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Uniqueness of charged static asymptotically flat black holes in dynamical Chern-Simons gravity
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Making use of the conformal positive energy theorem, we prove the uniqueness of four-dimensional

static electrically charged black holes being the solution of Chern-Simons modified gravity equations of
motion. We assume that black hole spacetime contains an asymptotically flat spacelike hypersurface with
compact interior and nondegenerate components of the event horizon.
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I. INTRODUCTION

Gravitational collapse and emergence of black holes is
one of the most essential research problem of general
relativity and its generalizations. The problem of classifi-
cation of nonsingular black hole solutions was first dis-
cussed by Israel [1], Miiller zum Hagen et al. [2], and
Robinson [3], while the most complete results were pro-
posed in Refs. [4-8]. The classification of static vacuum
black hole solutions was finished in [9], where the condi-
tion of nondegeneracy of the event horizon was removed.
For Einstein-Maxwell black holes, it was proved that for
the static electrovacuum black holes all degenerate com-
ponents of the event horizon should have charges of the
same sign [10].

The construction of the uniqueness black hole theorem
for stationary axisymmetric spacetime turned out to be a
far more complicated task [11]. However, the complete
proof was presented by Mazur [12] and Bunting [13] (for a
review of the uniqueness of black hole solutions, see [14]
and references therein).

A different issue, related to the problem of gravitational
collapse in generalization of Einstein theory to higher
dimensions and emergence of higher dimensional black
objects (like black rings, black Saturns) and multidimen-
sional black holes, was widely studied. The complete clas-
sification of n-dimensional charged black holes both with
nondegenerate and degenerate components of the event
horizon was proposed in Ref. [15], while partial results
for the very nontrivial case of the n-dimensional rotating
black hole uniqueness theorem were provided in [16]. The
problem of the behavior of matter fields in the spacetime of
higher dimensional black holes was studied in Ref. [17].

Because of the attempts of building a consistent quan-
tum gravity theory, there was also a resurgence of works
treating the mathematical aspects of the low-energy string
theory black holes. This research comprised also the case
of the low-energy limit of the string theory, such as dilaton
gravity, Einstein-Maxwell-axion-dilaton gravity, and
supergravity theories [18]. On the other hand, the strictly

*marek.rogat@poczta.umcs.lublin.pl
rogat@kft.umcs.lublin.pl

1550-7998/2013/88(2)/024051(5)

024051-1

PACS numbers: 04.70.Bw, 04.20.—q, 04.50.Kd

stationary static vacuum spacetimes in Einstein-Gauss-
Bonnet theory were discussed in [19].

Black holes and their properties as key ingredients of the
AdS/CFT attitude [20] to superconductivity have also
acquired much attention. Questions about possible matter
configurations in AdS spacetime arose naturally during the
aforementioned research. In Ref. [21] it was revealed that
strictly stationary AdS spacetime could not allow for the
existence of nontrivial configurations of complex scalar
fields or form fields. The generalization of the aforemen-
tioned problem, i.e., strict stationarity of spacetimes with
complex scalar fields in Einstein-Maxwell-axion-dilaton
gravity with negative cosmological constant, was given
in [22].

The Chern-Simons (CS) modified gravity, where the
Einstein action is modified by the addition of a parity
violating Pontryagin term [23], has its roots in particle
physics. Namely, the imbalance between left-handed and
right-handed fermions induces gravitational anomaly in a
fermion number current, proportional to the aforementioned
Pontryagin term [24]. It also emerges in string theory as an
anomaly-canceling term in the Green-Schwarz mechanism
[25]. Moreover, CS gravity was elaborated in the context of
cosmology, gravitational waves, and Lorentz invariance [26]
(see also references therein). In Ref. [27] it was revealed that
a static asymptotically flat black hole solution is unique as a
Schwarzschild spacetime in CS modified gravity.

Motivated by the aforementioned problems, we shall
consider the problem of the uniqueness of static asymptoti-
cally flat black holes in CS modified gravity with
U(1)-gauge field. The basic idea in our treatment of the
problem in question will be to implement the conformal
positive energy theorem [28].

The paper is organized as follows. In Sec. I we review
some basic facts concerning dynamical CS modified grav-
ity. Then, applying the conformal positive energy theorem,
we perform the uniqueness proof of static asymptotically
flat electrically charged black holes in CS modified gravity.

II. SYSTEM

We commence this section with the action of the CS
modified gravity with matter fields provided by the action
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where «, 3 are the dimensional coupling constants, while
6 (CS coupling field) is a scalar field, which is a function
parametrizing deformation from ordinary Einstein theory.
*R, Bng”ﬁy‘s is the Pontryagin density, while L., stands
for some matter Lagrangian density which does not depend
on the scalar field in question. In what follows we assume
that L., will constitute the matter Lagrangian for
U(1)-gauge fields, given by L, = —F,,F*”. The dual
to the Riemannian tensor is defined as

1
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The field equations obtained by variation of the action (2)
imply
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where we have denoted by C*# the following relation:
CoF = V,0e7"#@V R + V V0« ROP.  (5)

On the other hand, the energy-momentum tensor 7, =

- % of matter fields in question yields

Tos(6) = g(vaavﬂe - % gaﬁvyevva), ©)
1
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The line element of static spacetime subject to the asymp-
totically timelike Killing vector field &, = (£), and
V2 = —k, k" can be provided by the relation

ds*> = —V2d* + gl-jdxidxj, (8)

where V and g;; are independent of the ¢ coordinate as the
quantities of the hypersurface % of constant 7. We assume
that on the hypersurface 3, the electromagnetic potential
will be of the form Ay = ¢ dt; i.e., one deals with an
electrically charged black hole.

In our consideration we shall take into account the
asymptotically flat spacetime. Namely, the spacetime in
question will contain a data set (2.,q, &; » Kij) with gauge
fields of F, 5 such that 2, is diffeomorphic to R3 minus a
ball. The fields (g;;, K;;) will satisty the falloff condition of
the form
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Likewise, we require that in the local coordinates as above,
the defined U(1)-gauge field fulfills the following falloff
demand:
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In light of these stipulations, the hypersurface will be said
to be asymptotically flat if it contains an asymptotically
flat end.

Taking the form of the static metric into account, the
corresponding equations of motion yield
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In the above relations, the covariant derivative with respect
to the metric tensor g;; is denoted by )V, while R, i(2)
is the Ricci tensor defined on the hypersurface 3.
Furthermore, let us suppose that for each of the quantities
in question, i.e., V, ¢, ¢, there is a standard coordinate
system in which they have the usual asymptotic expansion.

To proceed further, let us introduce the definitions of the
crucial quantities in the proof of the uniqueness. Namely,
they can be written as follows:

1 1

P, = i‘/gﬂ, (16)
1 1
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and
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It is worth pointing out that by defining the metric tensor
nap = diag(1, —1, —1), it can be achieved that ®,®* =
¥, P4 = —1, where A = —1, 0, 1. Having in mind the
conformal transformation provided by

&= Vg 21

one can introduce the symmetric tensors written in terms of
@, in the following form:

Gij = 61‘(1)—16]'(1)—1 - viq)oﬁjcbo - viq)lﬁj(bl, (22)
and similarly for the potential ¥,
Hij = vi\P_lﬁij_l - viqfoﬁquo - vi‘l’lvj‘lfl, (23)

where by V; we have denoted the covariant derivative with
respect to the metric g;;. Consequently, according to the
relations (22) and (23), the field equations may be cast in
the forms

szDA = Gii(I)A, vz\I’A = I:Iii\I}A. (24)

Just the Ricci curvature tensor with respect to the
conformally rescaled metric g;; implies

In general, as far as the conformal positive energy theorem
is concerned, one assumes that we have to deal with two
asymptotically flat Riemannian (n — 1)-dimensional mani-
folds (2?, q)gij) and (¥, Vg, ;). Moreover, the conformal
transformation of the form ¥g,; = Q*®g,.. Then, it im-
plies that the corresponding masses satisty ®m + g¥Ym =0
if PR+ BO?YR =0, for some positive constant /3.
The aforementioned inequalities are fulfilled if the
(n — 1)-dimensional Riemannian manifolds are flat [28].
To proceed further, due to the requirement of the con-
formal positive energy theorem, we introduce conformal

transformations obeying the relations
P =%0igy, Vel =lwig, (26)

On the other hand, their conformal factors are subject to the
relations

+
Vi = I (27)

s W =

- ) *
Thus, the above conformal transformations enable one to
obtain four manifolds: (22, Pg), (X%, P¢;), (XY, Vi),

PHYSICAL REVIEW D 88, 024051 (2013)

and (2¥,%g}). The standard procedure of pasting
(2, CI)gi) and (XY, lI'g;i) across the surface V = 0 ena-
bles to construct regular hypersurfaces 3* = 3P u3®
and 3V =3IV USY If (3, g;j, P4, ¥4) are an asymptoti-
cally flat solution of (24) and (25) with a nondegenerate
black hole event horizon, our next task will be to check that
the total gravitational mass on hypersurfaces 3% and 2V is
equal to zero. In order to do this, we shall implement the
conformal positive mass theorem presented in Ref. [28].
Hence, using another conformal transformation given by

25 = [P0 )2 (M0 ) ke, (28)
it follows that the Ricci curvature tensor on the space yields
2R = [*2 Y0 2(Pwi®R + YWl YR)
+(Vln®w, —V,InVw.)
X (Vin®w, —Vnve.). (29)

The close inspection of the first term in relation (29)
reveals that it is non-negative. Namely, one can establish
that it may be written in the form as follows:

(I)oviq),l - (I),lviq)o
D, + 1

\Poviq,,] - ‘IL,@,-‘I’O
v, * 1

2
q)w?iq’R + xpwziqu =2

2
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(30)

Applying the conformal energy theorem, we draw a con-
clusion that (32, q’gij), (Y, ‘I'g,-j), and (i, &) are flat,
and it in turn implies about the conformal factors that
®w =Yw and ®, = ¥,. Furthermore, ®, = constd_,
and W, = constW_,. Just the above potentials are func-
tions of a single variable. Moreover, the manifold (2, g;;) is
conformally flat. We can rewrite §;; in a conformally flat
form; i.e., we define a function

g = Ug,;, €29)

where one sets U = (P, V)~!/2. Because of the fact that
the Ricci scalar in the &;; metric is equal to zero, equations
of motion of the system in question reduce to the Laplace
equation on the three-dimensional Euclidean manifold

V.Vilu =0, (32)

where V is the connection on a flat manifold. The above
equation implies that the following expression for the flat
base space is valid. Namely, one gets

Cgdxidxl = p2dUP + hypdx’dx®. (33)

Then, the event horizon will be located at some constant
value of “U. The radius of the black hole event horizon can
be terminated at a fixed value of the p coordinate [29],
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which in turn can be introduced on the hypersurface 2, by
the relation

gidx'dx) = p*dV?* + hypdx*dx®.

Moreover, a connected component of the event horizon can
be identified at a fixed value of p.

Proceeding further, let us assume that ‘U; and ‘U, con-
sist of two solutions of the boundary value problem of the
system in question. Using the Green identity and integrat-
ing over the volume element, we arrive at the relation

( Lw - f H)(’Ul - ’uz)%(’ul — U,)dS
= [,lveu - wrao. (34)

In view of the last equation, the surface integrals disappear
due to the imposed boundary conditions. On the other hand,
by virtue of the above relation one finds that the volume
integral must be identically equal to zero. To summarize,
we have established the conclusion of our investigations.
Theorem: Let us consider a static four-dimensional
solution to the equation of motion in Chern-Simons modi-
fied gravity with U(1)-gauge field. Suppose that one has an
asymptotically timelike Killing vector field k, orthogonal
to the connected and simply connected spacelike hyper-
surface 3. The topological boundary 93 of 3 is a non-
empty topological manifold with g;;k'k/ =0 on 93.
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It yields the following: if 93, is connected, then there exists
a neighborhood of the hypersurface 2, which is diffeomor-
phic to an open set of Reissner-Nordsrom nonextreme
solutions with electric charge.

III. CONCLUSIONS

In our paper we prove the uniqueness of four-
dimensional static black holes being the solution of
Chern-Simons modified gravity with U(1)-gauge field.
Assuming the existence of an asymptotically timelike
Killing vector field orthogonal to the simply connected
spacelike hypersurface with topological boundary, it turns
out that if the boundary in question is connected, then there
is a neighborhood of the hypersurface which is diffeomor-
phic to an open set Reissner-Nordsrom nonextreme
solution with electric charge.

It may be interesting to generalize the proof to the case
of both degenerate and nondegenerate components of the
event horizon of the black hole in question. On the other
hand, the stationary axisymmetric case and the Chern-
Simons modified gravity with cosmological constant are
challenges for future investigations. We hope to return to
these problems elsewhere.
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