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We derive the expressions for canonical energy, momentum, and angular momentum for multiple

metric theories. We prove that although the metric fields are generally interacting, the total energy is the

sum of conserved energies corresponding to each metric. A positive energy theorem is given as a result. In

addition, we present an Hamiltonian formalism for a subgroup of multimetric theories.
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I. INTRODUCTION

Energy, momentum and angular momentum are funda-
mental concepts in physics.

In the framework of special relativistic field theory, i.e. a
nondynamical Minkowski background, those conserved
quantities are defined as the space integration on the cur-
rents corresponding to invariance of the action under time
and space translations and rotations. The energy and
momentum defined in this way are known as ‘‘canonical.’’
An angular momentum can be derived from a symmetric
energy-momentum tensor. The canonical energy-
momentum tensor is not symmetric, but it can be symme-
trized using the ‘‘Belinfante procedure’’ [1]. There is
another way for obtaining an energy-momentum tensor,
by varying the action with respect to the background
metric, then estimate the outcome ‘‘on shell.’’ The second
procedure gives a symmetric tensor by definition, and can
be shown to be equivalent to the canonical procedure.

The concept of energy and its conservation in general
relativity (GR) has been a matter of debate for a long time.
It can be defined in a coordinate system which is asymp-
totically Minkowski (and for other background metrics, see
[2]), and has a nontensorial character under general coor-
dinate transformation. Aside from the canonical procedure,
an energy-momentum pseudotensor can be constructed
from the metric field equation. There are a few known
procedures for doing so (the procedures of Weinberg [3]
and of Landau and Lifshitz [4] yield directly symmetric
pseudotensors), and they do not give the same result,
although often equal in their whole-space integrals.

Multiple metric theories are theories with more than one
second-rank tensor, that, besides being a dynamical field, is
used for raising and lowering indices, and for the construc-
tion of affine connection. Recently they arose as a possible
procedure for modifying general relativity. Milgrom
suggested ‘‘bimetric Modified Newtonian dynamics’’
(BIMOND) [5] a theory with two metrics: one metric is
coupled to matter, and so determines the motion of test
particles, and the other, a ‘‘twin metric,’’ is used to

construct, with the first (ordinary) metric, an interaction
term. That interaction term becomes dominant at low
accelerations (the Modified Newtonian dynamics
[MOND] regime), and the theory can produce flat rotation
curves with less amount of dark matter than general rela-
tivity needs in order to explain the phenomena.
It should be noted that a large set of multiple metric

theories that can be approximated by the Pauli-Fierz action
suffer from Boulware-Deser ghost instabilities [6]. A sub-
set of these theories that avoid the ghost problem, has been
constructed [7], but recent developments [8] cast doubt on
the relevance of these. However, BIMOND gravity theories
are outside the framework of this debate, since these
theories are intended to give the MOND potential in the
weak field limit (for the flat rotation curve phenomenon),
and not the Newtonian potential, and therefore cannot be
linearized near the double Minkowski metrics, and cannot
be approximated by the Pauli-Fierz action.
An expression for the energy of a multiple metric theory

can be used for determining its stability and validity and
for generating a dynamics for the system.

II. TOTAL ENERGY IS SEPARABLE

In the following we find an expression for the total
energy-momentum pseudotensor of a multiple metric the-
ory, and prove that it is the sum of energy-momentum
pseudotensors; each one can be numerically determined
by one metric, and formally is the same as we get from
noninteracting general relativity (Einstein-Hilbert action)
systems.
Without loss of generality, we take the number of met-

rics to be two. The proof is valid for any number of metrics.
The action is

S ¼
Z

Ld4x ¼
Z
ð�LG þ �L̂G þ LintÞd4x; (1)

where the scalar densities in the parentheses are the
Einstein-Hilbert scalar density for the metric g��, LG ¼
� 1

16�GR
ffiffiffiffiffiffiffi�g

p
, a scalar density for the twin metric ĝ��,

L̂G ¼ � 1
16�G R̂

ffiffiffiffiffiffiffi�ĝ
p

, and an interaction term which

depends on both metric and other fields and their*talshir@post.tau.ac.il
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derivatives, i.e. Lint½g��; g��;�; ĝ��; g��;�; c ; c ;��, where
c symbolizes any other fields with any tensorial
properties. The coefficients � and � are any constants.

The total energy-momentum pseudotensor for the
system is the conserved current we get from invariance
with respect to translation. This is the canonical energy-
momentum pseudotensor

��
� ¼ �L��

� þ glm;�

@L

@glm;�

þ ĝlm;�

@L

@ĝlm;�

þ c ;�

@L

@c ;�

:

(2)

Separating the Lagrangian density contributions, we write
this as

��
� ¼ �

�
�LG�

�
� þ glm;�

@LG

@glm;�

�

þ �

�
�L̂G�

�
� þ ĝlm;�

@L̂G

@ĝlm;�

�
þ

�
�Lint�

�
�

þ glm;�

@Lint

@glm;�

þ ĝlm;�

@Lint

@ĝlm;�

þ c ;�

@Lint

@c ;�

�
: (3)

The first two terms on the right side of the equation are
recognized as the gravity and twin gravity energy-
momentum pseudotensors. Each one of them functionally
depends on one and only one metric field, and its form does
not depend on the interaction. It corresponds to the non-
linear part (with respect to the deviations of the field from
the Minkowski metric) of the Einstein tensor. Now we
would like to show that the energy-momentum pseudovec-
tor that corresponds to the third term is equal to the sum of
contributions from the energy-momentum source terms for
each metric field equation.

A. Interaction term is separable

We shall now prove that

Z �
�Lint�

0
� þglm;�

@Lint

@glm;0

þ ĝlm;�

@Lint

@ĝlm;0

þ c ;�

@Lint

@c ;0

�
d3x

¼
Z
ð ffiffiffiffiffiffiffi�g
p

T0
� þ

ffiffiffiffiffiffiffi�ĝ
p

T̂0
�Þd3x; (4)

where

T�
� � g��

2ffiffiffiffiffiffiffi�g
p �Sint

�g��
; T̂�

� � ĝ��
2ffiffiffiffiffiffiffi�ĝ

p �Sint
�ĝ��

:

We use Ohanian’s proof [9] for the equality of volume
integrals of the energy-momentum tensor and the canoni-
cal energy momentum for the matter field, and we general-
ize it for interaction with more than one metric field. The
variation of the scalar density Lint, under an infinitesimal
coordinates transformation �x� ¼ ��ðxÞ, is

�Lint ¼ �ðLint�
�Þ;�: (5)

On the other hand, the variation as a functional of metric
and metric variations is

�Lint ¼ @Lint

@ga�
�ga� þ @Lint

@ĝa�
�ĝa� þ @Lint

@ga�;�
�g��;�

þ @Lint

@ĝa�;�
�ĝa�;� þ @Lint

@c
�c þ @Lint

@c ;�

�c ;�

¼ �Lint

�ga�
�ga� þ �Lint

�ĝa�
�ĝa� þ �Lint

�c
�c

þ
�
@Lint

@ga�;�
�ga� þ @Lint

@ĝa�;�
�ĝa� þ @Lint

@c ;�

�c

�
;�
:

(6)

From (5) and (6) and the equation of motion �Lint

�c ¼ 0,

we get�
�Lint�

� � @Lint

@ga�;�
�ga� � @Lint

@ĝa�;�
�ĝa� � @Lint

@c ;�

�c

�
;�

¼ �Lint

�ga�
�ga� þ �Lint

�ĝa�
�ĝa�: (7)

First, from the right-hand side of (7) we obtain

�Lint

�ga�
�ga� þ �Lint

�ĝa�
�ĝa�

¼ �Lint

�ga�
ð�ga��

�
;� � g���

�
;a � ga�;��

�Þ

þ �Lint

�ĝa�
ð�ĝa��

�
;� � ĝ���

�
;a � ĝa�;��

�Þ
¼ ð ffiffiffiffiffiffiffi�g

p
Ta�ga��

�Þ;� � ffiffiffiffiffiffiffi�g
p

Ta�
;� ga��

�

þ ð ffiffiffiffiffiffiffi�ĝ
p

T̂a�ĝa��
�Þ;� �

ffiffiffiffiffiffiffi�ĝ
p

T̂a�
:� ĝa��

�; (8)

where the semicolon and colon indicate covariant deriva-
tives with respect to the metric and twin metric, respec-
tively. However

ffiffiffiffiffiffiffi�g
p

Ta�
;� ga�þ

ffiffiffiffiffiffiffi�ĝ
p

T̂a�
:� ĝa�¼ ffiffiffiffiffiffiffi�g

p
T�
�;�þ

ffiffiffiffiffiffiffi�ĝ
p

T̂�
�:�¼0:

(9)

The above equation is true because from a variation of the
interaction action, a scalar, under coordinate transforma-
tion x0� ¼ x� þ ��, we get

�Sint ¼
Z

d4x

�
�Lint

�ga�
�ga� þ �Lint

�ĝa�
�ĝa� þ @Lint

�c
�c

�

¼
Z

d4x
1

2
ð ffiffiffiffiffiffiffi�g
p

T���g
�� þ ffiffiffiffiffiffiffi�ĝ

p
T̂���ĝ

�� þ 0Þ
¼ 0 (10)

(raising and lowering indices for variations in a specific
metric, carried out using the same metric). Substituting
�g�� ¼ ��;� þ ��;� and �ĝ�� ¼ ��:� þ ��:�, and

making use of the symmetry of T�� and T̂��, we have
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�Sint ¼
Z

d4xð ffiffiffiffiffiffiffi�g
p

T���
�;� þ ffiffiffiffiffiffiffi�ĝ

p
T̂���

�:�Þ ¼ 0

¼
Z

d4xð ffiffiffiffiffiffiffi�g
p ððT�

��
�Þ;� � T�

�;��
�Þ

þ ffiffiffiffiffiffiffi�ĝ
p ððT̂�

��
�Þ:� � T̂�

�:��
�ÞÞ: (11)

The first and third addends in the integrand can be written
in the form

ðT�
��

�Þ;� ffiffiffiffiffiffiffi�g
p ¼ @

@x�
ð ffiffiffiffiffiffiffi�g
p

T�
��

�Þ

ðT̂�
��

�Þ:�
ffiffiffiffiffiffiffi�ĝ

p ¼ @

@x�
ð ffiffiffiffiffiffiffi�ĝ
p

T̂�
��

�Þ;

and drop out as surface integrals. The variations �� are
arbitrary, and we therefore obtain (9).

The right side of (7) is now in the form

ðð ffiffiffiffiffiffiffi�g
p

Ta�ga� þ ffiffiffiffiffiffiffi�ĝ
p

T̂a�ĝa�þÞ��Þ;�: (12)

For the variations of the metrics in the left side of (7) we
insert �glm ¼ �glm;��

� � gl��
�
;m � glm�

�
;� and �ĝlm ¼

�ĝlm;��
� � ĝl��

�
;m � ĝlm�

�
;�, and for the variation of the

field c we use the more general expression

�c A ¼ �c A;��
� ��AB�

���
;�c B0;

where capital letters A, B stand for all the tensorial indexes
of the field c and �AB�

� is a constant matrix, the exact
form depends only on the tensorial properties of c . We get

�
�Lint�

� � @Lint

@glm;�

ð�glm;��
� � gl��

�
;m � glm�

�
;�Þ

� @Lint

@ĝlm;�

ð�ĝlm;��
� � ĝl��

�
;m � ĝlm�

�
;�Þ
�
;�

þ
�
@Lint

@c A;�

ðc A;��
� þ�AB�

���
;�c BÞ

�
;�

¼ ðð ffiffiffiffiffiffiffi�g
p

Ta�ga� þ ffiffiffiffiffiffiffi�ĝ
p

T̂a�ĝa�Þ��Þ;�: (13)

Collecting coefficients of first derivatives of ��

from (13), we get the equation

� Lint�
�
� þ @Lint

@glm;�

glm;� þ @Lint

@ĝlm;�

ĝlm;� þ c A;�

@Lint

@c A;�

þ
�
@Lint

@gl�;�
gl� þ @Lint

@ĝl�;�
ĝl� þ

�
@Lint

@glm;�

glm

þ @Lint

@ĝlm;�

ĝlm

�
��
� þ @Lint

@c A;�

�AB�
���

;�c B

�
;�

¼ ffiffiffiffiffiffiffi�g
p

Ta�ga� þ ffiffiffiffiffiffiffi�ĝ
p

T̂a�ĝa�: (14)

We would like to show that the third addend in the left-
hand side of (14) is a divergence of an antisymmetric
tensor. For this we collect the addends with the second
derivatives of �� from (13). The equation is

�
@Lint

@gl�;�
gl� þ @Lint

@ĝl�;�
ĝl� þ

�
@Lint

@glm;�

glm þ @Lint

@ĝlm;�

ĝlm

�
��
�

þ @Lint

@c A;�

�AB�
���

;�c B

�
��
;�;� ¼ 0: (15)

Since ��
;�;� is symmetric in � and �, its coefficient should

be antisymmetric in the same indices to satisfy this
equation. Therefore,

�
@Lint

@gl�;�
gl� þ @Lint

@ĝl�;�
ĝl� þ

�
@Lint

@glm;�

glm þ @Lint

@ĝlm;�

ĝlm

�
��
�

þ @Lint

@c A;�

�AB�
���

;�c B

�
;�

¼ W
½���
�;� :

Inserting this equation in (14), we get

� Lint�
�
� þ glm;�

@Lint

@glm;�

þ ĝlm;�

@Lint

@ĝlm;�

þW½���
�;�

¼ ffiffiffiffiffiffiffi�g
p

Ta�ga� þ ffiffiffiffiffiffiffi�ĝ
p

T̂a�ĝa�: (16)

That means that the expression on the left side is different
from the expression on the right side by a divergence of an
antisymmetric (pseudo)tensor, and three-space integration
on both sides would give the same result. Statement (4) is
therefore proven.

B. Dependence on metrics is separable

Now, we want to clarify the fact that although the con-
tribution to the energy momentum from the interaction
term for each field equation seems to be functionally
dependent on both metrics, then, from the field equations,
we can see that they can be brought to a form which
depends on only one metric. The right-hand side of the
equations

�Sint
�g��

¼ ��
�SG
�g��

;
�Sint
�ĝ��

¼ ��
�ŜG
�ĝ��

is functionally dependent on only one metric, so the left
side is determined numerically by only one metric. The
contribution from the gravity term [first two addends in (3)]
is manifestly dependent on one and the same metric, so the
total energy-momentum contribution from each field equa-
tion depends on only one metric. More specifically, we
have seen that the (nonsymmetric) energy-momentum
pseudotensor is equivalent to (up to space integration)

��
� ¼

�
�

�
�LG�

�
� þ glm;�

@LG

@glm;�

�
þ 2g��

�Sint
�g��

�

þ
�
�

�
�L̂G�

�
� þ ĝlm;�

@L̂G

@ĝlm;�

�
þ 2ĝ��

�Sint
�ĝ��

�
:

Inserting
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�Sint
�g��

¼ �

32�G

ffiffiffiffiffiffiffi�g
p ðRa� � 1

2
g��Þ �Sint

�ĝ��

¼ �

32�G

ffiffiffiffiffiffiffi�ĝ
p ðR̂a� � 1

2
ĝ��Þ;

we get (up to three-space integration)

�
�
� ¼ 1

16�G

@

@x�

�
�

g�	ffiffiffiffiffiffiffi�g
p @

@x�
ð�gÞðg�	g�� � g��g	�Þ

þ �
ĝ�	ffiffiffiffiffiffiffi�ĝ
p @

@x�
ð�ĝÞðĝ�	ĝ�� � ĝ��ĝ	�Þ

�
: (17)

Each one of the two addends is manifestly divergence
free, because they are antisymmetric in � and �, so there
are two conserved energy-momentum (pseudo)vectors,
each one numerically determined by one metric alone.

In fact, since we proved that the total energy-momentum
pseudotensor is a sum of contributions that we get from
general relativity actions for each metric, we can use a
known result for the symmetric energy-momentum pseu-
dotensor of general relativity, derived using the Belinfante
procedure [10].

The symmetric energy-momentum pseudotensor for the
multiple metric system is then

��� ¼ 1

16�G

@

@x�
@

@x�
½� ffiffiffiffiffiffiffi�g

p ð
��g�� � 
��g��

þ 
��g�� � 
��g��Þ þ �
ffiffiffiffiffiffiffi�ĝ

p ð
��ĝ��

� 
��ĝ�� þ 
��ĝ�� � 
��ĝ��Þ�: (18)

With this symmetric pseudotensor the angular momentum
of the multiple metric system can be well defined.

C. Boundary conditions

The energy momentum pseudotensor ��� and the
energy-momentum pseudovector P� ¼ R

��0d3x are

Lorentz-covariant, i.e. are tensor and vector under
Lorentz transformations of the coordinate system. In order
to insure finiteness and meaning of the quantity P� we
demand asymptotic behavior from the interaction energy-
momentum tensors

T�
� ¼ Oðr�4Þ; T̂�

� ¼ Oðr�4Þ
(in general relativity one can often assume an isolated
system of masses so T�

� ¼ 0 outside a bounded region of

space). We assume asymptotic behavior for the metric
fields as r ! 1,

g�� ’ 
�� þ Oðr�1Þ; ĝ�� ’ 
�� þ Oðr�1Þ;
so the gravity and twin gravity energy-momentum pseu-
dotensors, which are quadratic in the derivatives of the
metrics [first two terms in (3), resulting from the Einstein

scalars, G and Ĝ], go like r�4.
The total energy-momentum tensor, then, has the

asymptotic behavior ��� ¼ Oðr�4Þ so its integral over

three-space converges, and has the same numeric value
for every infinite spacelike hypersurface.
The energy-momentum P� is also invariant under any

coordinate transformation that tends to the identity at in-
finity, and preserving the boundary conditions above. This
is because the energy-momentum pseudotensor can be
written as a divergence of a third rank pseudotensor, as
we can see from (17) and (18). Taking, for example, the
expression from (18), we can write this (pseudo)tensor as a
sum of antisymmetric (pseudo)tensors,

��� ¼ 1

16�G

�
@

@x�
@

@x�
½� ffiffiffiffiffiffiffi�g

p ð
��g�� � 
��g��Þ

þ �
ffiffiffiffiffiffiffi�ĝ

p ð
��ĝ�� � 
��ĝ��Þ�
þ @

@x�
@

@x�
½� ffiffiffiffiffiffiffi�g

p ð
��g�� � 
��g��Þ

þ �
ffiffiffiffiffiffiffi�ĝ

p ð
��ĝ�� � 
��ĝ��Þ�
�

¼ 1

16�G

�
@

@x�
A��� þ @

@x�
B���

�
;

where A��� ¼ �A��� and B��� ¼ �B��� so its whole
space integral reduces to an ordinary surface integral at
infinity, which is not changed by the above coordinate
transformation, i.e.

Z �
@

@x�
A�0� þ @

@x�
B�0�

�
d3x

¼
Z �

@

@xi
Ai0� þ @

@xi
Bi0�

�
i¼1;2;3

d3x

¼
Z
ðAi0� þ Bi0�ÞdSð2Þi :

Specifically, we get for the total energy and total
momentum

P�
total ¼ P� þ P̂�; (19)

where

P0 � �

16�G

Z �
@gij

@xj
� @gjj

@xi

�
dsi

P̂0 � �

16�G

Z �
@ĝij
@xj

� @ĝjj
@xi

�
dsi

(20)

and

Pj � �

16�G

Z �
@gkk
@x0

@gk0
@xk

�ij þ
@gj0
@xi

� @gij

@x0

�
dsi

P̂j � �

16�G

Z �
@ĝkk
@x0

@ĝk0
@xk

�ij þ
@ĝj0
@xi

� @ĝij

@x0

�
dsi:

(21)

III. APPLICATIONS: POSITIVE
ENERGY THEOREM

In the following we prove that the total energy of a
multimetric system is not negative under specific
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conditions. In the following we assume that the coefficients
are positive, and we will discuss later the other cases. This
proof is a generalization of Witten’s elegant proof [11,12]
of the positive energy theorem for general relativity.
We define the tetrads

g�� ¼ e�a 
abe�b; ĝ�� ¼ ê�a 
abê�b;

(indices a, b, c in the tetrads are local), and impose the
conditions

e00 ¼ 1; e00 ¼ e00 ¼ �1; e�0 ¼ ei0 ¼ 0

(i ¼ 1, 2, 3), connection coefficients

!�;ab ¼ 1

2
ec�ð�cab ��abc ��bcaÞ;

�cab ¼ e�cðe�a @�e�b � e�b @�e
�
aÞ;

!̂�;ab ¼ 1

2
êc�ð�̂cab � �̂abc � �̂bcaÞ;

�̂cab ¼ ê�cðê�a @�ê�b � ê
�
b @�ê

�
aÞ;

and the three-dimensional Dirac operators

D ¼ eia�
ari; D̂ ¼ êia�

�r̂i;

r� ¼ @� þ 1

8
!�;ab½�a; �b�;

r̂� ¼ @� þ 1

8
!̂�;ab½�a; �b�:

Ordinary matter fields in general relativity fulfill the
‘‘positivity condition’’ for their energy-momentum tensor.
If the condition holds for each field equation in a multiple
metric theory, then there is a unique solution for the Dirac
equations

Dc ¼ 0; D̂ ĉ ¼ 0;

with asymptotic behavior

c ¼ c 0 þO

�
1

r

�
; @�c ¼ O

�
1

r1þ�

�
; � >

1

2
;

ĉ ¼ ĉ 0 þO

�
1

r

�
; @� ĉ ¼ O

�
1

r1þ�̂

�
; �̂ >

1

2
;

for the constant spinors c 0, ĉ 0. The following equations
hold:

Z
e

�
1

2
c �ðT00 þ T0ke

k
��

0��Þc þ �ðric Þ�ðric Þ
�
d3x

¼ 1

4
ðEðc �

0c 0Þ þ P�ðc �
0�

0��c 0ÞÞ;
Z

ê

�
1

2
ĉ �ðT̂00 þ T̂0ke

k
��

0��Þĉ þ �ðri ĉ Þ�ðri ĉ Þ
�
d3x

¼ 1

4
ðÊðĉ �

0 ĉ 0Þ þ P̂�ðĉ �
0�

0�� ĉ 0ÞÞ; (22)

where P� � 
��P
�; P̂� � 
��P̂

� and E, Ê, P̂j, P̂j are

defined by Eqs. (20) and (21). From this set of equations
we have

E � jP�j; Ê � jP̂�j: (23)

Now we use the proof that the total canonical energy is
the sum of the energies that correspond to each metric, and
the same for the canonical momentum [Eq. (19)], and
conclude that the total energy is not negative and that the
Lorentz vector P�

total is not spacelike.

That the total energy is zero if both metrics are flat can
be seen immediately by placing 
�� in (18).

To prove that the total energy is zero only if all energy-
momentum tensors are zero and both metrics are flat, we

use (23) to note that if E, Ê ¼ 0 then P�, P̂� ¼ 0. Placing
these in (22) we get the equations

ric ¼ 0; ri ĉ ¼ 0; (24)

and

c �ðT00 þ T0ke
k
��

0��Þc ¼ 0;

ĉ �ðT̂00 þ T̂0kê
k
��

0��Þĉ ¼ 0:
(25)

Using (24) we can show than the curvature tensors on some
initial surface x0 ¼ 0 are zero,

Rikab ¼ 0; R̂ikab ¼ 0: (26)

Using (25) we can show that

T00 ¼ 0; T̂00 ¼ 0: (27)

From (27) and the positivity condition we get T�� ¼ 0

T̂�� ¼ 0, so R�� ¼ 0 R̂�� ¼ 0. Using this and (26) we get

R0k0a ¼ 0, R̂0k0a ¼ 0, so altogether we get

R��ab ¼ 0; R̂��ab ¼ 0;

on the surface x0 ¼ 0.

We proved that the energies E, Ê are separately con-
served, i.e. constant in time, so the above proof is valid for
every surface x0; the curvature tensors are then zero in all
points, and both metrics are flat. This completes the proof
that the total energy is positive for every nontrivial
configuration in multimetric theories.
The proof was constructed under the assumption that the

coefficients �, � of the ‘‘kinetic’’ terms are both positive.
This assumption is crucial. Moreover, if one of the
coefficients is negative, say �< 0, and its corresponding

interaction energy-momentum tensor T̂�� fulfills the

‘‘negativity condition,’’ so that the matrix T̂00 þ
T̂0ke

k
��

0�� has only negative eigenvalues, then we can

use the above construction to prove that the energy Ê is
negative or can be made negative with some Lorentz trans-
formation. In that case, the total energy may be positive or
negative for different multimetric field configurations.
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These considerations can be used to exclude theories with
nonpositive coefficients.

IV. HAMILTONIAN FORMALISM

In this section we present the Hamiltonian, the canonical
variables and the constraint surfaces explicitly for some
multimetric interactions.

The theory of constrained Hamiltonian system was in-
troduced by Dirac [13,14], and extended by him to general
relativity. One of the best known and most used
Hamiltonian formalism for general relativity is the
Arnowitt-Deser-Misner (ADM) or 3þ 1 formalism [15].
To apply the Hamiltonian formalism in the relativistic field
theory, we need to separate the spacetime into spaceþ
time, and to distinguish the time coordinate from the other
coordinates. This separation was done in previous sections,
when we chose the boundary conditions for the metric.

In order to find the canonical variables of a multimetric
theory, we want to follow the path shown in [16] the
canonical variables for GR are identified. We define the
conditions under which one can proceed on this route.

We present the gravitational parts of the action (1) in the
form

Z
ð�LGþ�L̂GÞd4x

¼
Z �

�

16�G
ð���

��@�ð ffiffiffiffiffiffiffi�g
p

g��Þ
þ��

��@�ð ffiffiffiffiffiffiffi�g
p

g��Þþ ffiffiffiffiffiffiffi�g
p

g��ð��
�	�	

�����
���	

�	ÞÞ
þ �

16�G
ð��̂�

��@�ð
ffiffiffiffiffiffiffi�ĝ

p
ĝ��Þþ �̂�

��@�ð
ffiffiffiffiffiffiffi�ĝ

p
ĝ��Þ

þ ffiffiffiffiffiffiffi�ĝ
p

ĝ��ð�̂�
�	�̂

	
��� �̂�

���̂
	
�	ÞÞ

�
d4x; (28)

so that the fields ��
�� and �̂

�
�� are varied independently and

not as functionals of the metrics. If the interaction Lint

depends only on the metrics on not on their derivatives,
then the equations obtained from variation of the metrics
are identical to the equations of motion in the ‘‘metric’’
formalism, and the equations obtained from variations of
the connection coefficients ��

�� give the desired connec-
tion between them and the metrics as Christoffel connec-
tions. The condition that the interaction depends only on
the metrics is sufficient, however not necessary, for getting
the correct equations of motions, but we need it for a later
argument. Under the same assumption that the interaction
depends only on the metrics and not on their derivatives,
the constraint equations

�S

��
�
��

¼ @L

@�
�
��

¼ 0;
�S

��̂�
��

¼ @L

@�̂�
��

¼ 0; (29)

for ð�;�; �Þ ¼ ð0; j; kÞ, contain the fields �0
i0, �

k
i0, �

k
ij, �̂

0
i0,

�̂k
i0, �̂

k
ij in a linear manner, so these fields can be expressed

as a solution of (29) with the fields ð�0
ik; h

��; �̂0
ik; ĥ

��Þ

where h�� � ffiffiffiffiffiffiffi�g
p

g�� and ĥ�� � ffiffiffiffiffiffiffi�ĝ
p

ĝ��, or alterna-

tively with the variables ð�ik; q
ik; h0�; �̂ik; q̂

ik; ĥ0�Þ where
qik�h0ih0k�h00hik; q̂ik� ĥ0iĥ0k� ĥ00ĥik;

�ik�� 1

h00
�0
ik; �̂ik�� 1

ĥ00
�̂0
ik:

(30)

The addends in the Lagrangian that contain time derivative
can be collected and written in the form

��ik@0q
ik þ ��̂ik@0q̂

ik; (31)

that is, in a form of a kinetic term with canonical variables.

If T0� � 2ffiffiffiffiffi�g
p �Sint

�g0�
and T̂0� � 2ffiffiffiffiffi

�ĝ
p �Sint

�ĝ0�
can be written as

functionals of ðqik; q̂ikÞ, then, under the assumption of
double-Minkowski boundary conditions (and therefore
dropping a total 3-divergence terms), it is possible to put
the rest of the Lagrangian in the form

�HTot �
�
1

h00
þ 1

�
C0 �

�
h0k

h00

�
Ck

�
�
1

ĥ00
þ 1

�
Ĉ0 �

�
ĥ0k

ĥ00

�
Ĉk; (32)

with

HTot ¼ H þ Ĥ;

H ¼ �C0 � �

16�G
@i@kq

ik;

Ĥ ¼ �Ĉ0 � �

16�G
@i@kq̂

ik;

(33)

and

C0 ¼ �

16�G
ðqikqmnð�ik�mn � �ik�mnÞ þ �R3Þ � T00

Ĉ0 ¼ �

16�G
ðq̂ikq̂mnð�̂ik�̂mn � �̂ik�̂mnÞ þ �̂R̂3Þ � T̂00;

Ck ¼ �

16�G
ð2rkðqil�ilÞ � 2rlðqil�ikÞÞ � T0k

Ĉk ¼ �

16�G
ð2r̂kðq̂il�̂ilÞ � 2r̂lðq̂il�̂ikÞÞ � T̂0k; (34)

where R3, R̂3 are the curvatures of the submetrics on the
surfaces x0 ¼ const and are expressed with the canonical
variables and not with derivatives, in the same way that the
four-dimensional curvature scalars are expressed with
metrics and connections. In this form, one can see that
HTot is actually the generalized Hamiltonian of the system,

ðC0; Ck; Ĉ0; ĈkÞ define constraint surfaces, and their coef-

ficients that are composed from the fields h0� and ĥ0�, are
Lagrange multipliers.
In this case the number of degrees of freedom is the

number of metric fields multiplies the number of degrees of
freedom of general relativity (not including matter and
other nonmetric fields). In the general case, however, this
is not necessarily true, even if the interaction depends only
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on the metrics. In general relativity, Bianchi identities
reduce the number of independent fields (metric terms).
In multimetric theories, Bianchi identities are still valid,
but the identities themselves are not independent, so the
number of the fields which are constrains by these identi-
ties is smaller than the number of metrics times four
Bianchi identities. Another way to look on this issue is to
by counting independent variations on the surfaces x0 ¼
const. We can, with a suitable coordinate transformation,
make any change of the value of the ‘‘velocities’’ g�0;0

without changing the value of the fields g�� and the

velocities gik;0, but the same transformation determines

the change in ĝ�0;0.

We see that the energy obtained, which is actually the
numerical value of the Hamiltonian on the constraint sur-
faces, can be presented as a sum of two expressions, each
one depending functionally on one metric. This is a result
already proved in a previous section. It should be empha-
sized, however, that we proved the result for much more
general case than the one discussed in this chapter.

It is true in principal, that if we get the form of the
generalized Hamiltonian and the constraints, one can cal-
culate the energy. But finding this form, in the more general
case where the interaction depends also on metric deriva-
tives, may be a difficult task, and is a matter for a further
research.

V. SUMMARYAND DISCUSSION

We saw that energy, momentum and angular momentum
of a multimetric theory with interaction can be well defined
and divided into independently conserved quantities,
where each one depends numerically on one metric. With
appropriate boundary conditions, total energy and momen-
tum can be presented as surface integrals. Although we
have in general, only one diffeomorphism invariance, the
required boundary conditions are kept under general
Poincare transformation of the coordinated. These results
were applied in a generalization of positive energy theo-
rem, and we established a criterion for excluding multi-
metric theories with nonpositive coefficients, based on the
theorem’s proof. In the last section we presented an
Hamiltonian formalism for multimetric theories with

interactions which does not involve metric derivatives,
and identified the canonical variables and constraint
surfaces.
The multimetric theory, like Einstein’s general relativity,

is constrained, and its naive Hamiltonian formulation, with
Legendre transform and the total energy expression, must
be modified to take into account these constraints. This can
be done by adding to the total energy expression some
combination of the constraints, with coefficients which are
determined by the algorithm of Dirac [13,14]. The ADM
Hamiltonian formalism [15] or an equivalent one [12] may
be used to build an Hamiltonian for some multimetric
system, based on the proof that multimetric system energy
is the simple sum of the canonical energies for general
relativity, as defined by the ADM expression.
The formalism that is presented in this paper can, in

principal, be used for elimination of bi(multi)metric theo-
ries by experiment. For example, if the interaction term in
specific instant is zero (the interaction term does not
depends explicitly in spacetime coordinates, but the fields
are) we can see if there is an ‘‘energy leak.’’ Since we have
shown energy conservation for each metric, nonzero inter-
action is a necessary and sufficient condition for a change
in the energy flux of the gravity, which is a measurable
quantity. That is, if there is no change in the gravity energy-
flux, there is no multimetric interaction. This is not a trivial
result: If energy conservation were only for the whole
Lagrangian system, then there would have been the possi-
bility that a change in the interaction energy is approxi-
mately equal in magnitude and with the opposite sign of
the change in the energy of the other metric fields, so the
gravity energy would still be conserved.
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