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We study time-independent, spherically symmetric, self-gravitating systems minimally coupled to a

scalar field with Uð1Þ gauge symmetry: charged boson stars. We find numerical solutions to the Einstein-

Maxwell equations coupled to the relativistic Klein-Gordon equation. It is shown that bound stable

configurations exist only for values of the coupling constant less than or equal to a certain critical value.

The metric coefficients and the relevant physical quantities, such as the total mass and charge, turn out to

be, in general, bound functions of the radial coordinate, reaching their maximum values at a critical value

of the scalar field at the origin. We discuss the stability problem from both the quantitative and qualitative

point of view. We take into account the electromagnetic contribution to the total mass and investigate

the stability issue considering the binding energy per particle. We verify the existence of configurations

with positive binding energy in which objects that are apparently bound can be unstable against small

perturbations, in full analogy with the effect observed in the mass-radius relation of neutron stars.
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I. INTRODUCTION

Spherically symmetric charged boson stars are solutions
of the Einstein-Maxwell system of equations coupled to
the general relativistic Klein-Gordon equations of a com-
plex scalar field with a local Uð1Þ symmetry. The study of
the phenomena related to the formation and stability of
self-gravitating systems is of major interest in astrophysics.
It has been conjectured, for instance, that a boson star
could model Bose-Einstein condensates on astrophysical
scales [1–8]. The collapse of charged compact objects
composed by bosons could lead, in principle, to charged
black holes (see, e.g., [9,10] and also [11]). Compact boson
objects play an important role in astrophysics since these
configurations may represent also an initial condition for
the process of gravitational collapse [12]; see also [13] for
a recent review. Moreover, boson stars have been shown to
be able to mimic the power spectrum of accretion disks
around black holes (see, for example, [14]). Scalar fields
are also implemented in many cosmological models either
to regulate the inflationary scenarios [15–18] or to describe
dark matter and dark energy (see, e.g., [19–22]). On the
other hand, in the Glashow-Weinberg-Salam Standard
Model of elementary particles, a real scalar particle, the
Higgs boson, is introduced in order to provide leptons and
vector bosons with mass after symmetry breaking; in this
respect, the latest results of the Large Hadron Collider

experiments [23] reflect the importance of the scalar fields
in particle physics. Scalar fields are also found within
superstring theories as dilaton fields, and, in the low energy
limit of string theory, give rise to various scalar-tensor
theories for the gravitational interaction [24].
Ruffini and Bonazzola [25] quantized a real scalar

field and found a spherically symmetric solution of the
Einstein-Gordon system of equations. The general relativ-
istic treatment eliminates completely some difficulties of
the Newtonian approximation, where an increase of the
number of particles corresponds to an increase of the total
energy of the system until the energy reaches a maximum
value and then decreases to assume negative values. It was
also shown in [25] that for these many boson systems the
assumption of perfect fluid does not apply any longer since
the pressure of the system is anisotropic. On the other hand,
this treatment introduces for the first time the concept of a
critical mass for these objects. Indeed, in full analogy with
white dwarfs and neutron stars, there is a critical mass and
a critical number of particles and, for charged objects, a
critical value of the total charge, over which this system is
unstable against gravitational collapse to a black hole.
In [26–28] the study of the charged boson stars

was introduced, solving numerically the Einstein-
Maxwell–Klein-Gordon equations. In Ref. [27], charged
boson configurations were studied for nonsingular asymp-
totically flat solutions. In particular, the existence of a
critical value for the central density, mass, and number of
particles was shown. The gravitational attraction of spheri-
cally symmetric self-gravitating systems of bosons
(charged and neutral) balances the kinetic and Coulomb
repulsion. On the other hand, the Heisenberg uncertainty
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principle prevents neutral boson stars from a gravitational
collapse. Furthermore, in order to avoid gravitational col-
lapse, the radius R must satisfy the condition R � 3RS,
where RS is Schwarzschild radius [29,30]. On the other
hand, stable charged boson stars can exist if the gravita-
tional attraction is larger than the Coulomb repulsion: if the
repulsive Coulomb force overcomes the attractive gravita-
tional force, the system becomes unstable [29,31–35].
Moreover, as for other charged objects, if the radius of
these systems is less than the electron Compton wave-
length, and if they are supercritically charged, then pair
production of electrons and positrons occurs.

These previous works restricted the boson charge to
the so-called ‘‘critical’’ value (in Lorentz-Heaviside units)
q2crit ¼ 4�ðm=MPlÞ2 for a particle of mass m where MPl is

the Planck mass. This value comes out from equating the
Coulomb and gravitational forces, so it is expected that for
a boson charge q > qcrit, the repulsive Coulomb force be
larger than the attractive gravitational one. However, such a
critical particle charge does not take into account the
gravitational binding energy per particle and so there
may be the possibility of having stable configurations for
bosons with q > qcrit.

Thus, in this work we numerically integrate the
coupled system of Einstein-Maxwell–Klein-Gordon
equations, focusing our attention on configurations
characterized by a value of the boson charge close to
or larger than qcrit. We will not consider the excited state
for the boson fields; consequently, we study only the
zero-nodes solutions.

We here show that stable charged configurations of
self-gravitating charged bosons are possible with particle
charge q ¼ qcrit. In addition, it can be shown by means of
numerical calculations that for values q > qcrit, localized
solutions are possible only for values of the central density
smaller than some critical value over which the boundary
conditions at the origin are not satisfied. We also study the
behavior of the radius as well as of the total charge and
mass of the system for q ’ qcrit.

The outline of the paper is as follows: In Sec. II, we set
up the problem by introducing the general formalism and
writing the system of Einstein-Maxwell–Klein-Gordon
equations for charged boson stars. In Sec. III, we discuss
the concepts of charge, radius, mass, and particle number.
In Sec. IV, we show the results of the numerical integration.
Finally, in Sec. V, we summarize and discuss the results. To
compare our results with those of uncharged configura-
tions, we include in the Appendix the numerical analysis of
the limiting case of neutral boson stars.

II. THE EINSTEIN-MAXWELL–KLEIN-GORDON
EQUATIONS

We consider static, spherically symmetric self-
gravitating systems of a scalar field minimally coupled to
a Uð1Þ gauge field: charged boson stars. The Lagrangian

density of the massive electromagnetically coupled scalar
field �, in units with ℏ ¼ c ¼ 1, is

LM ¼ ffiffiffiffiffiffiffi�g
p �

g��ðD��ÞðD��Þ� �m2��� � 1

4
F��F

��

�
;

(1)

where g � detg��, m is the scalar field mass and D� �
r� þ {qA�, where the constant q is the boson charge, r
stands for the covariant derivative, the asterisk denotes the
complex conjugation, A� is the electromagnetic vector

potential, while F�� ¼ @�A� � @�A� is the electromag-

netic field tensor [28,36,37]. We use a metric g�� with

signature ðþ;�;�;�Þ; greek indices run from 0 to 3,
while latin indices run from 1 to 3.
Therefore the total Lagrangian densityL for the field�

minimally coupled to gravity and to a Uð1Þ gauge field is

L ¼ ffiffiffiffiffiffiffi�g
p R

16�GN

þLM; (2)

where R is the scalar curvature,MPl ¼ G�1=2
N is the Planck

mass, and GN is the gravitational constant.
The Lagrangian density is invariant under a local Uð1Þ

gauge transformation (of the field �). The corresponding
conserved Noether density current J� is given by

J�¼ ffiffiffiffiffiffiffi�g
p

g��½{qð��@����@��
�Þ�2q2A�����; (3)

while the energy-momentum tensor T�� is

T�� ¼ ðD��Þ�ðD��Þ þ ðD��ÞðD��Þ�
� g��g

��ðD��Þ�ðD��Þ � g��m
2���

þ 1

4
g��F��F

�� � g��F��F��: (4)

In the case of spherical symmetry, the general line element
can be written in standard Schwarzschild-like coordinates
ðt; r; #; ’Þ as

ds2 ¼ e�dt2 � e�dr2 � r2ðd#2 þ sin#2d’2Þ; (5)

where � and � are functions of the radial coordinate r only.
Since we want to study only time-independent and
spherically symmetric spacetimes, the metric and energy-
momentum tensor must be time independent even if the
matter field � may depend on time. Then, we set the
following stationarity ansatz [29,38–41],

�ðr; tÞ ¼ �ðrÞe{!t; (6)

where � is, in general, a complex field. Equation (6)
describes a spherically symmetric bound state of
scalar fields with positive (or negative) frequency !.
Accordingly, the electromagnetic four-potential is A�ðrÞ ¼
ðAtðrÞ ¼ AðrÞ; Ar ¼ 0; A� ¼ 0; A’ ¼ 0Þ.
From Eq. (4) we obtain the following nonzero compo-

nents of the energy-momentum tensor T�
�:
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T0
0 ¼ ½m2 þ e��ð!þ qAÞ2��2 þ e����ðA0Þ2

2
þ�02e��;

(7)

T1
1 ¼ ½m2 � e��ð!þ qAÞ2��2 þ e����ðA0Þ2

2
��02e��;

(8)

T2
2 ¼ T3

3

¼ ½m2 � e��ð!þ qAÞ2��2 � e����ðA0Þ2
2

þ�02e��;

(9)

where the prime denotes the differentiation with respect to
r. Let us note from Eqs. (7)–(9) that the energy-momentum
tensor is not isotropic.

Finally, the set of Euler-Lagrange equations for the
system described by Eq. (2) gives the two following inde-
pendent equations for the metric components:

�0 ¼ 1� e�

r
þ 8�GNre

�

�
½m2 þ e��ð!þ qAÞ2��2

þ e����ðA0Þ2
2

þ�02e��

�
; (10)

�0 ¼ �1þ e�

r
þ 8�GNre

�

�
½�m2 þ e��ð!þ qAÞ2��2

� e����ðA0Þ2
2

þ�02e��

�
; (11)

which are equivalent to the Einstein equations G�
� ¼

8�GNT
�
�, where G�

� ¼ R�
� � 1

2	
�
�R is the Einstein

tensor. Then the Maxwell equations are simply

A00 þ
�
2

r
� �0 þ �0

2

�
A0 � 2qe��2ð!þ qAÞ ¼ 0; (12)

and the Klein-Gordon equation is

�00 þ
�
2

r
þ �0 � �0

2

�
�0 þ e�½ð!þ qAÞ2e�� �m2�� ¼ 0:

(13)

In order to have a localized particle distribution, we impose
the following boundary conditions:

�ð1Þ ¼ 0; �0ð1Þ ¼ 0; and

�ð0Þ ¼ constant; �0ð0Þ ¼ 0:
(14)

We also impose the electric field to be vanishing at the
origin so that

A0ð0Þ ¼ 0; (15)

and we demand that

Að1Þ ¼ 0; A0ð1Þ ¼ 0: (16)

Furthermore, we impose the following two conditions
on the metric components:

gttð1Þ ¼ 1; (17)

grrð0Þ ¼ 1: (18)

Equation (17) implies that the spacetime is asymptotically
the ordinary Minkowski manifold, while Eq. (18) is a
regularity condition [26].
We can read Eqs. (10)–(13), with these boundary

conditions, as eigenvalue equations for the frequency !.
They form a system of four coupled ordinary differential
equations to be solved numerically.
It is also possible to make the following rescaling of

variables:

!!m!; q! qm
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8�GN

p
; �ðrÞ !�ðrÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffi

8�GN

p
(19)

r ! r=m; AðrÞqþ! ! CðrÞ; (20)

in order to simplify the integration of the system [9,26].
Using Eqs. (19) and (20), Eqs. (10)–(13) become

�00 ¼ �e�ð�1þ e��C2Þ�þ e�r�2�0

�
�
e� þ 1

r
� e��rC02

2q2

�
�0 (21)

C00 ¼ 2e�q2C�2 þ e���rC2�2C0 � C0
�
2

r
� r�02

�
; (22)

�0 ¼ �ðe� � 1Þ
r

þ re�ðC2e�� þ 1Þ�2 þ r�02 þ C02

2q2
re��;

(23)

�0 ¼e��1

r
þre�ðC2e���1Þ�2þr�02�C02

2q2
re��: (24)

It is worth noting that these equations are invariant under
the following rescaling:

C ! 
C; e�ðrÞ ! 
2e�ðrÞ; (25)

where 
 is a constant. Therefore, since we impose the
conditions at infinity,

gttð1Þ ¼ 1; Að1Þ ¼ 0; (26)

we can use this remaining invariance to make Cð0Þ ¼ 1.

Thus the equations become eigenvalue equations for e�ð0Þ
and not for!. For each field value�ð0Þ> 0, one can solve
the equations and study the behavior of the solutions for
different values of the charge q, imposing

�ð0Þ ¼ 0; �0ð0Þ ¼ 0; (27)

Cð0Þ ¼ 1; C0ð0Þ ¼ 0; (28)
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and looking for �ð0Þ in such a way that � be a smoothly
decreasing function and approaches zero at infinity.
(See also [27]).

III. CHARGE, RADIUS, MASS, AND
PARTICLE NUMBER

The locally conserved Noether density current (3) pro-
vides a definition for the total charge Q of the system with

Q ¼
Z

d3xJ0 ¼ 8�q
Z 1

0
drr2ð!þ qAÞ�2e

���
2 : (29)

Assuming the bosons to have the identical charge q, the
total number N can be related to Q by Q ¼ qN, so N is
given by as [29]

N � 8�
Z 1

0
drr2ð!þ qAÞ�2e

���
2 : (30)

For the mass of the system, the following expression has
been widely used in the literature (see, e.g., [26–28]),

M ¼ 4�
Z 1

0
drr2

�
½ð!þ qAÞ2e�� þm2��2 þ�02e��

þ 1

2
A02e�ð�þ�Þ

�
; (31)

which follows from the definitionM ¼ 4�
R
drr2T0

0 , using

Eq. (7). The solution represented by the line element (5)
with the parameters M, N, and Q as given above is spheri-
cally symmetric and time independent. We expect to match
this interior solution with an external electrovacuum
solution, inheriting the spacetime symmetries of the self-
gravitating configuration. We consider here the exact,
asymptotically flat solution of the Einstein-Maxwell equa-
tions, namely the Reissner-Nordström metric, describing
the field around an isolated spherical object with mass M�
and charge Q. Notice that, however, the mass parameterM
does not satisfy the matching condition with an exterior
Reissner-Nordström spacetime, which relates the actual
mass M� and charge Q of the system with the metric
function � through the relation,

e�� ¼ 1� 2M�GN

r
þQ2GN

4�r2
; (32)

whereQ is given by the integral (29). Thus, the contribution
of the scalar field to the exterior gravitational field is
encoded in the mass and charge only; see, e.g., [9,26–30,42].

The masses M and M� given by Eqs. (31) and (32),
respectively, are related to each other as

M� � Mþ Q2

8�r
; (33)

so the difference �M � M� �M gives the electromag-
netic contribution to the total mass. Using the variables
(19) and (20), Eq. (33) reads

M� � MþQ2

r
: (34)

We will discuss below the difference both from the quan-
titative and qualitative point of view of using the mass
definitions ðM;M�Þ for different boson star configurations.
Finally, we define the radius of the charged boson star as

R� 1

qN

Z
d3xJ0r¼8�

N

Z 1

0
drr3ð!þqAÞ�2e

���
2 ; (35)

where N is given by the integral (30). This formula relates
the radius R to the particle number N and to the charge q
(and also to the total charge Q) [28]. Using the variables
(19) and (20), the expressions (29)–(35) become

M¼1

2

Z 1

0
r2
�
e��C2�2þe���02þ�2þ1

2

e�ð�þ�ÞC02

q2

�
dr;

(36)

N ¼
Z 1

0
drr2Ce

ð���Þ
2 �2; (37)

Q ¼ q
Z 1

0
drr2Ce

ð���Þ
2 �2; (38)

R ¼ 1

N

Z 1

0
drr3Ce

ð���Þ
2 �2: (39)

Note that M is measured in units of M2
Pl=m, the particle

number N in units of M2
Pl=m

2, the charge q in units offfiffiffiffiffiffiffi
8�

p
m=MPl, and R and Q ¼ qN in units of 1=m andffiffiffiffiffiffiffi

8�
p

MPl=m, respectively [26].
We notice that in these units the critical boson charge

defined above becomes q2crit ¼ 1=2 or jqcritj ¼ 1=
ffiffiffi
2

p �
0:707. Thus, the construction of configurations with boson
charge q2 ’ 1=2 will be particularly interesting.

IV. NUMERICAL INTEGRATION

We carried out a numerical integration of Eqs. (21)–(24)
for different values of the radial function �ðrÞ at the origin
and for different values of the boson charge. An ordinary
integrator, based on Runge-Kutta-like methods, has been
used to find the numerical solution of the ordinary differ-
ential equations. We fix the initial values of the problem
and the boundary conditions to solve the associated eigen-
value problem, imposing the condition that � be a
smoothly decreasing function that approaches zero at in-
finity.1 The results are summarized in Figs. 1–10 and in

1The numerical integration has been performed using the
computational software program MATHEMATICA 7. The central
densities have been fixed at intervals of (0.1, 0.05). An inter-
polation order in the range (2, 4) has been used for the curves
fitting the functions ðR;M;M�; N;QÞ and their ratios (the inter-
polation order specifies that polynomials of degree n should be
fitted between data points). The maximum number of steps
(MaxSteps) used to generate a result from the equation of state
was set to 1500. In fixing the machine zeros for the initial and
boundary conditions, we refer to the orders � ð10�4; 10�3Þ.
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Tables II, III, IV, and V. We pay special attention to the
study of zero-nodes solutions.

We found, in particular, that bounded configurations of
self-gravitating charged bosons exist with particle charge

q � qcrit, and for values q > qcrit, localized solutions are
possible only for low values of the central density, that is
for �ð0Þ< 0:3. For instance, for q ¼ 0:8 we found local-
ized zero-nodes solutions only at �ð0Þ ¼ 0:1. On the other
hand, for q > qcrit and higher central densities, the bound-
ary conditions at the origin are not satisfied any more and
only bounded configurations with one or more nodes, i.e.,
excited states, could be possible (see also [28]).
In Sec. IVA, we analyze the features of the metric

functions ðe�; e�Þ and the Klein-Gordon field �. In
Sec. IVB we focus on the charge and mass, total particle
number, and radius of the bounded configuration. Since we
have integrated the system (10)–(13) using the Eqs. (19)
and (20), i.e.,

�! ¼ m! CðrÞ ¼ qAþ!; (40)

to obtain Eqs. (21)–(24), we may use the asymptotic as-
sumption Að1Þ ¼ 0 for the potential so that

Cð1Þ ¼ !: (41)

Different values of ! are listed in Table I.
We recall that the mass M is measured in units of

M2
Pl=m, the particle number N in units of M2

Pl=m
2, the

0 2 4 6 8 10
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0.2
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0.6

0.8

1.0

r

q 1 2

FIG. 1 (color online). The radial function of the scalar field,
for a fixed value of the charge q ¼ qcrit ¼ 1=

ffiffiffi
2

p
in units offfiffiffiffiffiffiffi

8�
p

m=MPl, is plotted as a function of the radial coordinate r for
different values at the origin. The radial function decreases
monotonically as the dimensionless radius increases.
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FIG. 2 (color online). The radial function� is plotted as a function of r (dimensionless) for selected values of the radial function at the
origin and different values of the charge: q ¼ 0 (blue line), q ¼ 0:5 (dashed red line), q ¼ 0:65 (dotted thick green line), q ¼ 0:7 (dotted-
dashed magenta line), q ¼ 1=

ffiffiffi
2

p
(dashed thick black line), in units of

ffiffiffiffiffiffiffi
8�

p
m=MPl. Inside plots are enlarged views of curve sections.
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charge q in units of
ffiffiffiffiffiffiffi
8�

p
m=MPl, and R and Q in units of

1=m and
ffiffiffiffiffiffiffi
8�

p
MPl=m, respectively.

A. Klein-Gordon field and metric functions

In Fig. 1, the scalar field �, at fixed value of the charge
q ¼ qcrit, is plotted as a function of the radial coordinate r

and for different values at the origin �ð0Þ. The shape of the
function does not change significantly for different values of
the boson charge, i.e., the electromagnetic repulsion be-
tween particles has a weak influence on the behavior of �.
In Fig. 2, the radial function � is plotted for different

initial values at the origin and for different values of the
charge q. As expected � decreases monotonically as the
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of the central density �ð0Þ, for different values of the boson charge q (in units
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radius r increases. Moreover, we see that for a fixed value
of r and of the central density, an increase of the boson
charge corresponds to larger values of �.

In Figs. 3 and 4 the metric function e� ¼ �g11 is plotted
as a function of the dimensionless radius r for different
values of the radial function �ðrÞ at the origin and for a
selected values of the charge q.

In general, we observe that e� reaches its maximum
value at the value, say, rmax of the radial coordinate.
Once the maximum is reached, the function decreases
monotonically as r increases and tends asymptotically
to 1, in accordance with the imposed asymptotic behavior.

For a fixed value of the charge, the value of rmax decreases
as the central density increases.

Table II provides the maximum values of e�ðrÞ and the
corresponding radial coordinate rmax , for different values
of the central density. In the case of a neutral configuration
[25], q ¼ 0, the boson star radius is defined as the value

rmax corresponding to the maximum value of e�ðrÞ ¼
�g11. Then, the values of rmax , listed in Table II can be
assumed as good estimates of the radius of the correspond-
ing charged configurations. Moreover, in Fig. 4, the coef-
ficient e� of the metric is plotted as a function of the radial
coordinate r for fixed values of the radial function at the

0.2 0.4 0.6 0.8 1.0
0.4

0.5

0.6

0.7

0.8

0

Q
M

0.5

0.65

0.7

1 2

0.2 0.4 0.6 0.8 1.0
0.40

0.45

0.50

0.55

0.60

0.65

0.70

0

Q
M

0.5

0.65

0.7

1 2

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0

Q
R

0.5

0.65

0.7

1 2

FIG. 10 (color online). The ratios Q=M (left) and Q=M� (center) in units of
ffiffiffiffiffiffiffi
8�

p
=MPl, and Q=R (right), in units of

ffiffiffiffiffiffiffi
8�

p
MPl, as

functions of the central density, for different values of the boson charge q (in
ffiffiffiffiffiffiffi
8�

p
m=MPl).

0.2 0.4 0.6 0.8 1.0

2

4

6

8

10

12

0

R
N

0
0.50.65

0.7

1 2

0.2 0.4 0.6 0.8 1.0

2

4

6

8

10

12

0

R
M

0
0.50.65

1 2

0.7

0.2 0.4 0.6 0.8 1.0

2
4
6
8

10
12

R
M

0.2 0.4 0.6 0.8 1.0

0.90

0.95

1.00

1.05

1.10

1.15

1.20

0

M
N

0
0.5

0.65

0.7 1 2

0.2 0.4 0.6 0.8 1.0

1.00

1.05

1.10

1.15

1.20

0

M
N

0

0.5

0.65

0.7

1 2

FIG. 9 (color online). The ratios (a) R=N, (b) R=M�, (c) M=N, and (d) M�=N in units of m=M2
Pl, 1=M

2
Pl, and m, respectively, are

plotted as functions of the central density and for different values of the boson charge q (in
ffiffiffiffiffiffiffi
8�

p
m=MPl). Dashed line is �ð0Þ ¼ 0:3.

PUGLIESE et al. PHYSICAL REVIEW D 88, 024053 (2013)

024053-8



origin and different values of the charge q. For a fixed
�ð0Þ, an increase in the maximum value of g11 and of the
value of rmax , corresponds to an increase of the boson
charge q. At a fixed value of r, the value of the coefficient
�g11 increases with an increase of the central density,
reaching the maximum value at �max ð0Þ ’ 0:3.

B. Mass, charge, radius, and particle number

The massesM andM� of the system, in units ofM2
Pl=m,

and the particle number N, in units of M2
Pl=m

2, are plotted

in the Fig. 5 as functions of the central density �ð0Þ, for
different values of the boson charge q.

In Fig. 6, the masses M and M� are plotted as functions
of the scalar central density for selected values of the
boson charge; we have indicated the difference � ¼ M� �
M at a certain �ð0Þ. This quantity clearly increases with
the boson change q, as expected. Analogously to the case
of white dwarfs and neutron stars, a critical mass Mmax

and, correspondingly, a critical number Nmax exist for a
central density �ð0Þmax ’ 0:3, independently of the value
of q within the precision of our numerical integration. This
behavior is also evident from Table III (see also Table IV
and V). We refer also to [9,26–28,30,31,40,43–47] for
further discussions on the existence of critical values for
the mass, particle number and the respective central den-
sity. Configurations with �ð0Þ>�ð0Þmax are gravitation-
ally unstable, see e.g., [26–28,30,43–46]. In Table III, the
maximum values of the charged boson star massMmax , and
the number of particles Nmax , and �max are listed for
selected values of q.
Comparing the plots at different charge values we can

see that the presence of charge does not change the behav-
ior qualitatively. However, to an increase of the boson
charge values corresponds an increase of Mmax , M�

max

and Nmax , and an increase of the difference (Nmax �
Mmax ) between the maximum number of particles and
the mass at a fixed central density. The critical central
density value is �ð0Þmax ’ 0:3. This value seems to be
independent of the charge values q (see also [47]).
The radius R, the total charge Q, and the mass M are

plotted (in units of 1=m,
ffiffiffiffiffiffiffi
8�

p
MPl=m, and M2

Pl=m, respec-

tively) in Figs. 7 and 8 as functions of the central density
�ð0Þ, for different values of the charge q. We see that the
radius, for a fixed central density, increases as the charge
increases (see Fig. 7 and Table III).
In Table III the maximum values of the total charge

Qmax , for �max ð0Þ ’ 0:3 and for different q are listed.
For fixed values of the charge q, the total charge increases
with an increase of the central density until it reaches a
maximum value for some density�ð0Þmax . Then, the value
of Q decreases monotonically as �ð0Þ increases. In this
way, it is possible to introduce the concept of a maximum
charge Qmax for charged boson stars.

TABLE II. The maximum values of e�ðrÞ ¼ �g11 and the corresponding radial coordinate rmax for different values of the central
density. For a fixed �ð0Þ, an increase of the boson charge q generates an increase of the maximum value of e� and of the value of the
radius rmax .

�ð0Þ
q 0.1 0.2 0.3 0.4 0.5

e�max rmax e�max rmax e�max rmax e�max rmax e�max rmax

0 1.0984 6.4060 1.2328 4.7090 1.3471 3.5184 1.4528 2.7582 1.5482 2.2144

0.5 1.1179 6.8172 1.3132 5.2940 1.4705 3.9800 1.6094 3.1282 1.7234 2.512

0.65 1.1212 6.6753 1.4635 5.9912 1.7395 4.6225 1.9524 3.6451 2.0729 2.8975

0.7 1.1469 7.2189 1.8154 7.0841 2.4602 5.5813 2.5159 4.1125 2.5409 3.2099

1=
ffiffiffi
2

p
1.1323 6.8585 1.6764 6.5422 2.5981 5.6016 2.6873 4.1943 2.6637 3.2650

�ð0Þ
0.6 0.7 0.8 0.9 1

0 1.6324 1.7964 1.7031 1.4561 1.7609 1.1707 1.8064 0.92659 1.8414 0.7175

0.5 1.8124 2.0394 1.8774 1.6600 1.9197 1.3430 1.9432 1.0722 1.9526 0.8383

0.65 2.1520 2.3519 2.1795 1.9132 2.1688 1.5471 2.1470 1.2464 2.1144 0.9895

0.7 2.5116 2.5649 2.4798 2.0919 2.3972 1.6925 2.3222 1.3706 2.2420 1.0939

1=
ffiffiffi
2

p
2.6123 2.6133 2.5519 2.1275 2.4469 1.7199 2.3420 1.3806 2.2745 1.1198

TABLE I. Table provides the eigenvalues ! for different val-
ues of the central density �ð0Þ and for different values of the
charge q. The charge q in measured in units of

ffiffiffiffiffiffiffi
8�

p
m=MPl.

! ! ! !
�ð0Þ q ¼ 0:5 q ¼ 0:65 q ¼ 0:7 q ¼ 1=

ffiffiffi
2

p

0.1 1.03433 1.05912 1.07885 1.07464

0.2 1.10489 1.24457 1.43809 1.38764

0.3 1.17031 1.44232 1.96159 2.05052

0.4 1.22759 1.61925 2.15270 2.30157

0.5 1.27042 1.72349 2.25687 2.38881

0.6 1.29767 1.78963 2.26809 2.39819

0.7 1.30994 1.79980 2.26305 2.37248

0.8 1.30852 1.76409 2.16889 2.25671

0.9 1.29720 1.72279 2.08637 2.12406

1 1.28046 1.67749 1.99464 2.08020
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In Fig. 7, the charge Q is plotted as a function of the
central density �ð0Þ for different values of the charge q.
For fixed values of the charge q, the total charge increases
with an increase of the central density until it reaches a
maximum value for some density�ð0Þmax . Then, the value
of Q decreases monotonically as �ð0Þ increases. In this
way, it is possible to introduce the concept of a critical
charge Qmax for charged boson stars. In Table III the
maximum values of the total charge Qmax , for �max ð0Þ ’
0:3 and for different values of q are listed. Let us note that
for a fixed central density, to an increase of the boson
charge q corresponds an increase of the maximum Qmax

(see Fig. 7 and Table III).
Figure 8 depicts the total charge Q (in units offfiffiffiffiffiffiffi
8�

p
MPl=m), the radius R (in units of 1=m), and the

mass M (in units of M2
Pl=m), as functions of the central

density �ð0Þ and for different values of the boson charge q
(in

ffiffiffiffiffiffiffi
8�

p
m=MPl).

Note that, for a fixed value of the charge q, the mass,
the radius, and the charge are always positive and to
an increase (decrease) of the total charge there always

corresponds an increase (decrease) of the total mass (and
total particle number). Both quantities increase as the
central density increases and they reach a maximum value
for the same density �ð0Þmax ’ 0:3 (see also Table III).
Once the maximum is reached, both quantities decrease
monotonically as �ð0Þ increases.
In Fig. 9 we show the ratios R=N, R=M, and R=M� and

M=N and M�=N in units of m=M2
Pl, 1=M

2
Pl, and m, respec-

tively, as functions of the central density, and for different
values of the boson charge q. For fixed values of the charge
q, the ratio R=N, the ratio R=M, and M=N decrease as the
central density increases, until they reach a minimum value
�ð0Þðmin ;R=NÞ, �ð0Þðmin ;R=MÞ, �ð0Þðmin ;M=NÞ, respectively.

After the minimum is reached, all ratios increase mono-
tonically as the central density increases.
In Table IV, the minimum values of R=N, M=N, and

R=M, M�=N, and R=M� and the value of �min , are given
for different values of q. Furthermore, an increase of the
boson charge values corresponds a decrease of the min-
ima of the ratios R=N and R=M, and of the corresponding
�min . For a fixed value of the central density �ð0Þ, to a

TABLE V. The maximum value of the ratios Q=M, Q=M�, and Q=R, in units of
ffiffiffiffiffiffiffi
8�

p
=MPl and

ffiffiffiffiffiffiffi
8�

p
MPl respectively, as functions of

the central density and for different values of the boson charge q (in
ffiffiffiffiffiffiffi
8�

p
m=MPl).

q Q
M ð�ð0ÞÞ �ð0Þðmax ;Q=MÞ

Q
M� ð�ð0ÞÞ �ð0Þðmax ;Q=M�Þ

Q
R ð�ð0Þ �ð0Þðmax ;Q=RÞ

0.50 0.515469 0.291645 0.503848 0.282348 0.194576 0.648848

0.65 0.684291 0.333835 0.644347 0.34207 0.315191 0.534444

0.70 0.796011 0.289606 0.694768 0.278139 0.420745 0.340640

1=
ffiffiffi
2

p
0.802127 0.300000 0.697547 0.300000 0.449011 0.422762

TABLE IV. The minimum values of the ratios R=M and R=M� (in units of 1=M2
Pl),M=N andM�=N (in units ofm) and R=N (in units

of m=M2
Pl) as functions of �ð0Þ and for different values of q. We note that to an increase of q corresponds a decrease of the minima of

R=M, R=M�, M=N, and R=N. Vice versa, the M�=N increases with q.

q Rð�ð0ÞÞ
Mð�ð0ÞÞ �ð0Þðmin ;R=MÞ

Rð�ð0ÞÞ
M�ð�ð0ÞÞ �ð0Þðmin ;R=M�Þ

Mð�ð0ÞÞ
Nð�ð0ÞÞ �ð0Þðmin ;M=NÞ

M�ð�ð0ÞÞ
Nð�ð0ÞÞ �ð0Þðmin ;M�=NÞ

Rð�ð0ÞÞ
Nð�ð0ÞÞ �ð0Þðmin ;R=NÞ

0 2.87985 0.793811 2.87985 0.793811 0.972071 0.298102 0.972071 0.298102 3.07529 0.691860

0.50 2.47116 0.742725 2.43821 0.735351 0.969991 0.291616 0.992362 0.282309 2.56920 0.648890

0.65 2.08637 0.617825 2.00041 0.592344 0.949828 0.334285 1.00875 0.342184 2.06194 0.535094

0.70 1.76082 0.541418 1.63117 0.455206 0.879342 0.289220 1.00752 0.278012 1.66369 0.340757

1=
ffiffiffi
2

p
1.68120 0.499717 1.53638 0.446416 0.881540 0.300000 1.0137 0.300000 1.57425 0.424978

TABLE III. The maximum values of the boson star massMmax andM�
max (in units ofM2

Pl=m) and of the number of particles Nmax (in
units of M2

Pl=m
2), the charge Qmax (in units of

ffiffiffiffiffiffiffi
8�

p
MPl=m) as functions of �ð0Þ, and the corresponding central density values

�ð0Þðmax ;MÞ for the mass Mmax , �ð0Þðmax ;NÞ for particle number Nmax , �ð0Þðmax ;QÞ for the total charge Qmax are listed for different q.

The entries with a star ( � ) do not correspond to maximum values but to the initial points of the numerical integration (see Fig. 7).

q Mmax �ð0Þðmax ;MÞ M�
max �ð0Þðmax ;M�Þ Nmax �ð0Þðmax ;NÞ Qmax �ð0Þðmax ;QÞ Rmax �ð0Þðmax ;RÞ

0 0.62374 0.3 0.62374 0.3 0.641665 0.3 ! ! 4.56589* 0.1*

0.50 0.87536 0.271041 0.895504 0.271444 0.902576 0.271361 0.448485 0.3 4.79634* 0.1*

0.65 1.33207 0.325797 1.4133 0.32305 1.402170 0.326816 0.90818 0.318766 4.63946 0.091957

0.70 2.31504 0.282575 2.63956 0.291404 2.63120 0.284047 1.84184 0.284047 4.74968* 0.1*

1=
ffiffiffi
2

p
2.33016 0.3 2.67951 0.3 2.64329 0.3 1.86909 0.3 5.14269 0.158228
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decrease of the boson charge q corresponds an increase

of R=N, R=M and R=M�. These ratios decrease as the

particle repulsion increases, leading to a minimum value

for a given central density. The ratios M=N and M�=N
decrease with an increase of the central density until it

reaches a minimum value, and then it increases as �ð0Þ
increases. The minimum values of M=N decrease as the

charge q increases. On the other side, from Table IV, we

note that the minimum values of M�=N increases as the

charge q increases. This can also be noted in Fig. 9:M�=N
increases with q until the central density reaches a point

�ð0Þ � 0:75, at which the linesM�=N at different charges

match and then M�=N turns out to be a decreasing func-

tion of q. It is clear that the quantityM=N is an indication

of the binding energy per particle, B=N ¼ 1�M=N, in

the units we are using. So M=N > 1 indicates negative

binding energies (bound particles) while M=N < 1 indi-

cates unbound particles, in principle. It can be seen from

the lower left panel of Fig. 9 how the misinterpretation of

the mass M as the mass of the system would in principle

lead to the conclusion that most of the configurations

have positive binding energy, since M=N < 1. Instead,

the lower right panel of Fig. 9, bottom right, shows that

indeed most of the configurations have M�=N > 1 and

have, therefore, negative binding. However, it can be also

seen from this figure that indeed there are configurations

for which, despite being in the stable branch �ð0Þ � 0:3,
the binding energy is positive for some values of the

central density. In contrast, the configurations at the

critical point, �ð0Þ � 0:3, and over it show negative bind-

ing energies; this means that objects apparently bound can

be unstable against small perturbations, in full analogy

with what was observed in the mass-radius relation of

neutron stars. For a discussion on this issue see, for

instance, [10,48].
Figure 10 illustrate the behavior of the ratios Q=M,

Q=M�, and Q=R in units of
ffiffiffiffiffiffiffi
8�

p
=MPl and

ffiffiffiffiffiffiffi
8�

p
MPl, re-

spectively, as functions of the central density for different
values of the boson charge q. The maximum values of the
charge-to-mass ratio satisfy the inequality Q=M >Q=M�
since M<M� as shown in Fig. 6. We also note that the
inequality Q=M� < q=m is satisfied for all charges q; in
particular, Q=M� never reaches the critical value qcrit=m, a
consequence of the nonzero gravitational binding.
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An increase of the central density corresponds to an
increase of theQ=M (Q=M�) ratio, until a maximum value
is reached. As the boson charge q increases, the values of
the maximum of Q=M (Q=M�) increase. Table V provides
the maximum value of the ratiosQ=M,Q=M�, andQ=R as
functions of the central density and for different values of
the boson charge q.

The behavior of the total mass M and M�, particle
number N, and charge Q as functions of the configuration
radius R is also shown in Fig. 11, for different values of
the charge q. We can note that, for a fixed value of the
charge q, the mass, the particle number and the charge,
increase as the radius R increases, until a maximum value
is reached for the same Rmax . Then all these quantities
decrease rapidly as R increases. This means that the
concept of ‘‘critical radius’’ Rmax , together with a critical
mass and a critical particle number, for a charged boson
star can be introduced. The plots also indicate that the
presence of a charge q does not change the qualitative
behavior of the quantities. However, the values of Mmax

and Nmax , and of the corresponding values of Rmax , are
proportional to the value of q. Configurations are allowed
only within a finite interval of the radius R. The values of
the minimum and maximum radii are also proportional to
the value of the boson charge q. The critical central
density �ð0Þ ’ 0:3 represents a critical point of the
curves. Configurations for �ð0Þ> 0:3, are expected to
be unstable, see [26,28]. It is interesting to notice that
for small values of the radius, there is a particular range at
which for a specific radius value there exist two possible
configurations with different masses and particle num-
bers. This behavior has also been found in the case of
neutral configurations and is associated with the stability
properties of the system.
Finally, we illustrate the behavior of the physical quan-

tities for a fixed value of the charge q in Fig. 12. Figure 13
shows the charge-to-mass ratio as a function of the radius
of the configuration evaluated at different central den-
sities. At the central density �ð0Þ ’ 0:3, there exists a
critical point on the curve. Configurations with larger
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FIG. 12. The total chargeQ in
ffiffiffiffiffiffiffi
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p
MPl=m (black curve), the total massM (gray curve) andM� (dotted-dashed curve) inM2
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the particle number N (dashed curve) in units ofM2

Pl=m
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the charge q (in units of
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m=MPl). Dotted lines represent the curves�ð0Þ ¼ const; the central density values are designed by points
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radius correspond to lower central densities. The ratio
Q=ðRMÞ and Q=ðRM�Þ increase as �ð0Þ increases.

V. CONCLUSIONS

In this work we studied spherically symmetric charged
boson stars. We have solved numerically the Einstein-
Maxwell system of equations coupled to the general rela-
tivistic Klein-Gordon equations of a complex scalar field
with a local Uð1Þ symmetry.

As in the case of neutral boson stars and previous works
on charged configurations, we found that it is possible to
introduce the concepts of critical mass Mmax and critical
number Nmax . It turns out that the explicit value of these
quantities increases as the value of the boson charge q
increases. In previous works [26,28], it was shown that

charged configurations are possible for q < qcrit �
ffiffiffiffiffiffiffiffi
1=2

p
(in units of

ffiffiffiffiffiffiffi
8�

p
m=MPl). We performed a more detailed

analysis and determined that bounded charged configura-
tions of self-gravitating bosons are possible with a particle
charge q ¼ qcrit, and even for higher values localized
solutions can exist.

We compared and contrasted, both from the qualitative
and quantitative point of view, the function M given by
Eq. (31), often misinterpreted as the mass of a charged
system, with the actual massM�, related toM by Eq. (33),
which allows a correct matching of the interior solution at
the surface with the exterior Reissner-Nordström space-
time. In fact, since the interior solution is spherically
symmetric and time independent, and possesses a net
electric charge, one could expect a matching with this
exact electrovacuum solution that is able to describe the
field around an isolated spherical object with massM� and
charge Q.
By means of numerical integrations it is possible to show

that for q > qcrit solutions, satisfying the given initial con-
ditions without nodes, are possible only for values of the
central density smaller than the critical value �ð0Þ � 0:3
(see, e.g., Fig. 14). On the other hand, for q > qcrit and
higher central densities, the boundary conditions for zero-
node solutions at the origin are not satisfied and only
bounded configurations with one or more nodes could
be possible. That is, no numerical solution is found for
the system with a ground state composed by overcritical
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FIG. 13. Upper plot: The charge-to-mass ratio Q=M and Q=M� in units of
ffiffiffiffiffiffiffi
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p
=MPl is plotted in terms of the radius R (in units of

1=m) for different values of the charge q (in units of
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p
m=MPl). The central density values �ð0Þ are represented by markers on the
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=MPl is plotted as a function of the
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(q > qcrit) particles. On the other hand, it can be proved
that there exist solutions of the system (21)–(24) with at
least a node, i.e., a zero of the scalar �ðrÞ.

We established that the critical central density value
corresponding to Mmax (M�

max ) and Nmax is �ð0Þmax ’
0:3, independently of the boson charge q. The critical total
mass and number of particles increase as the electromag-
netic repulsion increases [28] (see [49,50], and also
[13,51,52], for a recent discussion on the charge-radius
relation for compact objects).

The total charge of the star increases with an increase of
the value of the central density until it reaches a maximum
value at �ð0Þ ¼ �ð0Þmax ’ 0:3. As �ð0Þ continues to in-
crease, the charge Q decreases monotonically. In this
manner, the concept of a critical charge Qmax for charged
boson stars can be introduced in close analogy to the
concept ofNmax . In this respect, the value�ð0Þ ’ 0:3 plays
the role of a point of maximum of the electromagnetic
repulsion (as a function of the central density).

In order to have a better understanding of these systems
for � ’ �ð0Þmax , we studied the behavior of � and g11 as
functions of �ð0Þ and the radial coordinate r. The density
� increases with larger values of q, at fixed r and fixed
central density. For a fixed value of the boson charge, g11

reaches a maximum value corresponding to a value rmax of
the radial coordinate. After this maximum is reached, it
decreases monotonically with an arbitrary increase of r.
The maximum value of g11 depends on the value of the
central density and of the coupling constant q. However,
this maximum is bound and reaches its highest value for
�max ð0Þ ’ 0:3.
The radius R and the ratios Q=M, M=N, R=M, Q=M�,

M�=N, R=M�, R=N,Q=R were also studied as functions of
the central density. To the central density value �ð0Þ ’ 0:3
corresponds the maxima of the chargeQ, the massM (M�),
the particle number N, and the ratio Q=M (Q=M�). On the
other hand,�ð0Þ ’ 0:3 corresponds to the minima ofM=N,
R=N, and R=M, as well as M�=N and R=M�.
The effects of the introduction of the mass definitionM�

are evident in the analysis of the behavior of Q=M� and
M�=N with respect to Q=M and M=N: we note that the
minimum value of M�=N increases as the charge q in-
creases while M=N decreases always with q. In particular
M�=N increases with q until the central density reaches a
point �ð0Þ � 0:75, at which the lines M�=N at different
charges match and thenM�=N turns out to be a decreasing
function of q.
The maximum values of the charge-to-mass ratio satisfy

the inequalityQ=M� < q=m for all charges q; in particular,
Q=M� never reaches the critical value qcrit=m. The con-
trary conclusion would be reached if the misinterpreted
mass M were used since the inequality Q=M >Q=M� is
satisfied; i.e., the charge-to-mass ratio Q=M indeed attains
values larger than qcrit=m (see, e.g., Fig. 10). To summa-
rize, we found that all the relevant quantities that character-
ize charged boson stars behave in accordance with the
physical expectations. Bounded configurations are possible
only within an interval of specific values for the bosonic
charge and the central density. The main contributions of
the present work concerns the exploration of the configu-
ration structure and stability properties by means of a
definition of mass that properly takes account of the elec-
tric charge. We performed a detailed analysis whose main
results can be therefore summarized in the following
points: (i) The stability issue is here faced considering
the binding energy per particle, and taking properly into
account the electromagnetic contribution to the total mass
denoted asM�. Then, we discussed the configuration prop-
erties comparing our results with those obtained by con-
sidering the most commonly used mass M. As a result of
this analysis, we verified the existence of configurations
with positive binding energy in which objects that are
apparently bound can be unstable against small perturba-
tions, in full analogy with the effect observed in the mass-
radius relation of neutron stars. (ii) A precise limit on the
boson star critical charge was established and the physical
properties of configurations around this value were ex-
plored. We determined that bounded charged configura-
tions of self-gravitating bosons are possible with a particle
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FIG. 14. The radial function of the scalar field �ðrÞ (gray
curve) for the charge q ¼ 0:8 in units of

ffiffiffiffiffiffiffi
8�

p
m=MPl, ! ¼

1:10893 and for central density �ð0Þ ¼ 0:1, function of the
radial coordinate r. Dotted curve is e�ðrÞ, black curve is e�ðrÞ,
dashed curve is CðrÞ. Dashed thick curve is NðrÞ. Inside plot is a
enlarged view of the curveMðrÞ (dotted-dashed curve), and KðrÞ
(black thick curve) where R ¼ R1

0 K0ðrÞdr. It is e�max ¼ 1:15874
in rmax ¼ 7:18885. Moreover the configuration mass M ¼
0:570768 and M� ¼ 0:590706 measured in units of M2

Pl=m.

The particle number N ¼ 0:558146, in units of M2
Pl=m

2, and

the radius R ¼ 4:95246 and the total charge Q ¼ qN ¼
0:446517 in units of 1=m and

ffiffiffiffiffiffiffi
8�

p
MPl=m, respectively.

Moreover, it is Q=R ¼ 0:0901607, R=N ¼ 8:87305, R=M ¼
8:67684, R=M� ¼ 8:38397, M=N ¼ 1:02261, M�=N ¼
1:05833, Q=M ¼ 0:78231, Q=M� ¼ 0:755905. Here R=M and
R=M� are in units of 1=M2

Pl, M=N, and M�=N in units of m and

R=N in units of m=M2
Pl, Q=M, Q=M�, and Q=R, in units offfiffiffiffiffiffiffi

8�
p

=MPl and
ffiffiffiffiffiffiffi
8�

p
MPl, respectively.
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charge equal to qcrit. More precisely, we showed here that
there exist stable (in terms of binding energy) configura-
tions of self-gravitating charged bosons with particle
charge qcrit. (iii) We also study the behavior of the radius
as well as of the total charge and mass of the system for
q > qcrit. We found that there can exist localized solutions,
but for higher central densities the boundary conditions for
zero-node solutions at the origin are not satisfied and only
bounded configurations with one or more nodes could be
possible.
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APPENDIX: NEUTRAL BOSON STARS

In this Appendix we shall focus on electrically neutral
configurations exploring in particular their global propri-
eties: mass, radius and total particle numbers. Neutral
boson stars are gravitationally bound, spherically symmet-
ric, equilibrium configurations of complex scalar fields �
[25] (for further discussions about the neutral configura-
tions see also [53,54]). It is possible to analyze their
interaction by considering the field equations describing
a system of free particles in a curved space-time with a
metric determined by the particles themselves.

The Lagrangian density of the gravitationally coupled
complex scalar field � reads

L ¼ �ðg��@��@��
� �m2���Þ; (A1)

where m is the boson mass, �� is the complex conjugate
field (see, for example, [25,36,37]). This Lagrangian is
invariant under global phase transformation � !
exp ði�Þ� where � is a real constant that implies the
conservation of the total particle number N.

Using the variational principle with the Lagrangian
(A1), we find the following Einstein coupled equations,

G�� � R�� � 1

2
g��R ¼ 8�GNT��ð�Þ; (A2)

with the following Klein-Gordon equations,

g��r�r��þm2� ¼ 0; (A3)

g��r�r��
� þm2�� ¼ 0; (A4)

for the field � and its complex conjugate ��.
The symmetric energy-momentum tensor is

T�� ¼ 2ðjgjÞ�1=2

�
@

@x�
@ð ffiffiffiffiffiffiffi�g
p ÞL

@ðg��=@x�Þ �
@ð ffiffiffiffiffiffiffi�g
p ÞL
@g��

�
; (A5)

and the current vector is

J� ¼ {

��
@L

@ð@���Þ�
�
�
�

�
@L

@ð@��Þ�
��
: (A6)

The explicit form of Eq. (A3),

1ffiffiffiffiffiffijgjp @i

�
gij

ffiffiffiffiffiffi
jgj

q
@k�

�
þ g00@20�þm2� ¼ 0; (A7)

can be solved by using separation of variables,

�ðr; �; ’; tÞ ¼ RðrÞYm
l ð�; ’Þe�{!t; (A8)

where Ym
l ð�; ’Þ is the spherical harmonic. Equation (A8)

and its complex conjugate describe a spherically symmet-
ric bound state of scalar fields with positive or negative
frequency !, respectively.2 It ensures that the boson star
spacetime remains static.3

In the case of spherical symmetry, we use as before the
general line element,

ds2 ¼ e�dt2 � e�dr2 � r2ðd#2 þ sin#2d’2Þ; (A9)

where � ¼ �ðrÞ and � ¼ �ðrÞ.
Thus, there are only three unknown functions of the

radial coordinate r to be determined—the metric function
�, �, and the radial componentR of the Klein-Gordon field.
From Eq. (A7) we infer the radial Klein-Gordon equation,

R00ðrÞ þ
�
2

r
� �0ðrÞ

2
þ �0ðrÞ

2

�
R0ðrÞ

þ e�ðrÞð�m2 þ e��ðrÞ!2ÞRðrÞ ¼ 0; (A10)

where the prime ð0Þ denotes the differentiation with respect
to r.
The energy-momentum tensor components are

(see [25])

T0
0 ¼ 1

2
f½e��!2 þm2�R2

01 þ e��R02
01g; (A11)

T1
1 ¼ � 1

2
f½e��!2 �m2�R2

01 þ e��R02
01g; (A12)

T2
2 ¼ T3

3 ¼ � 1

2
f½e��!2 �m2�R2

01 � e��R02
01g; (A13)

T0
i ¼ 0 (A14)

From the expressions (A11) and (A12) and from the
Einstein Eq. (A2), we finally obtain the following two
independent equations,

2In the distribution we have considered that all the particles are
in the same ground state (n ¼ 1, l ¼ 0).

3In the case of a real scalar field this can readily be obtained in
this formalism by requiring ! ¼ 0 due to the condition � ¼
� � .
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�0 ¼ 1

r
ð1� e�Þ þ 8�Gre��½R2e�ð!2 þm2e�Þ þ R02e��;

(A15)

�0 ¼�1

r
ð1�e�Þþ8�Gre��½R2e�ð!2�m2e�ÞþR02e��;

(A16)

for the metric fields � and �, respectively.
To integrate numerically these equations it is convenient

to make the following rescaling of variables:

r ! r̂=m; �ðrÞ � RðrÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffi
8�GN

p
; ! ! !m:

(A17)

Thus, we finally obtain from Eqs. (A10), (A15), and (A16)
the following equations

R00 ¼ e�R�!2e���Rþ R0
�
� 1

r
� e�

r
þ e�rR2

�
(A18)

�0 ¼ 1

r
ð1� e�Þ þ re��½R2e�ð!2 þ e�Þ þ R02e��; (A19)

�0 ¼�1

r
ð1�e�Þþre��½R2e�ð!2�e�ÞþR02e��; (A20)

for the radial part of the scalar field R and the metric
coefficients � and � in the dimensionless variable r̂.

TABLE VI. Numerical results for neutral boson stars. Rð0Þ is the value of the radial part of the wave function at the origin. The mass
at infinity has been computed by Eq. (A24). The value is given in units M2

Pl=m ¼ ðℏ2cG�1m�1Þ. The eigenvalue !, measured in units

of mc2, where m is the boson mass, has been determined by requiring that the redial part R goes to zero at infinity. The radius of the
distribution (units ℏc�1m�1) has been defined to be the value rgmax

11
of the radial coordinate corresponding to the maximum of g11. The

minimum g00 is attained at the origin.

Rð0Þ ! ðmc2Þ gmax
11 rgmax

11
ðℏ=mcÞ gmin

00 g00ðrmax Þ N ðm�2M2
PlÞ M ðM�2

Pl =mÞ
0.10 1.0000 1.10572 6.73590 0.860104 0.959895 0.338031 0.334027

0.20 0.9403 1.24099 4.84330 0.654933 0.859126 0.625526 0.602570

0.30 0.9003 1.34844 3.52866 0.495123 0.757922 0.644172 0.623620

0.40 0.8993 1.44335 2.71423 0.392571 0.712016 0.575796 0.573405

0.51 0.8790 1.53397 2.09463 0.276904 0.619017 ! !
0.55 0.8770 1.56106 1.90578 0.242491 0.587189 ! !
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FIG. 15. The radial function R of the Klein-Gordon field (gray line), the metric coefficient g11 ¼ �e� (dotted line), and the function
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The initial and boundary conditions we impose are

Rð1Þ ¼ 0; R0ð1Þ ¼ 0; and

Rð0Þ ¼ constant; R0ð0Þ ¼ 0
(A21)

in order to have a localized particle distribution and

�ð0Þ ¼ 0; (A22)

�ð1Þ ¼ 0; (A23)

to get asymptotically the ordinaryMinkowski metric (A22)
and to satisfy the regularity condition (A23).
We calculate the mass of system as

M ¼ 4�
Z 1

0
�r2dr; (A24)

where the density �, given by T0
0 , is

� ¼ 1

2
½R2ð1þ!2e��Þ þ e��R02�: (A25)

The particle number is determined by the following
normalization condition,

N ¼
Z 1

0
hJ0ið�gÞ1=2d3x; (A26)

which, using Eq. (A6), becomes

N ¼
Z 1

0
r2!eð���Þ=2R2dr: (A27)

The mass M is measured in units of M2
Pl=m, the

particle number N in units of M2
Pl=m

2, ! in units
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FIG. 16 (color online). The metric coefficient g11 ¼ �e� (b) and the function e� ¼ g00 (a) are plotted as functions of r̂
(dimensionless) r̂ ¼ r=m for selected values of the radial function RðrÞ at the origin.
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FIG. 17 (color online). The metric coefficient e� ¼ �g11 and
the function e� ¼ g00 are plotted as functions of r̂ (dimension-
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the origin. See also Table VI.
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of mc2, and the radius of the configuration is in units
of ℏ=ðmcÞ.

In the numerical analysis we obtain a maximum value of
g11 from which we determine the ‘‘effective radius’’ Reff of

the distribution as the radius, rgmax
11

, corresponding to the

maximum of g11 [25,29]. We carried out a numerical
integration for different values of the radial function R at
the origin. We give some numerical values in Table VI. We
have fixed some values for R at the origin and a random
value for the eigenvalue !. We solved all the three equa-
tions simultaneously, looking for the value of ! for which
the radial function decreases exponentially, reaching the
value zero at infinity. We have plotted some results in
Fig. 15 and in Figs. 16–18, where the profiles are shown
in terms of the radial variable.
The mass at infinity and the total number of particles

always stays positive. An increase (decrease) of the num-
ber of particles always corresponds to an increase (de-
crease) of the mass at infinity (see Fig. 19). The concept
of critical mass is introduced since the total particle
number and the mass at infinity (as a function of the
central density, see Fig. 19) reaches a maximum value
NCri ¼ 0:658438M2

Pl=m
2 and MCri ¼ 0:635626M2

Pl=m,

respectively, for a specific central density Rð0ÞCri,
NCri¼0:658438M2

Pl=m
2; Rð0ÞCri¼0:278289; (A28)

MCri¼0:635626M2
Pl=m; Rð0ÞCri¼0:277619: (A29)

For further details, see also [45].
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