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We investigate, in the case of a Reissner–Nordström black hole, the definitions of gravitational energy

and gravitational pressure that naturally arise in the framework of the teleparallel equivalent of general

relativity. In particular, we calculate the gravitational energy enclosed by the event horizon of the black

hole, E, and the radial pressure over it, p. With these quantities, we then analyze the thermodynamic

relation dEþ pdV (as p turns out to be a density, and dV is actually given by dV ¼ drd�d�, in

spherical-type coordinates). We compare the latter with the standard first law of black hole dynamics.

Also, by identifying TdS ¼ dEþ pdV, we comment on a possible modification of the standard,

Bekenstein–Hawking entropy-area relation due to the gravitational energy and gravitational pressure of

the black hole. The infinitesimal variations in question refer to the Penrose process for a Reissner–

Nordström black hole.
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I. INTRODUCTION

As is well known, the behavior of black holes as ther-
modynamic systems deeply connects gravitation, quantum
mechanics, and thermodynamics. The black hole surface
gravity � plays the role of temperature, its horizon area
A that of entropy, and its mass M that of internal energy.
This striking connection initially flourished from a close
analogy between the laws of black hole dynamics and the
laws of thermodynamics. It was only later that it was put on
a firm basis, due to the discovery of Hawking that quantum
mechanical effects permit a black hole to create and
emit particles like a hot body with temperature �=2�
(in units with G ¼ c ¼ ℏ ¼ �B ¼ 1) [1]. Nevertheless,
such a connection is considered to be still poorly under-
stood presently [2].

It is also known that a notion of gravitational energy can
be ascribed to black holes, not to mention the gravitational
energy transported by gravitational waves. By means, for
instance, of the quasilocal energy approach of Brown and
York, which is based on a Hamilton–Jacobi formulation of
general relativity, one can compute the gravitational energy
enclosed by the event horizon of a black hole [3]. We note
that the old attempts to define gravitational energy by
means of pseudotensors are not appropriate, nor are defi-
nitions based on space-time symmetries (see, for instance,
item (1) in the introduction of Ref. [4]). Since a black hole
encloses gravitational energy, one can then naturally con-
sider that such energy plays a role on the thermodynamical
behavior of black holes as internal energy (see Ref. [3]).

The notion of gravitational energy has also been shown
to be well defined in the framework of the teleparallel

equivalent of general relativity (TEGR). The TEGR
[5–16] is not a new theory of gravity but an alternative
geometric formulation of general relativity, which (in its
simplest formulation) has as basic field variables only
tetrad fields. The space-time of the theory is endowed
only with torsion, rather than curvature. In this setting, it
is then possible to define a distant parallelism or telepar-
allelism of vectors at different points of space-time, pro-
vided that they have identical components with respect to
the local tetrads at the points considered. The equivalence
of the theory with general relativity is at the level of field
equations [7]. For a recent review on the TEGR, we refer
the reader to Ref. [17]. In the TEGR, the notion of gravi-
tational energy, E, has been defined from the Hamiltonian
formulation of the theory [9], and later it was shown that it
derives directly from the field equations of the theory [18].
Recently, the notion of gravitational pressure, p, over the
event horizon of a black hole has also been shown to be
well defined in the realm of the TEGR. The gravitational
pressure naturally arises from the field equations of the
TEGR and from the gravitational energy-momentum ten-
sor defined in the theory. The spatial components of such
an energy-momentum tensor yield the standard definition
of the gravitational pressure in the TEGR [19] (see also
Ref. [18], in which the definition was first established). In
Sec. II, we review such definitions of gravitational energy
and gravitational pressure.
In this work, by considering a Reissner–Nordström

black hole, we further extend the investigation of the
concept of gravitational pressure that arises in the context
of the TEGR and that has recently been studied in the case
of a Kerr black hole [19]. It is important to better under-
stand the nature of the gravitational pressure and its effects
on the thermodynamic behavior of black holes. One of
our main goals is to make the comparison of the relation
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dEþ pdV, obtained entirely in the TEGR, with the stan-
dard first law of black hole mechanics. The variations in the
latter quantity are considered to be related to the Penrose
process.1 The variation dV is basically obtained by means
of the variation of the radius of the event horizon, rþ, when
the parameters M (mass) and Q (charge) of the black hole
vary by infinitesimal amounts dM and dQ (as p turns out to
be a density, then dV is actually given by dV ¼ drd�d�).
Analogously to Ref. [19], in which a Kerr black hole was
considered, we remark that our analysis is essentially
restricted to the event horizon of a Reissner–Nordström
black hole, without considering any property of its horizon
area A. It is only after we derive, entirely in the framework
of the TEGR, our main result, which is the quantity
dEþ pdV, that, in order to compare it with the standard
first law of black hole mechanics, namely,

�

8�
dA ¼ dM��HdQ; (1)

in which �H ¼ Q=rþ is the electrostatic potential at rþ,
we will consider the area A and its property according to
which by no continuous process can it be decreased (i.e.,
dA � 0), the latter being, as is well known, simply a
consequence of the fact that the irreducible mass of a black
hole cannot be decreased by any continuous process, as a
Penrose process [20,21]. We note that, as far as we know,
the concept of gravitational pressure in the first law of
black hole (thermo)dynamics (for static, spherically sym-
metric black holes) has been first introduced by Brown and
York [3], who defined a surface pressure, whereas, re-
cently, the use of the concept of gravitational pressure
has been made by Dolan [22], by considering that the
cosmological constant plays the role of pressure.

Another important question is how the gravitational
pressure affects the efficiency of the Penrose process. A
comparison of the effect of the gravitational pressure on
the efficiency of the Penrose process for a Kerr black hole
(obtained in Ref. [19]) with that for a Reissner–Nordström
black hole (which we investigate in this paper) may be
important in order to achieve a better understanding of the
concept of gravitational pressure. For the Kerr case, ac-
cording to Ref. [19], it is shown that the efficiency of the
Penrose process in the context of the TEGR is lower than in

the ordinary thermodynamic formulation in general
relativity.

II. GRAVITATIONAL ENERGY MOMENTUM AND
GRAVITATIONAL PRESSURE IN THE TEGR

The equivalence of the TEGR with Einstein’s general
relativity is obtained by means of an identity that relates
the scalar curvature RðeÞ constructed out of the tetrad field
and a combination of quadratics terms of the torsion tensor
[5,8,23,24],

eRðeÞ��e

�
1

4
TabcTabcþ1

2
TabcTbac�TaTa

�
þ2@�ðeT�Þ;

(2)

where e ¼ det ðea�Þ, Ta ¼ Tb
ba, Tabc ¼ eb

�ec
�Ta��,

and Ta�� is the torsion tensor, defined by Ta�� ¼
@�ea� � @�ea�.

In the framework of the TEGR, the Lagrangian density
is given in terms of the combinations of the quadratic terms
in the equation above, i.e.,

L ¼ �ke

�
1

4
TabcTabc þ 1

2
TabcTbac � TaTa

�
� 1

c
Lm

� �ke�abcTabc � 1

c
Lm; (3)

in which k ¼ c3=16�G, and �abc is defined by

�abc ¼ 1

4
ðTabc þ Tbac � TcabÞ þ 1

2
ð�acTb � �abTcÞ;

(4)

and Lm is the Lagrangian density for matter fields.
The field equations derived from Eq. (3) for the tetrad

field are equivalent to Einstein’s equations, and they read

ea�eb�@�ðe�b��Þ � eð�b�
aTb�� � 1

4
ea�Tbcd�

bcdÞ

¼ 1

4kc
eTa�; (5)

in which eTa� ¼ 	Lm=	e
a�. In fact, one can show that the

left-hand side of the latter equation may be written exactly
as 1

2 e½Ra�ðeÞ � 1
2 ea�RðeÞ�. Therefore, it turns out that

Eq. (5) is Einstein’s equation of general relativity in terms
of tetrad fields. From now on, we will set G ¼ c ¼ 1,
unless we say otherwise.
As shown in Ref. [18], Eq. (5) may be simplified as

@�ðe�a��Þ ¼ 1

4k
eea�ðt�� þ T��Þ; (6)

where T�� ¼ ea
�Ta� and t�� is defined by

t�� ¼ kð4�bc�Tbc
� � g���bcdTbcdÞ: (7)

In view of the property �a�� ¼ ��a��, it follows that

@�½eea�ðt�� þ T��Þ� ¼ 0: (8)

1As one knows, the Penrose process occurs not only with
rotating black holes but also with a charged static black hole. In
the case with rotation, if a particle with nonzero angular mo-
mentum has negative energy inside the ergosphere of a Kerr
black hole, then an extraction of energy and angular momentum
from the black hole will take place. Although no ergoregion like
that of the Kerr case exists for a Reissner–Nordström black hole,
there is something like it since it is possible for a particle to
arrive at the horizon with negative energy, provided its electric
charge is opposite to that of the black hole. If such a particle falls
down into the black hole, this process will lead to an extraction
of mass and electric charge from the black hole [20]. The
extracted energy comes at the expense of some of the mass
and charge of the black hole.
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This equation then yields the following continuity (or
balance) equation:

d

dt

Z
V
d3xeea�ðt0�þT0�Þ¼�

I
S
dSj½eea�ðtj�þTj�Þ�:

(9)

Thus, t�� can be identified as the gravitational energy-
momentum tensor [18,25],2

Pa ¼
Z
V
d3xeea�ðt0� þ T0�Þ (10)

as the total energy momentum contained within a volume
V of the three-dimensional space,

�a
g ¼

I
dSjðeea�tj�Þ (11)

as the energy-momentum flux of the gravitational field, and

�a
m ¼

I
dSjðeea�Tj�Þ (12)

as the energy-momentum flux of matter.
In view of Eq. (6), the Eq. (10) may be written simply as

Pa ¼ �
Z
V
d3x@i�

ai; (13)

where �ai ¼ �4ke�a0i is the momentum canonically
conjugated to eai. This expression was first obtained in
the context of Hamiltonian formulation of the TEGR in
vacuum (see Ref. [28]). It is invariant under coordinate
transformations of the three-dimensional space and under
time reparametrizations. The gravitational energy enclosed
by a three-dimensional volume, limited by a surface S, is
defined by the a ¼ ð0Þ component of Eq. (13), i.e.,

Pð0Þ ¼
I
S
dSi4ke�

ð0Þ0i: (14)

This definition has been successfully applied to several
important space-times, as for determining the energy en-
closed by the event horizon of a Kerr black hole [9], the
energy (mass) loss described by the Bondi metric [29], and
the energy of gravitational waves [14], for instance.

Let us now see how pressure naturally arises from some
of the latter equations. It follows from Eqs. (6), (9), and
(10) that

dPa

dt
¼ �4k

I
S
dSj@�ðe�aj�Þ: (15)

If one now makes the Lorentz index a to be restricted to
a ¼ ðiÞ ¼ ð1Þ, (2), (3), then Eq. (15) can be written as

dPðiÞ

dt
¼

I
S
dSjð��ðiÞjÞ; (16)

in which

�ðiÞj ¼ 4k@�ðe�ðiÞj�Þ: (17)

We note that Eq. (16) is precisely the Eq. (39) presented in
Ref. [18]. As remarked by Maluf in Ref. [18], the left-hand
side of Eq. (16) represents the momentum divided by time,
what implies it has the dimension of force. And since, on
the right-hand side of Eq. (16), dSj is an element of area,

one sees that ��ðiÞj can be understood as force per unit
area, i.e., a pressure density; it represents the pressure
along the (i) direction over an element of area oriented
along the j direction. If one considers, for instance,
Cartesian coordinates, then the index j ¼ 1, 2, 3 represents
the directions x, y, z, respectively. To compute the radial
pressure over the event horizon of a black hole, in
spherical-type coordinates, we set j ¼ r, �, ’. In this
case we need to consider only the index j ¼ 1, which is
associated with the radial direction. Therefore, in

spherical-type coordinates, the density �ðrÞ1 is given by

��ðrÞ1¼�ðsin�cos’�ð1Þ1þsin�sin’�ð2Þ1þcos��ð3Þ1Þ;
(18)

from which we define the radial pressure p as

pðrÞ ¼
Z 2�

0
d’

Z �

0
d�½��ðrÞ1�: (19)

In the next two sections, we will compute both the
gravitational energy enclosed by the event horizon of a
Reissner–Nordström black hole and the radial pressure
over its surface.

III. GRAVITATIONAL ENERGY OFA
REISSNER–NORDSTRÖM BLACK HOLE

In standard spherical-type coordinates, the line element
for a Reissner–Nordström black hole is given by

ds2 ¼ �
2dt2 þ 
�2dr2 þ r2ðd�2 þ sin 2�d’2Þ; (20)

in which


 ¼
�
1� 2M

r
þQ2

r2

�
1=2

: (21)

The parameters M and Q are the mass and charge of the
black hole, in geometrized units, respectively. The roots of

 ¼ 0 are

r� ¼ M�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �Q2

q
; (22)

with rþ and r� being the radius of the (external) event
horizon and the (internal) Cauchy horizon, respectively.
Let us now choose a set of tetrad fields related to

Eq. (20). Tetrad fields, which are the basic field variables

2We note that a pseudotensor for gravitational energy momen-
tum in the realm of the TEGR was proposed in Ref. [26] but is
different from our Eq. (7). The mentioned expression of
Ref. [26] is shown therein to be equivalent to Möller’s pseudo-
tensor expression in his formulation of gravity by means of
tetrad fields [27].
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of the TEGR, can naturally be interpreted as reference
frames adapted to observers in space-time [30], an inter-
pretation that has been explored in investigations on both
the energy and angular momentum of the gravitational field
in the TEGR [13]. To each observer in space-time, one can
adapt a tetrad field in the following way [30]. If x�ðsÞ
denotes the world line C of an observer in space-time,
where s is the observer’s proper time, the observer’s
four-velocity along C, defined by u�ðsÞ ¼ dx�=ds, is
identified with the a ¼ ð0Þ component of ea

�, that is,
u�ðsÞ ¼ eð0Þ

� along C. In this way, each set of tetrad fields

defines a class of reference frames in space-time [30]. In
what follows, we will consider a set of tetrad fields adapted
to a static observer in space-time [13]. Given a metric g��,

the tetrad field related to it can be easily obtained through
g�� ¼ �abeb�ea�. The realization of tetrad fields adapted

to static observers is achieved by imposing on ea� the

following conditions: (i) eð0Þ
i ¼ 0, which implies that

eðkÞ0 ¼ 0, and (ii) eð0Þi ¼ 0, which implies that eðkÞ
0 ¼ 0.

While the physical meaning of condition (i) is straightfor-
ward (the translational velocity of the observer is null, i.e.,
the three components of the frame velocity in the three-
dimensional space are null), for condition (ii), it is not so.
The latter is a condition on the rotational state of motion of
the observer. It implies that the observer (more precisely,
the three spatial axes of the observer’s local spatial frame)
is (are) not rotating with respect to a nonrotating frame (for
details, we refer the reader to Ref. [13] and references
therein). Therefore, conditions (i) and (ii) are six condi-
tions one can impose on the tetrad field in order to com-
pletely fix its structure.

By applying the above-mentioned conditions (i) and (ii),
one can easily construct the set of tetrad fields related to
Eq. (20) and that corresponds to static observers (we note
that for this class of observers the components of T�� that

correspond to the magnetic field vanish). It is given by

ea�¼

�
 0 0 0

0 
�1 sin�cos’ rcos�cos’ �rsin�sin’

0 
�1 sin�sin’ rcos�sin’ rsin�cos’

0 
�1cos� �rsin� 0

0
BBBBB@

1
CCCCCA:

(23)

From Eq. (14), the energy enclosed by a spherical sur-
face of fixed radius r is given by

Pð0Þ ¼ 4k
Z

d�d’e�ð0Þ01: (24)

In order to evaluate the quantity �ð0Þ01, we resort to
Eq. (4). After a somewhat long but straightforward algebra,
it yields

�ð0Þ01 ¼ 1

2

g00g11ðg22T212 þ g33T313Þ: (25)

The computation of the components of the torsion tensor
in the latter expression is straightforward. They read

T212 ¼ �r

�
1� 2M

r
þQ2

r2

��1=2 þ r;

T313 ¼ �rsin 2�

��
1� 2M

r
þQ2

r2

��1=2 � 1

�
:

(26)

Now, inserting the determinant e ¼ r2 sin � and
Eqs. (26) into Eq. (25), we obtain

e�ð0Þ01 ¼ r sin �

�
1

2
�

�
1� 2M

r
þQ2

r2

�
1=2

�
þ 1

2
r sin �:

(27)

From Eq. (24), the energy enclosed by a spherical sur-
face of constant radius r is then given by

EðrÞ � Pð0Þ ¼ r

2
41�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M

r
þQ2

r2

s 3
5: (28)

This is precisely the expression that is obtained by means
of the quasilocal energy approach of Brown and York [31].
For Q ¼ 0, Eq. (28) gives the distribution of gravitational
energy in the space-time of a Schwarzschild black hole.
From Eq. (28), it follows that the energy enclosed by

the event horizon of a Reissner–Nordström black hole is
simply given by

E � EðrþÞ ¼ rþ: (29)

It is interesting to express the result (29) in terms of the
irreducible mass, Mirr, of the black hole [20,21]. When a
charged or rotating black hole is subject to the Penrose
process, this leads to changes in its mass and charge or its
mass and angular momentum, respectively [for a general
stationary (i.e., Kerr–Newman) black hole, the Penrose
process will lead to the extraction of charge as well as
angular momentum from the black hole]. In any case, the
Penrose process is such that it cannot make the initial mass
M less thanMirr. For a Reissner–Nordström black hole, the
irreducible mass is given by Mirr ¼ ð1=2Þrþ. Hence, from
Eq. (29), one sees that the gravitational energy inside the
event horizon of a Reissner–Nordström black hole can be
simply written as

E ¼ 2Mirr: (30)

For a Schwarzschild black hole, one simply hasMirr ¼ M,
what corresponds to the fact that there is neither electric
nor rotational energy to be extracted from the black hole in
this case. We remark that for a Kerr black hole the gravi-
tational energy inside its event horizon is strikingly close to
the value 2Mirr, as computed in the framework of the
TEGR [9]. We stress that this has been shown to be valid
to any value of the rotation parameter. On the other hand,
by applying the Brown–York quasilocal approach,
Martinez [32] has shown that the gravitational energy
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enclosed by the horizon is given by 2Mirr, in the regime of
slow rotation. He conjectured that this would hold for any
value of the rotation parameter. However, by means of a
generalization of the quasilocal method of Brown and
York, Deghani and Mann have numerically shown that
such a conjecture is not valid [33]. As far as we know,
the computation of the energy enclosed by the event hori-
zon, for any value of the rotation parameter, via the original
quasilocal approach of Brown and York has not been
performed. This is due to the technical difficulty in apply-
ing it for any regime of rotation [32].

The results obtained in the context of the TEGR suggest
that one considers the case of the Kerr–Newman black hole
in order to see if the value 2Mirr still holds for the energy
enclosed by the event horizon of such a black hole. In what
concerns the use of the Brown–York method, it has been
shown that, in the slow-rotation approximation, such a
value still holds for a Kerr–Newman black hole [34]. The
same result has been found by a computation done in the
framework of the TEGR [35]. Anyway, for the case of a
Kerr–Newman black hole, this issue deserves to be further
investigated in the TEGR itself [36].

IV. RADIAL PRESSURE OVER THE EVENT
HORIZON OFA REISSNER–NORDSTRÖM

BLACK HOLE

In order to evaluate the radial pressure over the event
horizon of a Reissner–Nordiström black hole, we need to

compute the components of �ðiÞ1 [see Eq. (18)]. After a
long but straightforward calculation, we obtain, consider-
ing the tetrad field given by Eq. (23), that

�ð1Þ1 ¼ 4ksin 2� cos’ð

0rþ 
2 � 
Þ;
�ð2Þ1 ¼ 4ksin 2� sin’ð

0rþ 
2 � 
Þ;
�ð3Þ1 ¼ 4k sin � cos� sin’ð

0rþ 
2 � 
Þ:

(31)

By inserting now the above relations into Eq. (18) and
performing the integration in Eq. (19), we obtain that the
radial pressure over a spacelike spherical surface of radius
r in the space-time of a Reissner–Nordström black hole is
given by

pðrÞ ¼ �ðr

0 þ 
2 � 
Þ; (32)

in which the prime denotes the derivative with respect to r.
By making use of Eq. (21) in Eq. (32), one obtains

pðrÞ ¼ M

r
þ

�
1� 2M

r
þQ2

r2

�
1=2 � 1; (33)

from which it follows that the radial pressure over the event
horizon (r ¼ rþ) of a Reissner–Nordström black hole is
given by

p � pðrþÞ ¼ M

rþ
� 1 ¼ �ðM2 �Q2Þ1=2

rþ
: (34)

In particular, for Q ¼ 0, rþ reduces to 2M, and one thus is
left with p ¼ �1=2 (or p ¼ �c3=2G, by restoring the
physical constants), which is precisely the value of the
radial pressure over the horizon of a Schwarzschild black
hole, a result that has recently been obtained byMaluf et al.
in Ref. [19].
It is instructive to compare the magnitude of the pressure

over the event horizons of Schwarzschild and Reissner–
Nordström black holes. As the radius of the event horizon
of a Reissner–Nordström black hole is less than for a
Schwarzschild one, i.e., ðrþÞRN < ðrþÞSch, from Eq. (34),
one sees that the pressure over the event horizon of a
Reissner–Nordström black hole is, in modulus, greater
than for a Schwarzschild one. This is physically reasonable
since a Reissner–Nordström black hole is more compact
than a Schwarzschild one.

V. THERMODYNAMICS IN THE TEGR AND
THE STANDARD FIRST LAW OF BLACK

HOLE MECHANICS

In the standard formulation of the thermodynamics of
black holes the gravitational energy is not taken into ac-
count, and the internal energy of a black hole is considered
to be given only by the black hole mass, which is parame-
trized in terms of its area, charge, and angular momentum.
Nevertheless, from the point of view of the conservation of
energy and thermodynamics, it is quite natural that gravi-
tational energy should be taken into account if a black hole
is to be considered as a thermodynamic system. That is, the
internal energy of a black hole should be considered not
only as its rest mass and other, nongravitational forms of
energy (as electrostatic energy), but one should also take
into account the gravitational energy as part of the total
internal energy ascribed to a black hole. Also, taking into
account the concept of gravitational pressure, it is natural
to consider its role in black hole thermodynamics. As a
result, in this section, we will analyze the role played by
gravitational energy and gravitational pressure on the ther-
modynamics of a Reissner–Nordström black hole. Our aim
in this section is basically to compute the quantity
dEþ pdV and compare it with the standard first law of
black hole dynamics.

Let us first compute pdV. Since �ðrÞ1 is a density, the
differential pdV is evaluated as

pdV ¼
�Z

S
ð��ðrÞ1Þd�d’

�
drþ ¼ pdrþ; (35)

in which S is the surface of constant radius r ¼ rþ, with p
given by Eq. (34). The differential drþ is obtained from
Eq. (22), and it reads

drþ ¼ rþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �Q2

p �
dM� Q

rþ
dQ

�
: (36)

It must be noted that, as one is assuming that drþ, dM, and
dQ are infinitesimals, the present analysis is not valid when
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �Q2

p
approaches zero, i.e., when Q is very close

to M.
From Eqs. (34) and (36), one is then left with

pdV ¼ �
�
dM� Q

rþ
dQ

�
: (37)

The differential dE is easily obtained from Eq. (29) as

dE ¼ drþ: (38)

Of course, this result also derives from the variation

dE ¼ @E

@M
dMþ @E

@Q
dQ; (39)

as it should be.
From Eqs. (37) and (38), we have

dEþ pdV ¼ M

rþ
drþ: (40)

By replacing now Eq. (36) in the equation above, we are
left with

dEþ pdV ¼ Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �Q2

p �
dM� Q

rþ
dQ

�
: (41)

We will now come back to the expression given by
Eq. (40). Its right-hand side can be written in terms of
the surface gravity of the black hole, i.e., in terms of

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �Q2

p
r2þ

: (42)

As the horizon area is A ¼ 4�r2þ, it follows that Eq. (40)
can be rewritten as

dEþ pdV ¼ 1

8�

M

r2þ
dA; (43)

which, by virtue of Eq. (42), can be written as

dEþ pdV ¼
�

Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �Q2

p �
�

8�
dA: (44)

In particular, one sees that, for a Schwarzschild black hole
(Q ¼ 0), the latter result reduces to

dEþ pdV ¼ �

8�
dA: (45)

Hence, for a Schwarzschild black hole, the expression
dEþ pdV, obtained entirely in the context of the tele-
parallelism, coincides with the standard expression for the
first law of black hole dynamics.

Let us now compare the result given by Eq. (44) with the
standard one, in what concerns a Reissner–Nordström
black hole. We first recall that, for the latter, the first law
of black hole dynamics is given by

�

8�
dA ¼ dM��HdQ; (46)

where �H ¼ Q=rþ is the Coulombian potential at the
black hole event horizon (the zero of the electric potential
is taken at infinity). Considering now Eq. (44), and since
M � jQj, it follows that the factor that multiplies the term
ð�=8�ÞdA is greater than one. This implies that, for a
Reissner–Nordström black hole, the following inequality
holds:

dEþ pdV >
�

8�
dA: (47)

If one now defines

TdS ¼ dEþ pdV (48)

as the first law of black hole dynamics, established entirely
in the framework of the TEGR, it follows that Eq. (44) can
be rewritten as

TdS ¼ Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �Q2

p �
�

8�
dA

�
: (49)

Although the area A appears on the right-hand side of
Eq. (49), we stress it does not play any role in arriving at
an expression for dEþ pdVð¼ TdSÞ, but rather the latter
is given by Eq. (41), which has been obtained without any
need to resort to A. It is only after one arrives at an
expression for dEþ pdVð¼ TdSÞ that it has been ex-
pressed, for convenience, in terms of A. We also remark
that, up to now, we have not assumed that S and A are
related by the standard, Bekenstein–Hawking relation.
Assuming now that T in Eq. (49), which is the tempera-

ture of the black hole, is the Hawking temperature �=2�, it
follows from Eq. (49) that

dS ¼ Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �Q2

p dA

4
: (50)

In this way, one is led to the result that, in the TEGR (due to
both the gravitational energy and gravitational pressure so
defined), the variation of the entropy of a Reissner–
Nordström black hole is greater than the variation of the
standard, Bekenstein–Hawking entropy, SBH ¼ A=4 (in
natural units). For a Schwarzschild black hole (Q ¼ 0),
the entropy (50) so derived in the TEGR coincides with the
standard one, even though the gravitational pressure is not
null in this case. On the other hand, we recall that the
Bekenstein–Hawking postulate, according to which the
entropy of a black hole is given by the entropy-area relation
SBH ¼ A=4, follows from the classical laws of black hole
dynamics together with the (quantum) Hawking tempera-
ture �=2�. Hence, the result given by Eq. (50) can be
viewed as a possible modification of the entropy of a
Reissner–Nordström black hole, as a result of considering
both gravitational energy and gravitational pressure in
formulating the classical laws of black hole dynamics. In
this direction, as pointed out by York [37], we recall
that the constant of proportionality in the relation
SBH ¼ A=4 was originally obtained from a mechanical-
thermodynamical analogy based on the relation
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dM ¼ �

8�
dA; (51)

which is derived from M ¼ ð�=8�ÞA, which, in its turn, is
valid for neutral nonrotating black holes. It is only upon the
identification by Hawking that (the black hole temperature
is) T ¼ �=2�; it would follow from the hypothesis that
Eq. (51) can be written in thermodynamic form, with
dSBH ¼ ð1=4ÞdA, if and only if one assumes that the
thermodynamic law for uncharged nonrotating black holes
is given by

dM ¼ TdSBH; (52)

from which one sees that there is no term corresponding to
‘‘pdV’’ in the standard formulation of black hole thermo-
dynamics. The point is that, given T ¼ �=2�, the expres-
sions forM and dM do not by themselves imply uniquely a
value for the entropy. As York remarked [37], Eq. (52)
gives the simplest possibility that leads to an entropy-area
relation.

VI. CONCLUDING REMARKS

The plausibility of a pdV ‘‘work’’ term in the first law
of black hole thermodynamics is perhaps best summarized
in the following remark by York [37]: ‘‘it is quite plausible
that if ‘heat’ TdS is slowly added to a black hole in
equilibrium, thereby causing it to expand, that it should
do ‘work’ in lifting itself in its own gravitational ‘potential
well’ ’’. Besides, as the electromagnetic field exerts pres-
sure, one might expect that the gravitational field would
behave in the same way. In fact, this has been shown to be
to the case for gravitational waves [14].

We have obtained the thermodynamic relation
TdS ¼ dEþ pdV (which is the first law of black hole
thermodynamics) entirely within the framework of the
TEGR, without identifying dS with the variation dA
of the area of the event horizon of the black hole [see
Eq. (41)]. However, in order to compare TdS ¼
dEþ pdV, as given by the TEGR result (41), with the
(standard) TdSBH, as given by the standard first law of
black hole dynamics (1), we have written the right-hand
side of Eq. (40), which is a more compacted, preliminary
form of Eq. (41), in terms of ð�=8�ÞdA. The result is given
by Eq. (44), which implies that, in the framework of the
TEGR, TdS � ð�=8�ÞdA ¼ TdSBH, where the inequality
becomes an equality only for the particular case of a
Schwarzschild black hole, whereas the inequality holds
for a Reissner–Nordström black hole. This result imply
that (i) for a Schwarzschild black hole, the expression
dEþ pdV, obtained entirely in the context of the tele-
parallelism, coincides with the standard expression for the
first law of black hole dynamics, while (ii) for a Reissner–
Nordström black hole, it leads to the fact that the efficiency
of the Penrose process is less than in standard black hole
thermodynamics. We note that the same conclusion has
been achieved in the case of a Kerr black hole [19].

The fact that the entropy given by Eq. (50) (which has
been derived entirely in the framework of the TEGR) is
different from the standard, Bekenstein–Hawking en-
tropy, SBH ¼ A=4, is not a surprise, of course. It should
be noted that, in the standard first law of black hole
thermodynamics, the role of internal energy is ascribed
to the black hole mass, M, while, in the TEGR, it is
played by the total energy enclosed by the event horizon
of the black hole, E, which includes M and other pos-
sible forms of energy. Also, the role of gravitational
pressure, which is crucial in establishing in the TEGR
the first law as TdS ¼ dEþ pdV, is a concept that is
absent in the standard formulation of classical black hole
dynamics. An exception is the consideration of a gravi-
tational surface pressure ascribed to the horizon of a
black hole, as defined by Brown and York in the context
of their quasilocal analysis [3]. In this way, they arrive at
the first law of black hole thermodynamics for a spheri-
cally symmetric black hole but with the black hole
temperature blueshifted from infinity to a fixed distance
R. Nevertheless, when the surface (of radius R) is taken
as the horizon (R ¼ rþ), the surface pressure diverges as
well as the temperature (see Eqs. (6.19) and (6.20) of
Ref. [3]). In the context of the TEGR, the gravitational
pressure that enters into the first law of black hole
dynamics is not a surface pressure but a radial pressure
over the event horizon, where it has a finite value [see
Eq. (34)]. Such a pressure is negative, which means it is
directed toward the center of the black hole. Physically,
one can view this as similar as in the first law of ordinary
thermodynamics since, corresponding to the fact that the
Penrose process leads to the extraction of energy from
the black hole, the black hole pressure is over the
horizon, (radially) directed to its center. In the case of
a Kerr black hole, the radial pressure over the event
horizon is also negative, as shown in Ref. [19], taking
into account also the Penrose process.
Since by no continuous process (such as the Penrose

process) can the irreducible mass of a black hole be
decreased (i.e., the inequality dM2

irr � 0 holds), and as

A ¼ 16�M2
irr, it follows that dA � 0; that is, by no con-

tinuous process can the horizon area of a black hole be
decreased [38]. Therefore, in view of Eqs. (45) and (47),
one is led to TdS ¼ dEþ pdV � 0.3 This can be taken as
the second law of black thermodynamics in the framework
of the TEGR; although, here, it has been based on continu-
ous processes involving only a single black hole.
Finally, we note that the entropy-area relation given by

Eq. (50) can be considered ‘‘holographic,’’ analogously to
the standard relation. We tried to verify if a relation similar
to Eq. (50) holds for a Kerr black hole by making use of the

3We recall that the equality in TdS ¼ dEþ pdV � 0 holds
for a Schwarzschild black hole and that, for the latter, it is not
possible to extract the energy (mass) by the Penrose process
since Mirr ¼ M, where M is the mass of the black hole.
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expression for TdS obtained in Ref. [19]. However, in that
case, the expression for the quantity TdS ¼ dEþ pdV is
not simple but rather has a complicated form such that we
could not make a conclusive statement. We hope to report
about it in the future.
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