [31] in the Schwarzschild and Reissner-Nordström
backgrounds.
In addition, when q � 0 the continued fraction

equation (13) indicates presence of some new roots in the
frequency domain, which do not exist for the neutral field,
and whose real parts are proportional to qQ=rþ. These
roots exist for any value of Q and a (and nonzero q), but
correspond to higher ‘‘overtones’’ for weakly charged
black hole (Fig. 9), yet, they become dominant for nearly
extremal black holes. These modes, if they exist, cannot be
extracted from a time-domain profile, probably due to the
quick onset of asymptotic tails, and, therefore, must be
further verified with an alternative method of calculation.
The obtained here conclusion on the stability of a mas-

sive charged scalar field around a Kerr-Newman black hole
allows us to go on the study of Hawking radiation for
this case. Using numerical techniques makes it possible
to find grey-body factors accurately for the full range of
parameters [37].

TABLE III. Summary of power-law decays of a scalar field in
Schwarzschild and Reissner-Nordström backgrounds.

q, � Q ¼ 0 Q � M

q ¼ 0, � ¼ 0 t�2‘�3 t�2‘�3

q ¼ 0, � � 0 t�5=6 sin ð�tÞ t�5=6 sin ð�tÞ
q � 0, � ¼ 0 � � � t�2‘�2

q � 0, � � 0 � � � t�5=6 sin ð�tÞ
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FIG. 10 (color online). The time domain profiles of the neutral scalar field field (left panel) and for a charged (qQ ¼ 0:01) scalar
field (right panel) for the Reissner-Nordström black hole (r� ¼ 0:95). On the right panel blue and red lines correspond to the real and
imaginary part, respectively. For the neutral field the time-domain fit allows one to find the dominant frequency ! ¼ 0:13697�
0:09832i, which is close to the accurate result found by the Leaver method ! ¼ 0:13688� 0:09830i. For the charged field from the
time-domain fit we find that the dominant frequency with the positive real part is ! ¼ 0:14215� 0:09829i which corresponds to the
third overtone found with the help of the Leaver method !3 ¼ 0:14203� 0:09827i, while the three dominant frequencies
(!0 ¼ 0:01029� 0:02639i, !1 ¼ 0:01032� 0:05299i, !2 ¼ 0:01032� 0:07980i) are not observed. The real parts of these frequen-
cies are close to qQ, approaching purely the imaginary limit for the noncharged field.
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