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Propagators in de Sitter space
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In a spacetime with no global timelike Killing vector, we do not have a natural choice for the vacuum
state of matter fields, which leads to an ambiguity in defining the Feynman propagators. In this paper,
taking the vacuum state to be the instantaneous ground state of the Hamiltonian at each moment, we
develop a method for calculating wave functions associated with the vacuum and the corresponding in-in
and in-out propagators. We apply this method to free scalar field theory in de Sitter space and obtain
de Sitter invariant propagators in various coordinate patches. We show that the in-out propagator in the
Poincaré patch has a finite massless limit in a de Sitter invariant form. We argue and numerically check
that our in-out propagators agree with those obtained by a path integral with the standard ie prescription,
and we identify the condition on a foliation of spacetime under which such coincidence can happen for the
foliation. We also show that the in-out propagators satisfy Polyakov’s composition law. Several

applications of our framework are also discussed.
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L. INTRODUCTION

In a spacetime with no global timelike Killing vector,
we do not have an established prescription to define the
vacuum state of matter fields. The issue exists even at
the level of free fields, leading to an ambiguity in defining
propagators [1] (see also [2] for recent discussions).

A typical example of such spacetimes is de Sitter space,
and various vacua have been studied throughout the deca-
des. Among them, the Euclidean vacuum (or the Bunch-
Davies vacuum) [3] is often used in cosmology to describe
the physics in the inflationary era. This is mainly because it
is invariant under the de Sitter group and further satisfies
the Hadamard condition, which essentially states that a
two-point function comes to behave in the same way as
in flat Minkowski space as two points get closer to each
other (see, e.g., [4-9] for arguments that physically natural
states should satisfy the Hadamard condition). Also often
studied are a series of vacua called the « vacua
(or Mottola-Allen vacua) [10,11], which are parametrized
by a complex number «. They are all de Sitter invariant but
do not satisfy the Hadamard condition except for & = —oo0,
which corresponds to the Euclidean vacuum.'
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'Tt is pointed out on the basis of the in-in formalism (or the
Schwinger-Keldysh formalism) [12,13] that two-point functions for
a vacua have various pathological behaviors (e.g., the breaking of
their analyticities) when a quantum field has an interaction [14—-16].
Note that discussions in favor of the Hadamard condition are about
the in-in propagators and are not applied to the in-out propagators.
In this paper, we will not further touch on this fundamental issue of
the Hadamard condition on two-point functions.
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An interesting feature of de Sitter space is its thermody-
namic property. As is pointed out in [17], a particle detector
staying in de Sitter space and interacting weakly with a
scalar field in the Euclidean vacuum behaves as if itis in a
thermal bath with the temperature 7 = 1/27¢€, where € is
the de Sitter radius. This phenomenon crucially depends on
the setup where the Euclidean vacuum is taken. In fact, other
a vacua do not yield such thermal behavior [18]. In this
sense, the choice of vacuum is also important in understand-
ing the thermodynamic character of curved spacetimes.

In this paper, we take the vacuum of a free scalar field
to be the instantaneous ground state of the Hamiltonian
at each moment. We develop a general method to
calculate transition amplitudes during finite time intervals
for a quantum mechanical system with time-dependent
Hamiltonian and define the propagators as the limit of
two-point functions, when the initial and final times are
sent to the past and future infinities.” In our method, wave
functions associated with the vacuum are automatically
determined with no need to consider asymptotic boundary
conditions such as positive-energy conditions.

We apply the method to construct various Feynman
propagators in de Sitter space. We treat the principal series
(with large mass, m > (d — 1)/2) and the complementary

There was a study that took the vacuum to be the instanta-
neous ground state, which is sometimes called the instantaneous
Hamiltonian diagonalization method (see, e.g., [1,19,20]
and references therein). Our framework has the same principle
as that of the method in determining the vacuum, but has
an advantage over the method in that it enables us to obtain
an explicit form of various propagators for finite time in-
tervals and can be applied to a wide class of nonstatic
spacetimes.
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series (with small mass, m < (d — 1)/2) at the same time,
and show that the obtained in-in and in-out propagators
always take de Sitter invariant forms. Furthermore, we
show that our de Sitter invariant in-out propagator has a
finite massless limit in the Poincaré patch.’ This is in
contrast to the in-in propagators, for which the no-go
theorem states that there is no de Sitter invariant Fock
vacuum for massless scalar fields [11].

We argue and numerically check that our in-out propa-
gators agree with the propagators obtained by a path
integral with the standard ie prescription. This result is
consistent with the de Sitter invariance of the propagators
since the corresponding path integral is performed over a
patch which is preserved under the infinitesimal action of
de Sitter group SO(1, d). Moreover, our in-out propagators
are shown to satisfy the composition law [21], which has
been claimed by Polyakov recently as a principle to be
satisfied in order for the propagator to be interpreted as
representing a sum over paths of a particle moving in a
spacetime.

This paper is organized as follows. In Sec. II, we develop
a general framework for a given foliation of spacetime
to calculate wave functions and propagators for quantum
mechanics with a time-dependent Hamiltonian. In Sec. III
we demonstrate how our prescription works in the simplest
spacetime, Minkowski space. A mathematical detail is
given in Appendix A. Another well-studied example of
asymptotically Minkowski space is investigated in
Appendix B. We analyze the de Sitter case in Sec. IV.
After giving a brief review on the geometry of de Sitter
space in Sec. IVA, we discuss the propagators in the
Poincaré patch in Sec. IV B and those in the global patch
in Sec. IVC. For both patches, we first make a mode
expansion of a scalar field and calculate the propagators
for each mode. We then make a sum over modes to obtain
the propagators in spacetime, both of the in-in and in-out
types. The obtained propagators are found to be written
with the de Sitter invariant quantity. In Sec. V we introduce
the concept of effective noncompactness in the time direc-
tion and show that when the foliation meets the condition
of effective noncompactness, our in-out propagator coin-
cides with that obtained by a path integral with the standard
ie prescription. We further show that the Poincaré and the
global patches satisfy the condition and confirm the coin-
cidence of the two propagators by numerical calculations.
In Sec. VI we prove that our in-out propagators have the
heat-kernel representation, which means that the propaga-
tors satisfy Polyakov’s composition law [22]. Section VII
is devoted to discussions and conclusion. We give some of
the mathematical details in Appendixes C, D, E, and F with
useful formulas. In Appendix G we show that each of the
in- and out-vacua for the two patches can be identified with

The in-out propagator in the global patch still diverges in the
massless limit.
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a a vacuum. In Appendix H we consider two possible ways
to introduce the ie prescription and confirm that the two
prescriptions give the same analytic expressions after
taking the limit € — 0.

II. GENERAL FRAMEWORK
A. Setup

In this paper, we consider quantum theory of a free real
scalar field ¢(x) living in a d-dimensional curved space-
time with background metric g M,,,4

Sl = =3 [ae TR o, b0, +m2gD). ()

We assume that the spacetime is globally hyperbolic and

the foliation of spacetime (i.e., the set of time slices) is

already specified. We denote the temporal and spatial

coordinates by ¢ and x, respectively, and the spacetime

coordinates by x = (x*) = (t,x) (w=20,1,...,d—1).

We further assume that the metric has the form

ds? = —=N*(1)ds* + A%(1)h;;(x)dx'dx’/

Gj=1,...,d—1). 2)

The action is then written as
1
S = 5 fdzfdd—lx\/ZNAd—l(N—za,w,gﬁ

+ A2pA,_ p — m2P?), (3)
where vh = fdeth,;, and Ay, = (1/\/E)ai(\/ﬁhi/a~,-) is

the Laplacian for the spatial metric ds?_, = h;;(x)dx'dx/.
We have neglected the surface term coming from integra-
tion by parts. We introduce a complete system {Y,(x)} of
real-valued orthonormal eigenfunctions of A,_, satisfying

Ad*l Yn(x) = _/\n Yn(x)’

“4)
f A e R Y, (R (x) = 8,1,
and make a mode expansion of the scalar field as
B(x) = ¢(1,x) = D ¢,()Y,(x). (5)

Note that ¢,(r) € R since Y,(x) are real valued. The
action can then be written as a sum of the actions for
mode functions {¢,(7)},

5, =% [ AL o (B (0), (1), 1), ©)
with
2
Lyo(n bu 1) = @dﬁ - M w0

“The metric has the signature (—, +, ..., +).
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p(t) = e eN"H (A (z), )

w,(t) = e EN()yA,A72(t) + m>. )

This shows that the nth mode function ¢, (f) behaves as a
quantum oscillator with time-dependent mass p(¢) and
frequency w,, (7). Here, we have introduced an infinitesimal
imaginary part ie (¢ > 0) in order to discuss the behavior
of states near the temporal boundary in a well-defined
manner. Note that the combination p(f)w,(f) is always
real. The quantum oscillator with time-dependent mass
p(t) and frequency w,(#) is described by the following
time-dependent Hamiltonian in the Schrédinger picture:

1 p(Dw;i(1)
H ()=H( o 1)=— g2 + 20D 5
I‘l,S() 11(¢n,s 7Tn,s ) 2p([) 7Tn,s 2 n,s
(10)

where the suffix s indicates that the operators are in
the Schrodinger picture. Thus, the theory is reduced to
quantum mechanics of a set of independent harmonic
oscillators with time-dependent parameters,

(1)2
Hy(0) = S H, (1) = Z[ 2;0) - p(t)2 2(1) 2]
(11)

Note that the introduction of i in (8) and (9) corresponds to
the replacement H,, ((t) = e '¢[H,, ((t)|,—o], which makes
the Hamiltonian a non-Hermitian operator. The quantiza-
tion is accomplished by setting the commutation relations,

[d)n,s’ Tm,sd = i8n,m’ (12)

[¢n,s’ ¢)m,s:| = 0 = [WIZ,S’ Wm,s]‘ (13)

In the following subsections, we develop a general theory to
describe the time evolution of states for quantum mechanics
with such a time-dependent Hamiltonian.

We here make a comment on a subtlety existing in
field redefinitions (for brevity we set € = 0 below).
By transforming the mode function ¢,(f) to x,(t) =
p'2(t), (1) = ¢“ ¢, (1), one can make the coefficient
of the kinetic term to unity,

S0 = [ a3 LG - Roxel a4

Qa(1) = w3 (1) — (6(1)* — &(0). (15)

However, it can often happen that Q2(f) takes negative
values for some region of m? even though the original
w?(1) is strictly positive.> Although the physics should be

A typical example is a scalar field in the Poincaré patch of
de Sitter space. One can easily see that 2(¢) can be negative
when the mass is small and ¢, (¢) represents a mode of long
wavelength.
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the same for the two descriptions using ¢, (f) and y,(7)
(as long as ie is introduced in a consistent way), the
inverted harmonic potential for y,(f) can easily cause a
catastrophe when making an analysis based on an approxi-
mation, such as the WKB approximation. In order to avoid
this subtlety (and also to keep the original symmetry
manifest), we will not make such transformations.®

B. Quantum mechanics with time-dependent
Hamiltonian

To simplify expressions in the following discussions, for
a while we omit the mode index n and denote the canonical
variables {¢,, ;, 77, } in the Schrédinger picture by {g, p}.
Our Hamiltonian then takes the form

p(D)w*(1)
590 pi+ 5 e

and the system is quantized by setting the commutation
relation

H (1) = H(qy, ps, 1) = (16)

lgs Pl =i (17)

Recall that p(1) = €'®|p(¢)| and w(t) = e ¢|w(2)|.

We denote by T, the time at which quantization is
carried out in the Schrodinger picture. The Hilbert state
H ={|)} with a Hermitian inner product (¢, ¢,) is
then constructed on the time slice at t = T, and the dual
space H* = {(i/|} is defined with respect to the Hermitian
inner product with the rule (| = (¥ )T, ie.,
(il(lg2)) = (4, ). The time evolution of a state
|y € H is governed by the Schrodinger equation

atllﬂr t> = _le(t)ll//) t>! (18)

with the initial condition |, T,) = |). The Schrodinger
equation can be integrated to the form

[, 1y = U@ T)l), (19)

where U(t, T,) is the time-evolution operator expressed as
the time-ordered exponential of H (1),

UL T,) = Texp(—i /; dt’HS(t’)>

= | 1 —iAtyH (¢
A}knlo( iAtyH(ty))

X (1 —iAty Hy(ty—1)) ... (1 —iAt; H(2)))
t=ty >ty > >t >1,="T,
( Aty =t =t )
(20)

The Hermitian conjugate of |, £) is given by

5The coefficient of the kinetic term can also be set to unity by
making a transformation of the time coordinate. We will see that
physical quantities do not change under the transformation (see
the last paragraph of Sec. IIE).
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(1l = (PlUT (e, T). 21

In addition, we introduce a one-parameter family of states
for a given state (| € H * as

(P il =Wlu™' (1, Ty), (22)

which satisfy

i, tl = +i(y, t|H,(1),

(W, T, =yl (23)

Note that the pairing of {¢;| and |¢,) does not change
under the time evolution,

Wi, s, 1y = (g1 14a), (24)

although this is not the case for (i, t|if5, 1) when & # 0
because the time evolution operator is then not unitary,
U1, T,) # Ut T,).

The spectrum of the Hamiltonian H,(¢) can be easily
found by introducing, as usual, a pair of operators,’

_ [po@) . 1
O e
by — /p(t)w(t) _.[ !
al(®) = 5 ds i 2p(t)a)(t)ps' (26)

We call a(r) and al(t) the annihilation and creation
operators at time . Note that a,(r) and ai() are
Hermitian conjugate to each other, because p(f)w(r) is
positive and q;r = g, and p; = p,. From the commutation
relation (17), we have

[a,(1), al (] = 1. @7)
The Hamiltonian (16) can then be rewritten as

H(t) = —=[al (Da,(r) + a,(Dal (1]
_ w(t)[aj(t)as(t) + %] (28)

We define the state |0,, 7) as that which vanishes when
acted on by a,(?),

a(1)|0,, 1) = 0. (29)
Accordingly, the state (0,, 1| = (0, t| = |0,, t)t satisfies
0, tlal () = 0. (30)

Then the right and left eigenstates of H,(¢) are given by

1
In, 1), = m[aAT (1110, 1), (31)

"They are Schrodinger operators, and the time dependence
comes only through the parameters p(z) and w(z).
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FIG. 1. Time evolution of states. The system is quantized in
the Schrodinger picture on the time slice at T. |0,, ) is the state
annihilated by the Schrodinger operator a,(t), while |0,) is the
state annihilated by the Heisenberg operator a(r).

-] —
Al = 0, dlla, (01" = In, 0, (32)
which satisfy
H,D|n, t), = (n + l)a)(t)ln ) (33)
Ky > Y/t 2 » Vb
n, t1H (1) = (n + %)w(r),m. (34)

We call |0, 1) = |0, £), the ground state (or the vacuum)
at time ¢, since this is the minimum energy state at the
moment if € = 0.

It is important to note that the ground state at time #/,
|0,, t), is generically different from the state |0,, '); the
latter is obtained as a time evolution of the ground state
|0, 7) at time ¢, |0, ¢y = U(Z, 1)]0,, t) (see Fig. 1). Note
also that since the Hamiltonian is already specified at each
time, the vacuum state is uniquely determined, and there is
no freedom to introduce other vacuum states through
Bogoliubov transformations.

C. Heisenberg picture

Now we move from the Schrodinger picture to the
Heisenberg picture. Given a Schrédinger operator O(r)
[possibly depending on ¢ through the parameters involved
when constructing the operator as in Eq. (25)], we define
the corresponding Heisenberg operator as

o) =U'(t, T)O,(0U(1, T)), (35)
which satisfies the Heisenberg equation,
o = i), ot + 22
’ at (36)
(80“) = 0722 TS)).
ot Jt
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For our harmonic oscillator, the time evolution of the
canonical variables is given by

i) = iTH@), ¢0)] = ’;% 37)

p(0) =i[H®), p()] = —p(Dw?(Dq(2), (38)

and by eliminating p(f), we obtain the differential equation

3 (b0 3,40) + p002(0g) =0. (39

This is certainly the equation of motion derived from the
Lagrangian L(q, ¢, t) = p(t)¢*/2 — p(t)w*(t)g*/2. Note
that if we had used Ut(z,T,) in Eq. (35) instead of
U~ (¢, T,), the equation of motion could not be reproduced
correctly when & # 0.

In the Heisenberg picture, the annihilation and creation
operators become

a(ty = U1, T)a,()U(t, T,)
/p(t)w(t) /
(1) + (0w (I)P() (40)
al) = U\t T)al(nU@G T,)

_ ’p(t)w(t) _./ 1
= 5 q(t) —i mp(f)- 41

They satisfy the commutation relation
[a(r), a()] =1, (42)

but are not Hermitian conjugate to each other when & # 0.
The Hamiltonian is then expressed as

H(t) = U (1, T)H,(H)U(1, T,)

_ PP p()e* (g ()
2p(1) 2

— a)(t)l:d(t)a(t) + %] 43)

l(t: T.Y)lot) t> and

Note that the states |0,) = [0, T,) = U~

0,1 =0, T, = {0, 11U (1, T,) = (0, 1|U(s, T,) (see Fig. 1)
satisfy the equations
a(t)|0t> =0= <Ot|af(t), (44)
O, a() = 0= at@]o,). (45)

(0,] may differ from (0,| since U(z, T) is not unitary when
e #0.

We denote by {f(z), g(¢)} a pair of linearly independent
c-number solutions of (39). One can easily show that their
Wronskian,

WIS, gl) = f(Dg(t) — F(t)g(r), (46)
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satisfies the equation

d d, . d, .
$(pW[f, gl = fa(pg) - 5(pf)g =0. 47

Thus the combination (to be called the weighted
Wronskian),

W, Lf, gl = p()WLf, gl(0), (48)

does not depend on r. Since g(f) is also a solution of
Eq. (39), we can expand canonical variables ¢(f) and

p(?) as
q(t) = c1f(2) + cr8(2), (49)

p() = p()4(1) = p(Dc1f() + c26(0],  (50)

where c¢; and ¢, are some time-independent quantum
operators living in a space spanned by g, and p, with
complex coefficients. Equations (49) and (50) can be
solved with respect to ¢; and ¢, as

a)_ 1 pg  —8 q(?)
<CQ>_Wp[f,g]<—pf f)m(p(t))' eb

This can be further rewritten by using (40) and (41) as

) a(?)
)el)

where
1 v(r) (1)
C(r) = 53
" Wp[f,g]f—“—zp<t>w<r><—u(t> —ﬁ(r)) 9
with
{”_’(’)} = p(OL(0) = () (1)) (54)
(1)
{v(t) _ N
v()}=p<t>[g<t> w0 (ng (1] (55)
Note that
(uv — vi)(t) = 2ip(Nw()W,[f, gl (56)
detC(t)=m (= const), (57)

c—l(t):_i<_”(t) ﬂj(t)). (58)
Vo@Dl \ ut) v(t)

D. Bogoliubov coefficients for finite time intervals

The Bogoliubov coefficients from time # to time ¢ are
defined by
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a(t) _( a -B o, a(t')
()= (5 D)) o

Since the operators {c, ¢,} in (52) do not depend on time,
we have

PHYSICAL REVIEW D 88, 024041 (2013)
ca\ a()\ . fa)
(Cz) - C‘”(d(r)) - CU)(a(ﬂ) ) ©0

from which we find

@ '8 N =c ' (DC() = —i
(—B )(tt) (C(r')

2W, LS, sWpDw (@) p(i ()

This is the fundamental formula to express the Bogoliubov
coefficients in terms of a given set of independent solutions

{f(0), g}
Because of the commutation relations (42), the
Bogoliubov coefficients should satisfy the relation

(a@ — BB)(1;1) = 1. (62)
This can be directly checked by using the identity (57) as

W,lf. 8] _
W,Lf, gl
(63)

(aa — BP)(t;t) = detC™'(t)det C(f') =

Note that @ # a* and 8 # B8* when & # 0.

E. Wave functions

Using the Bogoliubov coefficients, we can express the
Heisenberg operators ¢(¢) with the creation and annihila-
tion operators at a different time #; as follows®:

1 _
q(t) = ————(a(n) + a())
2p(D (1)

= ;(Ez(t; t)a; —

V2p(0w()

+ a(t, t[)a] -

B(t;t))a;

B(t;t))ay)

= o(t;t))a; + @(t:1))ay, (64)
|

( @ —B)(t o) = ( W, La(t 1), o(t;1y)]
_ﬁ o o Wp[¢(t’tl)’ ¢(I» tO)]

We are now in a position to make a few comments.

1. Basis independence

We can show that the Bogoliubov coefficients and the
wave functions {¢(t;¢;), @(f;f;)} do no depend on the
choice of a pair of independent solutions {f(z), g(¢)}, as
they should. In fact, suppose that we take another pair

8In the following, we will use the shorthand notation, such as
f1 = f(t;) or f; = f(¢;), when a quantity is evaluated at time f;.

(u(t’)ﬁ(t) — v()i(r)

a(t)o(r) — o(t)a(?)
v()u(t) — u(r)v(7) ) (61)

o(Nu(t) — a(@)v(t) )

[
where we have defined functions ¢(z;f;) and @(r;¢))
(to be called wave functions) as

e(t:t)) = (a(t;1) — B(t; 1))

\/2p( No()

1

- szl_wl(’ﬁf(t) — ug(1), (65)

o(t:1)) = (alt; 1)) — B3 17))

VZp(t)w( 1)

1

=W glapre; W)~ gD). - (66)

By using the t-independence of W[ f, ¢g] and Eq. (56), we
can show that ¢(z;¢;) and &(z; f;) are normalized as

Wole(tt), el =1 (V 1,V 1) (67)

Moreover, the following relation holds for any value of #:

—W,[@(r; 11), (1510)] ) (68)

W, le(t; 1), @(t;1))]

{f'(r), g'(1)}. They should be expressed as linear combina-
tions of {f(z), g(¢)} of the form

(1) g'(1)) = (f(0) g())E

from which we have

(? ,)()—(? g)(t)~, C'(n=E"'C@t). (70)

(E € GL(22,C)), (69)

The new Bogoliubov coefficients associated with the
choice {f'(¢), g'(¢)} then become
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(%
_Bl

o )(z; 1) = [CWO] )

=C 'EE"'C(1))
= C (0 C(t))

=(_“B _aﬁ )(t;t,), (1)

which shows the basis independence of the Bogoliubov
coefficients. The wave functions {¢(t; ;), @(;¢;)} are also
basis independent since they are expressed by the basis-
independent Bogoliubov coefficients [see Egs. (65) and (66)].

2. Lapse independence

We can show that the Bogoliubov coefficients and the
wave functions ¢(f; ¢;) behave as scalar functions under the
temporal reparametrizations, preserving the foliation of
spacetime. In fact, for such reparametrization t — 7 =
#(1), the pull-back of the lapse function N(z) [see Eq. (2)]
is given by N(t) — N(t) = (d7/df)N(#(1)), and we can
choose a new pair of solutions {f(¢), (1)} as f(r) =
f(#(r)) and g(r) = g(#(z)). Then, we can easily show that
the functions p(f)w(?), u(t), v(t), and W,[f(1), g(#)] trans-
form as scalar functions under the reparametrization. Since
the Bogoliubov coefficients and the wave function ¢(z; ¢;)
are written as combinations of these functions, they also
transform as scalar functions. This means that there is no
need to care about the temporal reparametrization [i.e., the
choice of the lapse function N(¢)] when we construct vacua.

F. Feynman propagators
We consider the region 7; <ty = {t, ¢’} = 1, < t;, where
t; and 1; are the future and the past boundaries of the
spacetime region we consider. The in-out and in-in propa-
gators are defined with the following two steps:
Step 1: We first introduce the following two-point func-
tions from our wave functions ¢(z; 7,) and &(z; 1,)°:

O_T t t/ O
Golts 10, 10) = QI T2DaI0)
<0[1|0t0>

i
W, Le(si1), @(si1)]
(s: arbitrary), (72)

e(t=;1)@(t<; 1)

’If we instead use Gt t'5t1,19)=(0,, lg* (1)q(t)|0, )/
(0,,10,,), then the corresponding in-out propagator will not
coincide with the propagator obtained by the standard
path integral (see Sec. V), and thus we do not consider this
choice in this paper. By contrast, the in-in propagator still
has options for its definition (e.g., Gyt 1’51y, tp) =
(0,,ITg(r)q("0,,)/{0,,10,,)), and we leave for a future work a
detailed study of such options as well as an investigation of the
relation to the path integral based on the Schwinger-Keldysh
formalism [12,13].
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<Ot0|qu(t>)q(t<)|0to>
(0,104,
B i
VL@ (s:10), @(s: 10))(T,)
X (13 10)@(t<; 7o), (73)
where 7. = max (¢, 7'), t- = min(z, /) and V,[f, g](s) =

p(s)f()&(s) — p*(s)f()g(s)."
Step 2: We then define the in-out and in-in propagators
by sending #; and #; to the values at the temporal boundary,

Goolt, 1519, 19) =

Goin(r 1) = lim Go(t, '3 11, o), (74)
0=t

1=t
G/in(g 1) = limt Goolt, 1'; 1o, 1) (75)
hy—t;

Here we make a few comments. To obtain the last
expression of (72), we use the following identities which
are direct consequences of Egs. (59), (62), and (68):

a; = a(ty;tg)ag — ,3(11510) (@ + B(ty;5 tg)ay)
a(tl’ tO)
= m(ao = Bl tp)ay), (76)
<0—z,|611670|010> _ 1 (0—zl|(ao = B(ty319)a,)ag0,,)
(0,10, alty;to) (0,,10,,)
_ 1 _ i
altist))  Wolels; 1)), @(s;to)]
(s: arbitrary). 77

We then have

Giolt, 151y, 1) =

<O—t1|0t0><011|(€0(t>§t1)al + o(t=:1))ay)

X (p(t<; to)ag + @(t;19)ao)l0,,)
(0—t||a1c"10|0[0>

= @(t=;1))@(t<; 1)
(0,10,

i
- Wp[¢(S; tl)’ ¢(S; tO)]
(s: arbitrary). (78)

e(t=;1)@(t<; 1)

On the other hand, to obtain the last expression of (73), we
start from the identities
+ . Vole(ssto), @(s;10)I(T) 4
ag = — p - ap
VoL@ (53 t0), @ (53 10)1(T)

1
TV it 805 1)) O

(79)

%Note that when & = 0, V,[f, g](s) coincides with W ,[f, g](s)
and thus is constant in s. Otherwise, it may depend on s.

024041-7



MASAFUMI FUKUMA, SOTARO SUGISHITA, AND YUHO SAKATANI
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i

(0,0,

VL8555 10)@(s3 1) (T)

(80)

which can be shown by using the Hermiticity at time T, g7 (T,) = ¢(T,) and p*(T,) = p(T,) (see Appendix A). We then

have

1
Goolt, 1519, 19) = W
101V

= @ (t=510) P(t<3 1)
_ i
V,[&"(s:19), @(s:10)1(T)

0, [(@(t=: 10)ag + &(1=:10)ag) T (@(t<: to)ag + @13 19)ay)l0,,)

<O[0 |&(1).d()|0t0>
(0,,10;,)

@ (t=319) @5 19). (81)

When we need to specify Ty, we will set T, = . as in [23] [see also discussions following Eq. (109)], which leads in the

Schrodinger picture to

(U(t, tO)loto! t0>)quU(t>, t-)q,Ult<, tO)lotor to)

Goolt, 5 1y, ty) =

When p(z) and w(f) are asymptotically constant in the
remote past [i.e., p(f) ~ pi, and w(f) ~ w;, as t — 1],
we can choose a pair of independent solutions {f(z), g(1)}
as those which behave as

f(t) ~ e7iont, g(f) ~ etiont (t~1). (83)
If we choose such a basis, we then have
M() -~ O, IZO ~ —Zipinwinefi‘”i"to, (84)

v ~ 2ipiy @i, Uo~0 (fp~1), (85)

and from Egs. (65) and (66) the wave functions at the
remote past are found to behave as

1
1 ty) ~ ——m
go( 0) \/zpinwin

1
o(t; 1)) ~ ———
QD( O) Vzpinwin

A conclusion of the same kind can be obtained for the wave
functions (¢(z; 1), @(t; 1,)) if p(¢) and w(r) are asymptoti-
cally constant at the remote future. This behavior of the
wave functions will be directly seen in concrete examples
given in Sec. III and Appendix B.

e i@nlt—t) (86)

Fiwiy(t—10)

e (t~tistg~1t;). (87)

II1. SIMPLE EXAMPLE: SCALAR FIELD
IN MINKOWSKI SPACE

In this section, to demonstrate how the prescription of
the previous section works, we consider a free real scalar
field ¢(x) living in Minkowski space with the metric

ds? = —d? + dx% (88)

Ut~ 1)0,, to)I?

(82)

Another well-studied example is investigated within our
framework in Appendix B.

A. Setup

In order to clarify the structure of mode functions, we
first assume that the spatial part is a (d — 1)-dimensional
torus of radius L/27, which we will take infinite after-
wards. The wave vectors k then take the following values:

kzzfﬂn (n € 7971, (89)

Fork = (kj, ks, ..., k;_), we write k > 0 (or k < 0) if the
first nonvanishing element in the sequence {k, k, ...} is
positive (or negative). Note that k <0 is equivalent to
—k > 0. We write k = 0 if k is the zero vector (k = 0).
We introduce a complete set of (real-valued) eigenfunc-
tions {Y; ,(x)} of the spatial Laplacian A,_; = Y9" 9? as

1

k=0: Yk=0,a=1 = \/—V (V = Ldﬁl), (90)
2
k>0: Yy ,—(x) E\/;cosk-x, (Ch))
2.
Yia—s(x) = ‘fvsmk - X. 92)

They satisfy the orthonormal relations,
[ 4 Vi) = BB O3)

and we expand the scalar field ¢(x) as

dx) =t x) = D D (i (x). (94

k=0 a
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The action then becomes
2
St = [ o] =500, 000 ~ 207 ]

-3 3 [afiio-Le0] o9

k=0 a
where
d—1 1/2
o = Vk* + m? (k = |k| = [Z kzz] ) 96)
i=1

We thus have the following correspondence with the in-
gredients of the previous section:

q(1) = ¢y (1), p(t) = €, 97)

() = o, = e ®w; (= constant in7).  (98)

B. Propagator for each mode

The equation of motion is given by ¢ + w?*q = 0, and
we choose a pair of independent solutions as

[ =e, (1) = &', (99)

Their Wronskian is given by W,[f, g] = 2ipw = 2iwy,
which is constant in .
The functions u(¢) and v(7) are easily found to be'’

u()y . Y _ [0
{ﬁ(t)} = pLi0) = iof(0] = | e (100
v L _ Qiw, e’
{l_}(t)} = plet = iogn] ={ 1 aon
and using (65) and (66) we obtain the wave functions as
1
@(t; 1) = W[Uoﬂﬂ — upg(t)]
1 .
= —iw . (t—19)
N , (102)
N 1 _ -
(P(t’ tO) - Wp\/m[v()f(t) MOg(t)]
N S ) (103)

;

2(1)k

""The Bogoliubov coefficients can be calculated by using
(68) as

alty;ty) = eiw,‘(t]—to))

Blt1519) =0,

al(ty;tg) = e ieti=n), B(ti;t9) = 0,

which indicates that the vacuum at a later time, |O,1>, coincides
with the vacuum at an earlier time, IOtO), up to a phase.
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e(t:ty) = Wp\/+m—wl[vlf(t) —u;8(1)]
1

= —lag(t=n), 104
¢ (104)
5(t510) = —— [, £(1) — t,8(1)]

A =, ALV —ug

1 W 2pio, 1 1
= iwk,e(t_tl). 105
= (105)

From them, we have

WLe(s; 1)), @(s;19)] = iel@relni=), (106)
V,[@*(s3 1), @(s319)] = iel@rem@ne)lsmt0), (107)

and the two-point functions take the forms

i

Graolt, 51y, 1) = G2 0] e(t=, 1)@t 10)
1o

Wole(s:t), &
— emion) (108)
2wy
1
Groolt, 1 1, 1) = VL@ (s310) @ (s; 20) (T )
X @*(t=310) (1< 1)
I P e IR SY (109)

2C()k

Note that the dependence on 7, and ¢, totally disappears in
Gy.1(t, 1y, t;) for Minkowski space, and thus we need
not to take the limit 7y — —o0, f; — +00 to obtain the
in-out and in-in propagators. We see from (109) that the
behavior of Gy oo in the region k — oo gets significantly
improved if we choose T, such that 7, = t~.. By simply
setting T, = t~, we obtain

—iwy (t=—t
e ‘wk,g(> <),

. . 1
G/ ) = G ) = 5 (110)

Wy
which will be denoted by G(s,#) in the following
discussions.

C. Propagator in spacetime

Once propagators are obtained for each mode (k, a), the
propagator in spacetime can be obtained by summing them
over the modes. The manipulation is known very well for
Minkowski space, but we here review it briefly for later
reference.

The in-out or in-in propagator is given by the following
summation (f; = —0, t; = 00):
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Gout/in ()C x/)

(0, 1T s o (1) o, ()10,,)
Z Z k k |

k=0 ad <O—r1|010> )
X Yk’a(x)Yk/’a/(x'). (111)
i 04|81 (1) ie,a (12)10,,)
Gm/m(x, x 0 ,a , 0 I
BP0 S -
X Yk,a(x)Yk’,g’(xl)~ (1 12)

Since the two-point functions are diagonalized with respect
to the modes,

0, IThy ()P ()]0
0, | ¢k£¢k, ()10,,) | = Gt )OS
<0f1 |0fo> :;,::,f
(113)
<0t0|¢]1; (l‘>)¢k/a/(l‘<)|0,0> |
- - =G (I, l‘/)‘S ’601 a»
(0,,10,,) oty R
(114)
we have
G{‘i“i[/‘lr?}(x,x ZGI‘ f, t ZYka X)Yk a(X)
k=0
= 3 Gi(t, )Ry (x, x'). (115)
k=0

Here, Ry(x,x') = Y Y, ,(x)Y} ,(x') are easily calculated
as

1

2
v Rk>0(x,x’)=‘—/cosk-(x—x’), (116)

Rk:()(x, x’) =
and thus we have

Glx, ) = l[ck o6, ) + 25 Gylt, #) cosk - (x — x’)]
k>0

= %ZG,{(L tYcosk - (x — x)

d 'k

)z mvE ———G(t, V) cosk - (x — x'),

(117)

where we have taken the limit L — oo in the last equality.
The integration (117) can be performed easily (see
Appendix C), and we obtain

PHYSICAL REVIEW D 88, 024041 (2013)
1

Qm) Tl — X7

% f ” dkkS
0
=272

~ 2o + i0)@ I/

Gx, x') =

Gi(t, ') Jza(klx — x'1)

K,z;z(m\/a +i0) (118)

with o = (x — x)%. Here, J,(z) is the Bessel function, and
K, (z) is the modified Bessel function of the second kind.

IV. SCALAR FIELD IN DE SITTER SPACE

A. Geometry and definitions

We first recall the geometry of de Sitter space and collect
the notation and definitions, where d-dimensional de Sitter
space (dS,) has the topology R X S¢~! and is defined as a
hyperboloid,

nMNXMXNzez (M,N,...ZO,...,d),
(muy) = diag(—=1,1,..., 1),
in (d + 1)-dimensional Minkowski space with the metric

(120)

(119)

dS2 = T]MNdXMdXN

and ¢ is called the de Sitter radius. The constant Ricci
scalar curvature is then given by R = d(d — 1)/€>.

There are several well-known coordinate patches that
cover all or just a part of de Sitter space. Among them, we
consider the global patch and the Poincaré (or planer)
patch, which we will briefly review below.

1. Global patch
This coordinate patch covers the whole region of de Sitter
space. The embedding of dS, is given by the functions
X7, Q) = €sinh 7,

(121)
X! (7, Q) = €cosh Q!

I=1...,4d),

with £ - ) = 1. Here, 7 runs over the range —o0 < 7 < 00,
and € is a unit vector in R? spanning a (d — 1)-dimensional
sphere. With the coordinates (7, £2) the metric has the form

ds? = ¢?[—d7? + cosh?7dQ7_, ]

=[-(1 -2+ (1 - A7 102, ] (122)

In the last equality, we have introduced another temporal
coordinate ¢ as

t=tanh7 (—1<t<1). (123)

2. Poincaré patch

This coordinate patch covers only half of de Sitter space.
The embedding is given by the following functions with
7 <0and x € RI!
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€2 — 92 + |x)? ) X!
X0(n, x) = + Xi(n,x) = 0,
<7 -n
€2 + 2 2
X, x) = 01— K (124)
—27

where the spatial norm is defined by |x| = .x x=

“5 ;;X'x/. Note that this patch only covers the region X° +

X? = £2/(—n) > 0. In these coordinates, the metric takes
the form

, —dn? + dx - dx

172

ds? = ¢ (125)
The Poincaré patch is not preserved under a finite
action of de Sitter group SO(1, d), but is still preserved
under infinitesimal actions of SO(1, d). In fact, the infini-
tesimal actions are given by the Killing vectors M,y =
Xydy — Xy0y, which take the following forms in the
Poincaré patch:

M()d = 7]6,] + xiai, (]26)

1 ) o
My + My = 2[2)6’778,7 +2x'x70; — (—m* + [x[H)a,],

(127)
My — My; = =€, (128)
Mij:xiaj_xjai. (129)

— sinh 7sinh 7/ + cosh 7 cosh 7/ - Q'

Z(x, x') =

n2+n12_|x_x/|2
2n7’

One can easily prove that any two-point function G(x, x’)
that is invariant under the infinitesimal actions My +
M,y = My ()3 /dx* + My (x)d/dx" must be a func-
tion of the de Sitter invariant Z(x, x’). We will see that all
the propagators constructed in this paper turn out to be
functions of Z(x, x’). In what follows (except in Sec. VIC),
we set £ = 1.

B. Scalar field in the Poincaré patch

We first consider a free real scalar field in the Poincaré
patch. The action takes the form'?

In this paper, we put a possible curvature-coupling
term, (&/2)R¢p? = (d(d — 1)é/2)¢p?, into the mass term,
(m?/2)¢>.
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These Killing vectors do not have the d,, component at the
boundary of the patch = 0 as long as |x| < co. Similarly,
if we define another time coordinate t = 1/(— ), we find
that the Killing vectors do not have the 9, component at
another boundary at t = 0 (i.e., » = —00). These results
show that the infinitesimal transformations map any point
inside the Poincaré patch (i.e., |x| < o0 and —o0 < 1 < 0)
into the same region.
We define the de Sitter invariant quantity
Z(x, X') = €2y XM () XN (1)), (130)
which is related to the geodesic distance d(x, x’) between
two points x and x’ via the relation

d(x, x’)).

(131)

1y =
Z(x, x) cos( 7

It takes the following values depending on the positional
relation between x and x’:

>1  (forxandx' timelikely separated)
Z(x, x'){ =1
<1 (forxandx'spacelikely separated),

(for x and x' lightlikely separated)  (132)
as can be seen from the identity

20,3) = 1= 53 M (XV() = XM ) XV(0) = X))

(133)

In the global and the Poincaré coordinates, Z(x, x') is
written in the form

(global coordinates)

134
(Poincaré coordinates). (134)

1
SLe(1=— [dn ¢ xR0, 80, + m? ).
(135)
Using the same eigenfunctions {Y;,(x)} as those

given in Sec. III [Egs. (90)-(92)], we expand a scalar field
¢ (x) as

60 = dn 1) = 3T ra(m)¥i ).

k=0 a

(136)

The functions defined in Sec. II then take the following
form [see (8) and (9)]:

g(n) = dra(n),  p(n) =es(=n)~2, (137
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w(n) = e o \m* (=) P+ K = e Fwi(n), (138
from which we introduce'?
m, = e ®m, k, = e k. (139)
Note that
Wpo = wk(no)no::’mk, Wi = wk(m)m:—:o_im-
(140)

1. Propagators for each mode in the Poincaré patch

The equation of motion (39) takes the form

(d —2)g(n) + (kK2n* + m¥)g(n) =0, (141)

and we choose a set of independent solutions as

n%§(n) —

fn) = (=n)7J,, (—ksm), (142)
g(n) = (=n)TN,, (—kem), (143)
with
(%)2—m?;=v+is <m<%)
v, =

[,,
Here, N, (x) is the Neumann function. Note that Rev, > 0
for any positive value of m. The Wronskian is given by
WIf, gl(n) = —(2/7)(—n)?"2, and thus

W,Lf, g1 = p(OWLS, g)(r) = —ei‘a%

The functions u(n) and v(n) of (54) and (55) have the
forms

)

5
2 Ve

+ ksn‘ll+ve(_ksn)];

Il
Y
QU
(SN
—
N——
[3S)
I
3
N
=
Il
3
(i8]
I
N
QU
||
—_
N——
1
N
N
N
N

(145)

= o) ), (~ke)

(146)

3Qur prescription for Sec. II cannot be applied directly to the
exactly massless case, where w(n) = 0 for k = 0. We actually
define the massless theory as the m — O limit of a massive
theory.
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v . _
{ _(n)} = —e*(-m) T
()
d—1 .
X [(T Ty, * lw(n)n)NVe(—kan)
kN, (k)| (147)
where we have used the formulas
aJ,
zJ = v/, (2) — 2J,11(2), (148)
0z
N,
z% = vN,(2) = zN,41(2). (149)
The wave functions are then given by
() =— ( n) Tl f(n) —ug(m)],  (150)
2,/2 Wiy
e(mm)=— ( n) T 0. (n) —fizg(m)] (151)
2,/2 Wi g
from which the two-point functions are obtained as
Gio(n, m's 11, mo)
i
= - @(n=;11)@(n<; no)
W Le(s; 1), @(s; m)] 177 TIEH<2 70
(s: arbitrary), (152)

Goo(n, '3 Mo, Mo)
i

V[ (im0 @i o),

) " (n>:m0)@(n<; M)

(153)

We now send 7, n; to the boundary of the Poincaré
patch: ny — n; = —o0 and n; — n; = 0. By using the
asymptotic forms of the Bessel functions,'*

L 2= (1/4)
7 ke [1+12(—ks77)]

X g ~ilk, T (154)

1]—»00

J, (—k.m)

— — 00 _1 V2 - (1/4)
N, (=k,n)" ~ —k, ‘1/2[1+i£7]
e g e 2k,
> e_l(kbn+71(2V£+])) (155)
—0 1 ken\Ve
J, (—k,m)"~ 7(——) ) 156
VE( 877) F(l + VS) 2 ( )

“We have used the inequalities Rev, > 0 and Re(—ik,7n) > 0.
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n—o0  I'(vg) (_ kg_n)_’”a
T

Nvg(_kan) )

(157)

one can easily show that uy, ii;, v;, and v; (I = 0, 1) have
the asymptotic forms

. eis d—?2 7(2vg +1)
uo N lvo T 7’%( 2 )( 77()) 26 1<k£n0+ 4 ))
(158)
. Rk . 7(2vg +
fig ~ ity ~ —iew,/—a(—no)*%e*“kwo*‘%”h (159)
T
uy eis(ka/Z)VE _d=ly d - 1 .
~ — et (= ST Ve +
{al} NN R ( 2 “’"5)’
(160)
v eeT(v,) (k. /2)" " a1,
I e (=m) 27"
(51 o
d—1
X (T -V, * img). (161)

Since v, always has a positive real part, we obtain the
relation (—7n;)~% > (—n,)% in the limit n; — 0, from
which we find

luy | < [vyl, li, | < [o4]. (162)
Thus, we find that the wave functions behave as
() ~ = T () — ig(m)], (163
s10) ~ — - v - :
® "N, No zm No 0 n g\m
7T€7i‘g d—2
o (13 ~——==(—m) 2z —1 , 164
&(n; o) 2\/ﬁ( n0) 2 Dolf(n) —ig(n)]  (164)
7T€_i‘g d—1
; ~——(—7m)) 7 , 165
e(n; 1) 2\/%( n) 7 f(n),  (165)
7T€7i8 d—1
; ~——e=(—m)) v , 166
e(n; M) 2\/%( )7 01f(n) (166)

with which the weighted Wronskian becomes

W,Le(n;m1), @(n:m0)]

77.26 2ie dz
e (0 ) T aoW, L), £n) g ()]
= ) S, (167)
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V,[&*(n:m0), @(1510)]

77.2
~a 70) 21002V, [(f () —ig(m))*, f(n) —ig(n)].
(168)

The in-out propagator can be readily obtained by
substituting (164), (165), and (167) into (152) as

out/m( mn )
T () f(n2) —ig(n)]

(=) (=) ]T T, (—kyn)HP (—k,mo).  (169)

2
T
2
Here, H'" 2)(x) are the Hankel functions defined by

HP(x) =17 ,(x) £iN,(x), and we have set € = 0 in the
last expression as far as it does not change the analytic
property of the propagator. One the other hand, in order to
calculate the in-in propagator,

(n,m")
= V—[f(n>) —ign=)I'[f(n<) —ig(n)]

1n/1n

(V, = V,[(f(s) = ig(s))", f(s) —ig(s)](ny)),
(170)
we first notice that the complex conjugate of
f(n) —ig(n) = (77)21'1(2)( kem) is given by

[f(n) — ig)] = (=) THY (—=k_,n). Thus, for the
small mass case, m<(d—1)/2 (v €R), we have

[H Szz)(z)]* = HS,I)(z*), so that we obtain
f(n) —ign) = (=n)THP (—k,m) + O(e), (171
[f(m) — ig(m]* = (—n)TH (—k_,m) + O(e),  (172)
which lead to
v, =84 o) (173)
a

For the large mass case, m = (d — 1)/2 (v = iu € iR),
we have [H} (2)]" =[H{) ()] =H"), (") = ™ H}))(2"),
so that we obtain

fn) —ig(n) = (—n)THP (—k,m) + O(e),  (174)
[f(n) —ig(n)]* = e ™ (=)= HY (—k_,m) + O(s),
(175)
which lead to
v, = e—”#ﬂ + 0(e). (176)
a

Substituting Egs. (171)—-(176) for (170), we obtain
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Gin/in(n’ 7]/)
= ZLE I H (ke o) HY (ke ).
(177)

We here make a few comments. With & set to zero, the
wave function @(n; 1) converges in the limit 7y — —oo
to a finite function

Pin(m) = %F(—n)dT'H(VZ)(—kn) (178)
up to an oscillatory phase, while ¢(n;n,) diverges as
(=m;)7” in the limit i, — 0. This difference can be
attributed to the fact that the timelike vector 9, becomes
asymptotically a Killing vector in the remote past but not in
the remote future.'” The finite asymptotic function ¢;,(7)
coincides with the positive-mode wave function associated
with the Euclidean vacuum up to a phase. One should note
that, in the limit n; — 0, the divergence in ¢(7;7;) is
canceled out with that in W,[¢(n, 1), (0, 10)], and the
in-out propagator is obtained with a finite value.

For completeness, we show the asymptotic forms of the
Bogoliubov coefficients,

I d—1
a(ny;ng) ~ — 2\%( kn,/2)” V( 5 —v—im)
X e ilksmo+ 72 (179)
d—2)T"
Blming) ~ —1 D) oy (kg

8V2mm
d - 1 . 7(2v+1
X (T —y— im)e*'(kwﬁ%), (180)

which diverge in either of the limits 7y — —oo and
n — 0.

2. Propagators in the Poincaré patch

Since the eigenfunctions {Y} ,(x)} are the same as those
given in Sec. III, the propagators in spacetime can be
written in the form

nul/m

m/m}(_x x/) = ZG m/m (’T’, /)ZYk a(x)Yk a(x )
k=0
—z dkk'T T (klx = x'])
Qm) 7 x— x’|d_—[ E

{oul/m

X G (n, ), (181)

as in the case of Minkowski space (see Appendix C).

*In fact, the Lie derlvatlve of g,, with respect to the vector
E§=0yis Legu, *(=m)7°
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For the in-out propagator, we have

e em [(=n)(=n)I7
2 em)T—x7

x [0 " Ak (klx — ')

Gout/in(x xl) —

X JV(_ks 7’>)H5/2)(_ks 77<)-

As is proved in Appendix D, this can be integrated to
the form'®

(182)

o—in(d=2)

(277.)11/2

with u = Z(x, x') — i0.
The in-in propagator

Go/in(y, x/) = W2 —1)" 1142QV 1/2(u) (183)

/i 7 [(=n)(=7')
G/in(y, ) = T LW ] QKT (ke — ')
4 2m T —27 B
X HY(—k_yn-)HY (—k,m<) (184)
can be rewritten in a similar manner to the form
d— d—
Gin/in(x xl) — F(Tl + V)F(Tl — V)
’ 2242
2 —d2 =2
X (u*—1) ’PV;I/Z(u), (185)
with u = —Z(x,x’) +i0. A proof is also given in
Appendix D. This can be further rewritten as
d l+ Fd l
Gm/m(x ) ( dvz ( )
(47T) 2T'(d/2)
d—1 d—1 dl—u
XFl——F v, —— — ;=
A rgt ) aso)
<) -1
T @02 e C,laa(w),
4 sin[7(5E—w)] 7%
(187)

where Kummer’s relation (B34) has been used in the first
equality and C% (x) is the Gegenbauer function. This propa-
gator is the same as the well-known in-in propagator
associated with the Euclidean vacuum.

If we consider the massless limit where v — (d — 1)/2,
the in-in propagator diverges, as was pointed out in [11]. In
contrast, we find that the in-out propagator has a finite
massless limit,

'®Here we have taken the limit ¢ — 0. P%(z) and Q% (z) denote
the associated Legendre functions of the first and second kind
that are defined on the complex z plane other than the cut along
the real axis to the left of the point z = 1. There are other types
of associated Legendre functions that are defined on the interval
(=1, 1), which we denote by P(x) and Q(x). See Appendix E for
their definitions and several useful identities.
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o im(d=2)

Gout/in(x’ x/) — (2 )
a

(188)

C. Scalar field in the global patch

In the global patch, as a complete set of eigenfunc-
tions of the spatial Laplacian A,_; on S?°!, we take
(real-valued) spherical harmonics {Y;,,(€2)}. They satisfy

AgrYy = —LIL+d=2)Yy M=1,..,N), and
the degeneracy N(Ld) is given by

(L+d-23)

d _
N =
L (d — 2)!IL!

QL+ d-2) (189)
with the exceptional case d =2 and L =0, where
N(()z) = 1. We choose them such that they are orthonormal:

f dQY, ()Y, (Q) = 8,8y (190)

Then, by expanding ¢(x) as

() =Y dru()Y (L), (191)
LM

the mode function g(rf) = ¢;,(z) describes a harmonic
oscillator with time-dependent mass and frequency of the
following form [see (8) and (9)]:

plr) = ée(1 — 2)™7, (192)

0(t) = (1 — ) e By L(L +d —2)(1 — ) + m?
=(1-)"'m@). (193)
1. Propagators for each mode in the global patch
The equation of motion takes the form

t
1— 7

(1) + (d — 3) §(1) + 0*(Dg() = 0.  (194)

We choose a pair of independent solutions as

fO) =0 =P, g)=(0-2)TQr®),

(195)

where

d —2\2 ,
k, = ——+\/(—2 ) +e HEL(L+d—2)

d—3
=k —ie (kEL-i—T), (196)

2 _ -2
= (> —1)""= Q%(u) (massless).
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and P (¢) and Q4 (1) are the associated Legendre functions
defined on the interval (—1,1) (see Appendix E). The
weighted Wronskian (constant in ) then has the form
'k, + v, + 1)
Ik, —v,+1)

The functions u(¢) and v(z) defined in (54) and (55) are
then given by

[20] - o452

W, Lf. g1 = p()W[f, gl(r) = €'* (197)

) = ito JPy o

Sy 1)PZ:+1(I)}, (198)
) ra- e 45 -ws
S 1)Q,’::+l(t)}, (199)

and the wave functions (¢, @) take the form

e el (k, — v, + 1)

N oy _

o(t:t) le_ﬁmf(k£+v£+1)(l 1) (v f(1) —u;8(1)),
(200)

o) =L ke =2 ¥ D) (o) 60,

2Im Tk, + v, +1)
(201)

We now send ¢, #; to the boundary of the global patch:
to — t; = —land 1y — 1y = 1. Using (E20) and (E21), we
see that u; = u(f;) and v, = v(r;) take the following
asymptotic forms in the limit #; — 1:

{ul } _ 2%:¢1® sin (v, )[(v,)

o

i

- 1 — ve
X (—dT + v, * irh1>(l — 27T, (202)

{Ul } ~2¥:~1ete cos (v, ) (v,)

Uy

d—1 d-l_vs

X <_T +rv, + il’l_ﬁ)(l - t%)*%*T

~IEm T, Smja{b_” } (203)
2sinwyv, L

and thus we find that the wave functions behave as'’

""The asymptotic forms given in Eq. (204) do not satisfy the
normalization condition (67). Actually, to ensure this normal-
ization, we need to add a subleading term proportional to
(1 — £2)*+/2, which is omitted from the above asymptotic forms.
The asymptotic forms, however, are still sufficient for calculat-
ing various propagators.
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e Ik, — v, + 1) i V1 2sin v

} L (1- t%)”’4‘{ _ }[f(t) - g(t)] = 71{
07 T COS TV,

{so(t;tl) _
ot 1) 2ml'(k, + v, + 1)
Here, vy, = e (1 — )" V/*/(\2m cos mv,), and we have used the formula (E10) and the fact that

. }(1 - 2)TP (). (204)

U

my— e em (t— +1).
Similarly, we see that uy = u(t,) and v, = v(¢;) have the following asymptotic forms in the limit 7y — —1:

2°7% cos (kU ke +2,+1) (41 e M1 = 2 (g
” T, A OT vt T (T tr, * lmo)(l )" 7% (d: odd)
~ (205)
{I/_l()} _ e®2% sin (mk )T(v,) [d—1 _ + 17 1— £ —d-z d:
EE=e— Ve, T 1My ( [0) 42 ( . eVen),

—eiepre] cos(wks)r(ys)<% o imo)(l — R EE (d: odd)
(206)

o]
ien—veg—1 _ . - _d— Ve
e ) (% + oy, lmo)(l _2)EE (d even).
Here, in adopting the asymptotic forms of P,’:f(to) and Q,’:j(to) for ty — —1 [see (E22) and (E23)], we have used the fact
that Rev, > 0, which particularly means that (1 — #3)~% > (1 — #3)7. The same inequality can be used to show that

(207)

{ 1o } < {Ijo } (d: odd),

itg U
MO 'U()
{ ~ } > { _ } (d: even), (208)
Up Vo
from which we find that
tt .
{gf( o } ~ 'yo{ Yo }(1 — 2FP(1) (d: odd), (209)
@(t;19) 0y ’
(210)

[ 1 u 1~y
{‘f’( 0)} ~—wf o - mEare (@ even)
@(1; 1) it ’

where y, = e *T(k, — v, + )(1 — )T /(2mI(k, + v, + 1)).
With the wave functions ¢(z; ¢;) at hand [see (204), (209), and (210)], the weighted Wronskian can be readily obtained as

+e®y 1 yovi o2 sinmy,  (d: odd)

W Lot 1), 36 10)] +y170v100(1 — 2)W, [P, (1), P,* (] (d: odd)
e\ 1), e\ ~ - v = ; _
P 1 0 —v1voviig(1 — )W, [P, (1), Q* ()] (d: even) —eyyoviigcos v, (d: even).
211)
We then obtain the in-out propagator
G, 1) = i i t 1)@t
L) ), gl ) £ )
sam _[(1 = 2)(1 = 2) VAP (1)Py (1) (d: odd), 01
i [ = 2)(1 = 2] VAP (1.)Qp(e2)  (d: even).

In the last expression, we have set € = 0.
To obtain the in-in propagator, we first notice that
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lvolP15olPV,Lf*, fIT,)  (d: odd)

213
lyollo PV, (g () (d: even), 1)

Vo = Vol@" (15 10), ¢(1510)] = {

from which we have

+f*(t>)f(t<) (d3 Odd),
(11 10) P13 19) — {w S (214)

GVt ') = lim - . .
mg (t-)g(t<) (d: even).

w1 VT 6 10), @06 1) (T

When the mass is large [m = (d — 1)/2 and thus » = iu € iR], we have

F0] = (1 = TP (0] = (1 = AFTP. (1) + Oe), (215)
[0 = (1 = AFIQr (] = (1 = ATQ. (1) + O(e), (216)
and thus
y 2isinh T
VL fI(T) = — O(s), (217)
V,le" gl(T,) = w + O(e). (218)
The in-in propagator is then obtained as
in st [ = )1 = 2)]TP, “(2)P(t2)  (d: odd),
G, o) = {2‘ (i) LT (219)
Finﬁ(ﬁm [(1-2)0-2)]7Q "(t=)Q (1<) (d: even).

On the other hand, when the mass is small [m < (d — 1)/2 and thus v € R], we have f*(r) = f(¢) + O(e), g*(r) =
g(t) + O(e), and thus V,[f*, f1(T,) = O(e), V,[g", g](T,) = O(e). This means that lim,_,_Gyl(t t'; 1y, ;) has the
singularity of the form @(e~'), and we cannot set £ = 0.

The waYSe functions at the remote past and future had been obtained for the heavy mass case (m = (d — 1)/2) in
[10,18] as

Pour(t) = (1 = A)YTP (1), (220)

_ 2ypix .
o) {(1 2Y5PH(1)  (d: odd) o)

(1 - A5QH () (d: even),

by requiring that ¢}, () (¢ oy () be regular for t — —1 ( — +1) and an analytic function in the lower half of complex m?
plane (see also [24] where they are obtained by suitably choosing the Jost functions). Our propagators (212) and (219) for
m = (d — 1)/2 are consistent with these wave functions.

From (68), the Bogoliubov coefficient «(z;; #y) can be found to have the asymptotic form

'"®We here give the following identities which are useful in comparing our results with the literature:

ZJ%WLcoshLTe(*dT]*L*”)T d—1 d—1 d-1
+L +L+ vl tv—e ) =(1-2)7TP”
T(1+») (2 "2 i ) (1= £y P70,
2T+ Leosh LreTHL—MT 1 — 1 d—1 4o
F +L, +L—-vl—v— +27)=1—t2—PV—z
T(1 - ») (2 2 SR SRR
A e Pt (=D'P(1) (d: odd)
Tk+1— ) (—1)*12Q2/m)Qc ¥ (1) (d: even)
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.y Z2isin(@v) 2711 (v) _d—1 . N
a(ty;to) p- [ Ty ( > +v+ 1m1)(1 17)2 :I
27 leos(m)I()I(k—v+ 1) (d—1 _oy-n
% [ Sk + v + 1) ( > 7 lmo)(l o) ] (222)
2i si 2v-IT d—1 . _ e
B1y:10) ~ + isin (771/)[ 2ﬁl(lV)<_ . t oo+ 1m1)(1 - ) T:I

v [_ 27 L eos (wk)T(w)T'(k — v + 1) (d -1

Lmglk+ v+ 1) vt imo)(l - t%)_%s] (223

in odd dimensions, and

v=IT _ .
a(tl;t()) ~ —icos (7TV)|:2 2’,71(]1})(_ d 5 1 + p+ 1},'—11)(1 _ t%)_T]

2Vsin(wk) ' (W) 'k —v+1)/d—1
[ m2myl'(k + v + 1) ( 2

- imo)(l - rg)*%], (224)

B(t1;t0) ~ +iCOS(7TV)|:2V1F(V)<— d; s irﬁ])(l - t%)JTS]

27sin (k)L (V)l(k —v+ 1) (d—1 o oy
[ 2Lk + v + 1) ( y vt ”"0)(1 1) ] (225)

in even dimensions.

2. Propagators in the global patch

We now make a sum over all modes to obtain the propagators, G°V"(x, x') and G/ (x, x'). For d = 3, the summation
over M can be written with the Gegenbauer polynomials as

N,

“3

2L +d —2 42 M
V(@)Y (@) = 227 CRQ- Q) (0, ] = 274/T(d/2). (226)

| (d = 2)1Qy-l

M

As for d = 2, the sum has the form

(227)
M=1

v L (L =0),
/ _ a
2 Yiw(@Yn(@) =1 0.0 L=1)

which is the same as the d — 2 limit of the expression (226). Thus Eq. (226) can be understood to hold for any
dimensionality d = 2. The in-out propagator in spacetime then takes the form

(d)
out/in N — - out/in/, s o N — 2L +d-—2 outfing, 52 ,
GV, x') = D GIL 1) D V(@)Y (Q) = G (1, 1)C 7 (Q - ), (228)
M=1

L=0 L=0 (d - 2)|Qd—l| L

which becomes
_ 17
2sin (mwv)(d — 2)|Q -]

G/ (x, x') [(1—2)1 = 2)] DAY QL +d — 2)P,;V(t>)P;;(t<)C?(cos 6) (229)

L=0
in odd dimensions, and
G2 (x, x') = i 1= 2)(1 = 2)]4 V4 S QL + d — 2)P:*(12)Q¥(t.)C.7 (cos 6 230
0 = T =, L R R S P ()QL()C (cosf)  (230)

in even dimensions. Here, we have defined 6 via the relation - / = cos 4.
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Using Egs. (E24) and (E25) and introducing
—tt' + cos 6

us(x, x') = —Z(x, x') £i0 = — * 10, (231)
- (1— 231 — 1?2

we can rewrite the in-out propagator in a de Sitter invariant form,

iod=2
—jgd=2
—-e

GO 2 = [~ PO () — (w2~ 1)FQT () (232)

2(27r)2 sin (7v) ¥72 ~3
ie" ™7

ut/i - —d=2 _u

GAG™ (6, ) = —————— [} — 1) 9 ,l(u+) + 2 - 1) ,l(u )] (233)
2(2r)2 cos (mv) 3 1

In the massless limit m — 0 (or v — (d — 1)/2), we have

sinmv — 0 (d: odd), cosmv — 0 (d: even), (234)

and thus the propagators (232) and (233) diverge. We thus conclude that there exists no finite massless limit in the global
patch, as opposed to the case of the Poincaré patch.
On the other hand, the in-in propagator in the heavy mass case (m > (d — 1)/2) takes the form

- 2L+d—2

Gnfiny, x)y = 2T LT Ginfing Q- @ 235
(-x-x) ;)(d_z)lﬂd, | ( ) L ( ) ( )
which becomes
Gin(x, ) = o (1= 2)(1 — 2T 3L +d - P IPLIC (os8) (236
Codd 2sin (7v)(d — 2)|Qy ] - <& k s

in odd dimensions, and

2i
msin (mv)(d — 2)|Q 4]

Gl (x, ) = [(1 = 2)(1 = ) S QL + d - 2Q; " (1-)QL()C/ (cos6) (237
L=0

in/in out/in

in even dimensions. Here, » = ip = iv/m?> — (d — 1)*/4 (n € R;). Note that Gy (x, ¥') = G4 " (x, x), which is
consistent with a well-known fact that the in-vacuum equals the out-vacuum up to a phase in odd dimensions (see
[18]). The summations in (236) and (237) can be carried out analytically by using (E24) and (E27) and are again expressed
in de Sitter invariant forms,

d=2

Gal ) = G = o T - R - - QR | )
Gt = ) ) — 1) )
227 sin v ; :
e T e = )P ) + e = )P 0|
- —m{w S DR )~ (2~ )FQT W)
| (A LR S IO e Ve G | (239)

V. FEYNMAN PATH INTEGRAL IN DE SITTER SPACE

In this section, we consider the Feynman propagator obtained by a path integral in curved spacetime with the
background metric (2),
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JTde 1 (x)p(x')eiS:[4]
[[dgpleiS:e]

(p(x)p(x) = (240)

1 .
s.o1 =5 [ar [aaheen-tac

X (9,40,¢ + e PN [AT2PA 1 b — m*>p?)).
(241)

This action gives a Hamiltonian of the form H,(¢) =
e *[H ()] ,—o] in the Schrodinger picture. We expect that
the propagator defined by the path integral agrees with the
in-out propagator obtained in the preceding sections. In
fact, suppose that the base spacetime where ¢(x) lives
has a sufficiently large noncompact region in the temporal
direction near the future and past boundaries at ¢ = ¢ and
t = t;, respectively (see Fig. 2). Then, due to the existence
of ig, if we first define the path integral for a finite interval
(2, t;) and send the initial time ¢, and the final time ¢, to the
infinite past #; and the infinite future #¢, respectively, then
the initial and final states would be well kept subject to the
projection to the instantaneous ground state at each moment
to or t;, and the dominant contribution to the path integral
will be only from the configurations that are in the instan-
taneous ground states near the temporary boundaries. In this
section, we first identify the (sufficient) condition under
which such projection onto the instantaneous ground states
can happen and show that both the Poincaré and the global
patches indeed satisfy this condition.

A. Effective noncompactness in the temporal direction
We first expand ¢(x) as in (5),

P(x) =D b, (1Y, (x). (242)

The propagator is then written as a sum of the propagators
over the mode n,

(px)p(xX)) = D (b, (D, (1NY,(0)Y,(),  (243)

where

sufficiently long

for the projection
to the ground states
to be completed.

FIG. 2 (color online).
integral is performed.

The spacetime region where the path
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J [dqﬁn];é eiSuelbinilg (e (1)
f[dqsn]i(l)eisﬂ,s[(ﬁn;tl,l‘o] s
(244)

<¢n(t)¢n(tl)> = !llln[/

=1

Sneldnsth, to] = [ ! dt%[e“lp(t)lé%(t)

— e “lpllw,(01*¢5(1)]

For a fixed mode n, the propagator (¢,(t)®,(¢')) can be
given the following operator representation in the
Schrodinger picture (we assume ¢ > ¢ in what follows):

li <¢ 1> tl | U(tly t)¢n,s U(t, t/)¢n,sU(t/’ tO)l lﬂoy tO)
m .

0 (Y1, 11Uy, t0)| o, 19)

1=ty

(245)

(246)

Here, |, t;) and |, 1) are the final and initial states to
be specified as boundary conditions when performing a
path integral, and are formally taken to be (¢, |, 1;) =
(P, |0, o) = 1 for the path integral (244). In the follow-
ing, we show that the amplitude (246) can be replaced by
the in-out propagator

lim <Ot1’ tl |U(t1r t)¢n,sU(t’ t1)¢n,sU(tI’ t())loto’ t0>
o <Ot11 4 |U(tl’ tO)loto) t()>

=ty

(247)

for arbitrary |, £;) and | ¢, 1), provided that the change
of time variable ¢ — o(¢) such that |w,(¢)|dr = do maps
the region (#;, ¢) onto a noncompact region for both sides,
(e, o, =0(t;) = —o and o, = o(t;) = +00). When
this condition is met, the foliation under consideration
will be said to be effectively noncompact in the temporal
direction for the mode n.

It is enough to show that the following equalities hold
for an arbitrary state | r):

lim (¢, 1, |U(ty, D) = lim (1, 1,10, , 1)
11—1; -ty

X0y, 11Uy, Dlp),  (248)
lim (U, 10)l 4o, o) = Lim (U7, 1)10;, 70)
X {0y, tol Yo, to)- (249)

To show the first equality, we first introduce a new time
coordinate o such that |w,(f)|df = do, which maps the
time interval (z,¢;) to a new interval (o, o). Then
the Hamiltonian for the mode n becomes (we will omit
the index n for brevity)'®

H,(t)dt = e #|w(®)]al ()a,(t)dt = e ebl ()b (0)do
(250)

We will discard the zero-point energy in the following
discussions.
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t 1 ' ;A0
1 N ’ ’
I h ’ R
k L 8
O =00
/ p
1 7 ¢

FIG. 3. A path labeled by {ny, s;}. The amplitude suffers from
a suppression proportional to the area of the shaded region. If
0| — 0y = 0 as t; — g, only such paths survive that are the
instantaneous ground states in the far future (i.e., n, = 0 for
large enough k).

with b,(o) = ay((g)), and the time evolution operator
becomes

U(t,, 1) = Texp [ —je i / ” da'b;r(a)bs((r)]. (251)
We then introduce a small interval 6 and divide the new
interval into N segments (see Fig. 3),

0'1 — g

5

By introducing s, = o + k8 (k= 0,1, ..., N) with sp=0
and sy = o, the time evolution operator becomes

N=NG6,0,—0)=

(252)

N
Ulty, 1) = [Texp[=i8e~#b] (sp)b,(s)].  (253)
k=1

Substituting this to the amplitude (¢, t;|U(z;, )| ) and
inserting the identity 3% _ |ng, si)ng, sl = 1 at each
time s;, we obtain

W, 1,|Uty, D1y = Zefsézk""@ﬁb tlny, syXno, sol i)
{mi}

N
< [Téme P P2 LA CR] PN
k=1

(254)

We thus find that the amplitude (i, 1;|U(z;, 1)) is
expressed as a sum over the paths, each path correspond-
ing to an evolution of energy levels (not of “‘positions’)
and represented by a sequence {n;} (k =0,1,...,N). We
see that each path receives a suppression factor
exp[—e8 XY | ni] = exp[—e X (area)], where (area) is
the area of the shaded region in Fig. 3.
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400

]

[

-

.

FIG. 4 (color online). Poincaré patch with light mass: the real
part (upper) and the imaginary part (lower) of the in-out propa-
gator sz/ "(n, ') (dashed curve) and the propagator
(Pr(n)dr(n’)) (solid curve) are shown for d =4, m = 0.5,
k=1,a=002 =001, n, = —60, n;, = —0.01, and o' =
—30.005. Recall that n; = —oo and 5, = 0.

We now take the limit #; — 7. If the foliation is effec-
tively noncompact in the temporal direction (i.e., if o
approaches o, = ), then N(8, oy — o) goes to infinity
as t; — t; for the fixed small number &, and thus the
suppression factor removes the contribution from any
path having a nonvanishing tail for large ¢ and projects
onto a set of paths satisfying the condition n; — 0
(k — o). This proves the equality (248). Equality (249)
can also be proved in the same way.

We can easily show that both the Poincaré and the global
patches are effectively noncompact in the temporal direc-
tion for any mode. As for the Poincaré patch, the frequency
for the mode k is given by |wi(n)| = Vm?*(—n) "2 + k2,
and thus it behaves as |w;(n)| ~ k (n ~ 5, = —o0) and
|wx(ml ~ m/(=) (n ~ n; = 0). We thus have

—o;~ | dnlei(n)|l = k(=n;) + const = +oo,
ni

n
oy ~f " dnlwg ()] = mlog

+ const = +o00.

f
(255)
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. 600F

S

FIG. 5 (color online). Poincaré patch with heavy mass: the real
part (upper) and the imaginary part (lower) of the in-out propa-
gator Gz‘"/ "(y,n') (dashed curve) and the propagator
(Pr(n)dr(n’)) (solid curve) are shown for d =4, m =9,
k=1, a=0.02, €=0.07, ny=—-60, n; =-0.01, and
1’ = —30.005. Recall that ; = —o0 and 7, = 0.

This shows that the Poincaré patch is effectively noncom-
pact for nonvanishing modes k.*° As for the global patch,

the frequency for the mode (L, M) is given by |w, ()| =
A=) "'"Wm?*+L(L+d—-2)(1—1¢), and thus it
behaves as |w; ()] ~ (m/2)(1 + )~ (t~t;, = —1) and
lw, ()] ~ (m/2)(1 = 1)~! (t ~ t; = +1). We thus have

m 1
—0; ~ j; dtlw, (1) = 7 log1 — + const = 400,
t 1
op~ [’f dtflw, (1) = m log + const = 4o,
2 BT,

(256)

This shows that the global patch is effectively noncompact
for any mode (L, M).

Once the equivalence is established, we can easily
understand why the obtained in-out propagators are written
with the de Sitter invariant Z(x, x’). In fact, since the
patches we consider are preserved under infinitesimal

*The zero mode k =0 does not satisfy the condition.
However, since the mode belongs to a continuous spectrum,
this does not give rise to a problem.
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actions of SO(1, d), and since a path integral (for a free
scalar field) can be defined as respecting the symmetry
under the infinitesimal actions of SO(1, d) (which is indeed
the case only after we take the limit € — 0), the propagator
obtained by such path integral (and thus the in-out propa-
gator) must be invariant under the infinitesimal actions of
SO(1, d). As was mentioned in the last paragraph of
Sec. IVA, this invariance is sufficient to ensure that the
propagator can be written with the de Sitter invariant
Z(x, x).

B. Numerical check

In this subsection, we numerically demonstrate that the
equivalence between the two propagators certainly holds,
one obtained by a path integral with the ie prescription and
another obtained as the in-out propagator using the instan-
taneous ground states.

We first rewrite the action (245) with a new variable
Xa(t) = [p(O)]'2 (1) = €7, (1) (we will omit the
mode label n for simplicity). Then, the action for each
mode has the form

h 1 .
St = [ xO[-ea? - Qolxo).  257)
lo
I Ly t
0.5 1,0
L Ly t
0.5 .0

FIG. 6 (color online). Global patch with light mass (d: odd/
even): the imaginary part of the in-out propagator Gz‘"/ in(t, 0)
(dashed curve) and the propagator (¢, ()¢, (0)) (solid curve) are
shown for d =3 (upper) [d =4 (lower)], m =0.5, L =2,
a=0.005 &=10"1° f, = —0.995, and t; = 0.995. Recall
that #; = —1 and t; = +1. The real part is zero.
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FIG. 7 (color online). Global patch with heavy mass (d: odd):
the real part (upper) and the imaginary part (lower) of the in-out
propagator G2"/"(1,0) (dashed curve) and the propagator
(P () (0)) (solid curve) are shown for d =3, m =9, L =
2, a =0.005, ¢ = 0.07, t; = —0.995, and ¢, = 0.995. Recall
that 7; = —1 and 1, = +1.

Q1) = e Plo@? — (a(1)* — e®5(1),  (258)
and the propagator for each mode is given by
(D) =pM) ()~ > () x (1))
— 1@l — 11, (259)

€92 — 2

We numerically evaluate the propagator (259) by dividing
the interval (¢, ;) into N parts and by calculating the
inverse of the matrix corresponding to i~ '(—¢'®9? — Q2).
We take a uniform spacing a = (¢, — f,)/N for brevity and
write the time variable as t = ar with r an integer in the
region ro <r<r, (ry =ty/a and r; = t;/a). We then
introduce dimensionless variables y, as

x(0) =a?y, (260)
with which the action becomes
1
Selx1 =5 X SersXeXs (261)
Sa,rs = [2ei£ - azgs(ar)]ér,s - eigér,s+l - eig(sr,57l'
(262)
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Since
dN rAr : Sass’ sAs!
<XrXr,>=f XX exipgz s XsX )=i(S;1)rru
.[d Xexp(jzss,ss’/\/s/\/s’)
(263)
the propagator is obtained as
Np(t)) = ialp(t)p(t)|~V2(S ),
(Pp(t) = ialp()p(t)~V2(Ss 1), (264)

(t=ar t = ar).

We numerically calculate the inverse matrix (264) for both
of the Poincaré and global patches and compare the result
with our in-out propagators obtained in Sec. IV.

The results in the Poincaré case for {d = 4, m = 0.5}
and {d = 4, m = 9} are depicted in Figs. 4 and 5, while
those in the global patch for {d = 3,4, m = 0.5}, {d =
3,m =9}, and {d = 4, m = 9} are in Figs. 6-8. We find
that there is a perfect agreement for the global patch, while
there exists a small discrepancy for the Poincaré patch. We
observe that the discrepancy gets reduced as one takes a
finer mesh near 7 = 0 and a larger value for |7,|, and we
expect that it will disappear eventually. We thus are almost

FIG. 8 (color online). Global patch with heavy mass (d: even):
the real part (upper) and the imaginary part (lower) of the in-out
propagator GS"/"(1,0) (dashed curve) and the propagator
(Ppr(t)d(0)) (solid curve) are shown for d =4, m =29,
L=1, a=0.005 &=0.07, t7=—0.995, and # = 0.995.
Recall that #; = —1 and t; = +1.
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convinced that the equivalence between the two propaga-
tors is confirmed numerically.

VI. HEAT KERNEL REPRESENTATION AND
THE COMPOSITION PRINCIPLE
A. General theory
We consider the random walk of a relativistic particle
moving in a Lorentzian manifold with the metric

ds? = g uy(X)dxdx”. (265)

Its trajectory is uniquely specified by the functions X*(A)
(0 = A = 1), up to reparametrizations A — f(A) such that
df(A)/dA >0, f(0) =0, f(1) = 1. The amplitude con-
necting two points x and x’ is then given by the Feynman
path integral,

Alx, x) = [X(l):x [dX*(1)] ellolX(V]

2
x(0)=x' Vol(Diff;) (266)

where Vol(Diff)) is the gauge volume of one-dimensional
diffeomorphisms
X#(A) = X#(A) = X#(F(Q), (267)

and we propose to set the action I,[ X] for the random walk
in a Lorentzian manifold as

L[ X(AN)] = —(m — ie)
x L a2, XODXENX" (V) — e

(268)

Note the presence of two infinitesimal imaginary parts, ie
andig’, in Ij[X(A)] (e, &’ > 0). The first (ie) is the standard
one, which manifestly suppresses the contribution from
such paths that are prolonged in the timelike direction.
We further have introduced the second one (ie’) in order
to define the path integral for any shape of path in a
Lorentzian manifold. In fact, for a timelike segment
(X?><0), we can neglect &' and the action becomes the
standard action for a timelike path, while for a spacelike
segment (X2 > 0), we can rewrite the square root as

V=X2 —ig/ = Ve m0X2 = /X2 (269)
and the action gives the path-integral weight which sup-
presses the contribution from such paths that are stretched
largely in the spacelike direction.

The action (268) of the Nambu-Goto type is equivalent
to the following action of the Polyakov type:

X2+is’_m2—i8
2e 2

1
IX(A), e(A)] = f dA[ e], (270)
0
where e(A) >0 is the einbein defined on the one-
dimensional manifold. We can see from this expression
that ie and ie’ give imaginary parts of the same sign. The
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new action I[ X(A), e(A)] also has the invariance under the
one-dimensional diffeomorphisms

X = XA = XA, @D
e —em =0 e

and we can take a gauge fixing where e(A) = constant =
T. However, as is discussed in detail in [25], such constant
T = [} dAe(A) is actually Diff; invariant and needs to be
further integrated, so that we obtain®'

Alx, x') = [X(l)_xweilo[xu)]
’ x@©)=+  Vol(Diff;)

0 X(1)=x
- f dT f [dX(V)]
0 X(0)=x'

1 X2 +ig! m?—ie
X i [ da - T
eXp[lfo ( 2T 2 )]

00 , X(T)=x
= [Faremeren [* fax(o)

X(0)=x'

Xexp[iﬁrdt(xz(t);is’_m22—ia)]’ 273)

where in the last line we have rewritten the expression with
t = TA. The path integral is nothing but that for the quan-
tum mechanical amplitude from the state |x’) to the state
|x) with the Hamiltonian

1
H=§(—D+m2—i8)

=

and thus we obtain the expression

3,(J=gg""d,) + m* — is], (274)

A(x, x/) — [oo dTe—a’/(ZT)<x|e—i(T/2)(—D+m2—ia)|x/>
0
= [ ¥ dTe T/ ~ie)=s QT g (. ¥/ T).  (275)
0

Here, K(x, x'; T) is the heat kernel of the d’ Alembertian [J,

K(x, x'; T) = (x| T/20|x", (276)
which satisfies the following equations:
i KGoxiT) = — 0K T, @77)
1— ) 5 = —= ) 5 )
o X, X 5 X, X

*!There may arise a divergence when calculating the Jacobian
to obtain the second line, but such divergence should be ultra-
local in quantum mechanics (i.e., one-dimensional field theory
with a coordinate A) and can be simply dealt with by an additive
renormalization of mass m, as in the Euclidean space considered
in [25].
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1
K@, x';T =0) = 6%x, x') = —06%%x — ). (278)
Nars

Note that we need to multiply (273) by 1/2 to obtain the
propagator G(x, x') of a neutral particle (i.e., particle =
antiparticle),

1
G(x, x') = EA(x, x')

_1 f ® AT 1T/ =ie)=e/[CD K (. - T),
2 0 y 9
(279)

Since the propagator G(x, x’) can formally be written as
G(x, x') = ix|(0 — m? + ie) " !x’), one can easily show
that G(x, x’) satisfies the following composition law [21]:

- O Glo ) =i [ —edNYG VG, x),  (280)

which is consistent with the asymptotic form of G(x, x’) for
large timelike separation with large mass

G()C, )CI) _ e*imL(x,x/)’ (281)
where L(x, x') is the timelike geodesic distance between x
and x'. The relation (280) has been proposed by Polyakov
as a principle to be satisfied by quantum field theory in
curved spacetime in order for the propagator to be inter-
preted as representing a sum over paths of a relativistic
particle in the spacetime. If the spacetime has a global
timelike Killing vector (as does Minkowski space), one can
define a common vacuum of scalar field from the past
through the future, and the relativistic particle corresponds
to a one-particle state. Note that such interpretation is not
always possible when spacetime has no global timelike
Killing vector [1] (see also [26] for a recent discussion).

As a simple example, we consider a neutral particle
propagating in a d-dimensional Minkowski space with
the metric

ds? = —d? + dx?. (282)

Then the heat kernel can be calculated with the momentum
representation as

d
K, x';T) = /(;Wl)}de

. l)d/2 [.(x—X’)z]
1(27riT e Y|

Here, the first i reflects the fact that the Gaussian integral
over p, has the opposite sign of the quadratic term to that
for the other variables p; (i = 1,...,d — 1). Substituting
this to (279), we obtain the following expression:

ipx—x') ,—=i(T/2)p?

(283)

i*(dfz)/z 0

—d 2

Gx, x') = (284)
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with 22=¢' —i(x — x)? and a =i(m? —ie). This
integration can be easily performed, and we obtain
R G B
G(x, x') = (4 )d/z a2 (Jaz) T K 2(\/_Z
(2 )d/2 (mVo +ie') T Ke z(m\/0'+18)
(285)

where o = (x — x/)>. This certainly agrees with the
propagator (118) of a real scalar field.

B. de Sitter case

In this subsection, we check that the in-out propagators
(183), (232), and (233) indeed satisfy the composition law
by giving their heat kernel representations.22

1. Poincaré patch

We start from the following integral representation of
the associated Legendre functions (a proof is given in
Appendix F):

F(% + i)L)F(% —iA)
raA)r=ia)

Q7 () = ™7 f " da
0

_d=2
2
% P21 w)
v? + A2
Since »2 has a positive imaginary part, we have

R - )FEQT | (w)

_ l foo 7 [oo dr et +. iA)F(% —iA)
2i Jo 0 FGA)I(—iA)

e T
X (M2 -1)FP, 21/2(”)61%("5”2)

B AL'(45) sinh (7A)
B —d [ dT/ aA \/_cos [77(" iA)]

(u)eig(”g +A%).

[d € Z,Rev>0].  (286)

xc;d,

(287)

Here, u = Z — 10, and to obtain the second line we have
used the identity

—d=2 d=2 d-2
’Pi/‘i(u) =277 - 1)7
2

P(d = VP4 =45
T(d/2)T (A + d2 =i ©

—ds 1(”) (288)

We thus find that the in-out propagator (183) in the

Poincaré patch has the heat kernel representation of the
form

228ee [27] (also [21]) for the direct evaluation of the random
walk in de Sitter space, which is based on the heat kernel for
Euclidean AdS space obtained in [28].
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1 © m? —ie
G(x, x') = 5 j dTe TK(x, x';T), (289)
0
L d-3 d-2 _ . — .
e—mT(uZ — 1)‘7 0 F(% + 1)\)1_‘(% - 1/\) —_2 11(/\2+(d 1y2)
Klw i) = e I T ST
_”T_F(d l) Asinh (77A) T()2 4 (d=1)2

_ C 7 P 15(/\ +((—) ) 290
a5t o cos[m(@—iN)] M5 (u)e i (290)

The above heat kernel certainly satisfies Eqs. (277) and (278). In fact, Eq. (277) can be shown in the following way:

T

Asinh (mA) (A2 + (451)?) 4

C’)

0
i— K, x;T) = ———7=—
oT T 0

1
= —5[—(Z2 — 1DaZK(x, x';T)

where we have used the Gegenbauer differential equation,

(1= w)RCE ) = dud, € alu) [

and the fact that the Klein-Gordon operator for functions of
the de Sitter invariant f(Z) can be written as

Of(2) = (1 = 22)03f(2) — dZaf(Z).  (293)

The initial condition (278) can be shown to hold by using
the heat kernel equation and the equality

. i
(O, — m? + )G (x, x') = —8x — x') (294)
V=8

as follows:

1
VT8
1 © m2—ie

= — dTe =
2 Jo

@3, — m?> +ie)K(x, x'; T)

R a im~ —ie
— ﬂ) ar = e TR (v, '3 T))]

= iK(x, x';0). (295)

2. Global patch

In a similar way, using Eq. (287), we can show that the
in-out propagators (232) and (233) have the heat kernel
representation of the form

Gout /in

ot

I i’ —ieT o out/in
=§[ dTe P TET KON (¢ X2 T)  (296)
0

o

with

( ) T(/\2+(d 1)2)

cos[m(4 —iA)] it
1
—dZi,K(x, x';T)] = —EDxK(x, x';T), (291)
d—1\27 &«
2 =
< . ) ]CMJ%(M) 0, (292)

[

Kg:j’;/'"(x, x;T)
_ (14regy
475" sin (7v)

00 d—1 T(N2 4 (d=1)\2
— L(AZ+(E1)?)
X /; d)\/\[Cij_dE,(qu) 1/\ P 1(u )]elz 7)),

(297)
K2, 0 T)
1 d+2F d ]
%/ dAAtanh (7))
475" cos ()
X [C i) + € ) [, (208)

Equations (277) and (278) also hold for these heat kernels,
as can be shown in the same way as above.

C. Relation to the Green function in
Euclidean AdS space

As has been pointed out in [27], the in-out propagator in
the Poincaré patch is directly related to the Green function
in Euclidean anti—de Sitter (AdS) space through an analytic
continuation. In this subsection, we demonstrate this
equivalence with precise numerical constants.

We define d-dimensional Euclidean AdS space (EAdS,)
as the hypersurface in a (d + 1)-dimensional Minkowski
space with the relation

nunYMYN = —¢2 (M,N=0,...,d), (299)

where €' is called the AdS radius. EAdS, has two con-
nected components. A frequently used coordinate system
which covers only a single connected component is the
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Poincaré coordinates (z,y') (i=1,...,d — 1) that are
defined by the following embedding:

€IZ+ 2+ 2 ) i
Y0= 22 |y| , lee,y_’
Z Z
4 €/2 _ Z2 _ |y|2 (300)
yo=———.
2z

We here have chosen the component with z > 0. The
metric then takes the form

dz? + dy - dy
z '

ds? = ¢2 (301)

The Green function in Euclidean AdS space is known to
have the following form (see, e.g., [29])23:

Geaas(, Y')
e imd2P 2 / —422 5 (d=2)/2 (7 !
= W(z 0y)—1)"7 Q,,r_l/z Z'(y, y"),
(302)
where Z'(y, y') is the invariant of Euclidean AdS space,
Z'(y,y") =~y Y)YV ()
=P +ly—yP
227 ’

v = J<_d ) e

Note that Z’ is always larger than unity.

The coordinate system (z, y’) is related to the Poincaré
coordinates (7, x') of d-dimensional de Sitter space
through the analytic continuation

=1+ (303)

and

(304)

7= "7 (—7), yi =X, ¢ =", (305)
or equivalently,
Y0 = ix9 Yi =X, Y4 =ix%  (306)

In fact, one can easily show that the metrics of EAdS, and
dS, transform to each other. One also finds the relations

*In fact, solving the Klein-Gordon equation with a delta
function source using the Euclidean AdS invariant Z' =
Z'(y, y'), we see that the Green function is a linear combination
of (z2— 1)@ AAPYIRZ)  and (27 - 1)7@ DX
Q(jjf}/j(zf). By requiring that the Green function damps at
large separation (cluster property), only the latter solution is
selected, as can be seen from the asymptotic forms of the
associated Legendre functions [see (E18) and (E19)]. The nor-
malization is then determined by requiring that the Green
function coincides with that in Euclidean space for infinitesimal
separation of y and y’ [or Z'(y, y') — 1].
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O R U R

(307)
2 12 /12
2 +2 4y -yl
Z(y,y') = 5 ,y Y
ZZ
)P () ==X
= Gy —1i0
= Z(x, x') — 10, (308)

with which the Green function on Euclidean AdS space can
be rewritten as

e imd=2)
(2 7T)d/z 92

(u = Z(x, x") — 10).

(> = )™ QT w)

Geaas(, y) = -1/2

(309)
This agrees with the in-out propagator (183) in the
Poincaré patch of de Sitter space,

. e imd=2)

GOin(x, x') = Qm@2¢i—2
(u = Z(x, x') — i0).

@ = 1) QD ()

(310)

As pointed out in [18], the Green function of Euclidean
AdS space has no direct relation with the in-in propagators
associated with & vacuum of de Sitter space for any . We
see that it is the in-out propagator (in the Poincaré patch)
which is actually related to the Green function of
Euclidean AdS space. We thus expect that we can obtain
a deep insight on the dS/CFT correspondence [30] by
analytically continuing the Euclidean AdS/CFT correspon-
dence and by interpreting the result in terms of the in-out
propagators (not of the in-in propagators).

VII. DISCUSSIONS AND CONCLUSION

In this paper, we have considered quantum theory of a
free scalar field in nonstatic spacetime. We first developed
a framework to treat a harmonic oscillator with time-
dependent parameters and then applied it to investigate a
free scalar field in de Sitter space, both in the Poincaré and
the global patches.

We have taken the vacuum state at each moment ¢#; to be
the instantaneous ground state of the Hamiltonian at the
moment. We developed a calculation method to obtain the
wave function ¢(t; ;) associated with the vacuum. The in-
out and in-in propagators are then obtained from the wave
functions by sending the initial and final times to the past
and future infinities.

A major advantage of our prescription in defining the
vacuum is that we do not need to introduce ‘‘positive-
energy wave functions’ that cannot be defined in a definite
way for a spacetime with no asymptotic timelike Killing
vector.
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We have applied our method to calculate the in-out and
in-in propagators in de Sitter space. The obtained propa-
gators take de Sitter invariant forms and are consistent with
the results known in the literature. What actually happens
is that, when the time ¢, is sent to a temporal boundary, our
wave function ¢(z; t;) may diverge, but the obtained propa-
gator has a finite limit and coincides with the propagator in
the literature [see the comments following (177)].

As a new result, we have found that a finite massless
limit exists for the in-out propagator in the Poincaré patch.
This is in contrast to the in-in propagator, where the no-go
theorem states that no massless limit exists for the in-in
propagators without breaking the de Sitter invariance [11].
The same functional form had been obtained for the in-out
propagators without precise numerical coefficients in
[21,27] from other approaches, and the massless case
also had been considered in [21]. However, one cannot
discuss the existence of a finite massless limit without
knowing the precise numerical coefficients. Indeed, our
in-out propagator in the global patch diverges in the mass-
less limit just because the numerical coefficient diverges.

We have argued that our in-out propagator for a given
foliation coincides with the Feynman propagator obtained
by a path integral with the ie prescription, provided that the
foliation is effectively noncompact in the temporal direc-
tion. We also have shown that both the Poincaré and the
global patches meet the condition, and have confirmed the
coincidence by numerical calculations.

We have also shown that the in-out propagators in both
the Poincaré and the global patches satisfy Polyakov’s
composition law, demonstrating that the in-out propagators
can be expressed as a sum over paths of a relativistic
particle. It should be interesting to investigate whether
the composition law holds universally for the in-out propa-
gators in any spacetime. Furthermore, as a more funda-
mental issue, it must be important to clarify the meaning
of (or to try to give an interpretation to) the relativistic
particle in the language of quantum field theory in curved
spacetime, where it is known that it is not always possible
to introduce the concept of particles.

Our in-in propagator in the global patch has a finite value
for m = (d — 1)/2, but it diverges for m < (d — 1)/2. It
will be important to compare the in-in propagators with
those obtained (numerically) by the path integral of the
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property intrinsic to de Sitter space, especially its nonequi-
librium property [31]. On the basis of our formalism, it
would also be interesting to investigate some physical
quantities such as the rate of vacuum decay at finite times.
As another future direction, it would be interesting to apply
our method to quantum field theories in spacetimes with
horizon, such as a spacetime with black hole and de Sitter
space in the static patch. For such a spacetime, one needs to
carefully study the consistency of our formalism with
boundary conditions at the horizon.

It should be important to consider interacting fields in
generic nonstatic spacetimes and to establish perturbation
theory on the basis of our formalism. It will be also
interesting to investigate the in-out propagators for grav-
itons, since our method can be applied to field theory of
higher spins without any essential modifications.
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APPENDIX A: PROOF OF EQ. (79)

Setting ¢+ =T, in (52) and using the Hermiticity
q' (T,) = q(T,) and p*(T,) = p(T,), we obtain

f\_ 1 (—vp[g*,ﬂ —vp[g*,g]>m<c1>
) WL\ vl vlrel ) e

EMS(ZI) (V,[f.gl=pfs—p*fg. (A1)
2

Then, from (53) and (58), we obtain

(“T(” ) = [C‘l(t)]*MsC(t’)( alf) ) = Al ﬂ)( alt) )

at(r) a(t' a(t')

Schwinger-Keldysh type [12,13] (see also [23]). (A2)
As an important application of our construction,
it should be interesting to investigate a thermodynamic A straightforward calculation shows that
|
4 [gb*(Ts’ t)’ QD(Ts’ tl)] -V [gbh(Tsv t)r @(Ts’ tl)]
A f') = i( o , - I (A3)
Note that det A(r;#') = —1 due to the commutation relations [at (), @t ()] = —1 and [a(¢'), @(¢')] = 1 (this can also be

checked by a direct calculation). Then, setting r = ¢ = ¢, in (A2) and (A3), we find that
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Ve (T 8T )]
V [¢ (TwIO) ¢(Tv’t())]

1
Vp[()b*(Ts’ tO)) ¢(Ts9 tO)] o

t_
0

(A4)

APPENDIX B: ASYMPTOTICALLY
MINKOWSKI SPACE

In this Appendix, we reinvestigate within our frame-
work a well-studied case where spacetime is asymptoti-
cally Minkowski in both the remote past and the remote
future [1].

1. Setup
For brevity we consider the two-dimensional spacetime
with the metric
ds? = a®(t)(—=ds* + dx?), (B1)

where the scale factor a(f) now depends on time and takes

the form

1 — tanh ¢ , 1+ tanht
2 2 '

This spacetime is asymptotically Minkowski with scale a

in the remote past and with scale a; in the remote future.
By expanding a scalar field ¢(z, x) as

(1) =D > bra(DYsax) (B3)

k=0 a

a*(1) = a}

a1 (B2)

as in Sec. III, the action becomes>*
1 2
[0 = [drary=g] ~e+3,40,6 - 22
=3 5 [asldt 0 - @ + )6, 0

k=0 a
(B4)

Thus, the correspondence with the ingredients of Sec. Il is
given by

q(t) = d’k,a (t);

1 —tanht 1 + tanh¢
w(t) = \/w(z) 5 + w? ;> (B6)

p(H) =1, (BS)

where

= ’ 2
= m 610, (OF]

We also introduce

= \/kz +m?a3. (B7)

1
W = z(wl * wy). (B8)

**Since ie plays no essential role in this Appendix, we have
eliminated it from the action.
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2. Wave functions

The equation of motion takes the form

2 + 2 2 _ 2
=G+ (“’1 D0 4 C1T 90 tanp t)q, (BY)

which can be solved analytically with the hypergeometric
function. We set a pair of independent solutions

{f(@), g()} as

o= (59

X F(iw_, ltiw_;1 —iwg;

1+ ¢
5 ) (B10)

+7

1
X F(—iw,,l —iw_;1 + iwg; ) (B11)

where { = tanht, and F(a, b;c; z) is the hypergeometric
function. Their asymptotic forms for =1, ~ —o0
(or { = {y ~ —1) are easily found to be

8o = g(ty) ~ €0, (B12)

fo = fltg) ~ e~ 1ofo,

and the weighted Wronskian W,[f, g] = p()W[f, g(?) is
found to be

W,Lf, g] = 2iw,. (B13)
From this we find that the functions in (54) and (55) have
the asymptotic forms

Uy ~ O, b_l() ~ —2ia)oe*i“’°[°, (B14)

Vg ~ Ziwoei“‘ﬂto, 170 ~ 0. (B15)
The wave functions in the limit ¢y — —oo then take the

form

1 .
QD(I; tO) -~ melwotof(t)
0
— 1 eiwotofiautfiw, log (2 cosh )
\/2(1)0
. . ) 1 + tanh ¢
X F(la),, l+iw_;1— 10)0;# X

(B16)
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1 .
¢(ta t()) -~ \/meilwol”g(l)
0

— 1 e—iwozo +iw, t+iw_ log (2 cosht)
\/20)0
. . ) 1 + tanh ¢
X Fl—-iw_,1 —iw_;1 + 1w0;f .

(B17)

In order to calculate the asymptotic forms of various
functions for ¢ ~ +o0, it is convenient to rewrite f(r) and
g(?) by using the formula
F(a, b;c;2)

_T(I'(c—a-0)
" T(c—a)l(c—b)
I'lc)I'(a+b—c)
I'(a@)['(b)
XF(c—ac—b,c—a—b+1;1—2).

Flabatb—c+1;1—2)

(1 _ Z)c—a—b

(B18)

We then obtain

) )

1_
X I:&*F(iw,, 1+iw_;1 +iw1;T§)

_B<1_; g)_iwlF(l —iwy, —iwy;1 —ia)l;lgg):l,
(B19)

(t)_(a)o)l/z(l—{)*iwl/2<l+§)iwo/2
& .y 2 2
1_
XI:&F(—iw,,l—iw,;l—iwl;Tg)
~ (11— iw
_B*<T§) 1F(l-i-ia)Jr,ia)Jr;l—i—iwl;

=)

(B20)
where
__ (o \'/2 T(1 +iwg)l(w,) Bl
= (o) Tt oy ®2
5_ w1 1/2 F(l - 1w0)F(1w1)
p= <w_0> I +iew_ ) iw_) (B22)

With these, the asymptotic forms for f; ~ +oco can be
obtained easily as

w

fl = f(tl) ~ (—?)l/z(d’*eiwltl — Beiwlll)’ (B23)

w

12 o
g1 =g(t1)~(ﬂ) (@ — Bremiom),  (B24)
(OF]
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and
= () aipaeer, @29
iy ~ (Z_T)l/z<—2i&*w1)e‘iw1’1, (B26)
v, ~ (Z—‘;)m(ziawl)eiwlﬁ, (B27)
Uy~ (%?)1/2(2i3*w1)€_iw"‘- (B28)

We then find that the Bogoliubov coefficients take the
asymptotic forms

oz(tl, to) -~ &eii(wotoiwlh) = (C_Y(t], to) -~ CYT), (B29)

B(ty, tg) ~ Bel@ontein) = g (B(t, to) ~ BY)-

They coincide with the well-known values in the literature
(see, e.g., in [1]) up to a phase. It is easy to see

(B30)

, sinh ?(7w )

_ , B31

i sinh (7w,) sinh (7)) (B3D)
inh? _

1, = Sinh-(me) (B32)

sinh (7w,) sinh (7w,)’

and thus the relation |a;|> — |B,]*> = 1 actually holds.
Using the asymptotic forms of #; and v, we can calcu-
late the wave function ¢(z, t;) for t; — +o0,

ot 1)) = enfaf() + Bg(n]  (B33)

2w
This can be further rewritten by using Kummer’s relation,
F(a,bsc;z) = (1= 2)“7"F(c — a, ¢ = b;c;2), (B34)
in the form

iw ) —iw 1—iw_log(2cosht)

e(tt)= e

wq

><F<ia)_,1+ia)_;1—ia)0; (B35)

1 —tanh t)
This certainly coincides up to a phase with the positive-
energy wave function in the remote future given in [1]. One
can easily see that ¢(7; 7;) actually has the form ¢(z;¢,) ~
(1/\/2w;)e =1 when ¢ is also very large.

APPENDIX C: PROPAGATOR IN
MINKOWSKI SPACE

In order to evaluate the integral (117), we introduce the
polar coordinates for the wave vector as

dk? = dk? + K*(d6? + sin20dQ2_,), (ChH
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where 6 is chosen such that @ = 0 corresponds to the
direction x — x/, i.e., k- (x —x') = klx — x'| cos . The
volume element is then given by

d?" 'k = dkk?2 d@sin 36 dQ,_;

= dkk?"2dcos 0(1 — cos20)“H2dQ, 5,  (C2)
and (117) becomes
1243
(277.)1171

1
X f ds(1 — s2)“@=9/2cos (klx — x'|s), (C3)
-1

Gx, x') =

f " dkk41G (1, 1)
0

1

Gx, x') = - -
Q@) lx — x|7

PHYSICAL REVIEW D 88, 024041 (2013)

where |Q,_,| is the area of the unit sphere in
n-dimensional Euclidean space, [Q,_;|= fdQ,_; =
27/ /T'(n/2). The integration with respect to s = cos
can be carried out by using the formula (8.411-8 in [32])

fl ds(1 — s2)” cos (zs)
-1

= Jal(v + 1)(%)”";1#%@) [Rev > —1]  (C4)

and we obtain

f " AT Gy (1, ) as (ke — ')
0

ka2

2022 /m

lx — x/|d 32

2-@+D)/2=d=1)/2 = ro
= m%f dA
1

|x _ x/|(d73)/2

0 w

k
(/\2 . 1)(14;3€_mAei(7775)/2(t>—t<)J#(k|x — xll),

e—iwk,e(t>—t<)1%(k|x —x/|)

(C5)

where, assuming m > 0, we have set A = w;/m = Vk* + m?/m to obtain the last expression. Then applying the formula

(6.645-2 in [32])

ﬁ T AN = e, (BYAZ = 1) = \/%B”(az + /32)*%7%1(”%(\/012 + 32) [Rea >0,8ER]  (C6)

with v = (d — 3)/2, a = me ™ 9/2(t_ — 1), B = m|x — x'|, we obtain

m(d72)/2 . ) -
Gx, x) = ———[™OA2 + sz]_TKu(m\/el(”_O)At2 + Ax?), (C7)
(2ar)4/2 2
I
where At =t — ¢ and Ax = x — x’. This expression can By using the expansion
be further rewritten by separately investigating the cases
for different sign of o = (x — x/)> = —Ar> + Ax?%. () (z2\~ )
(1) spacelike (o > 0): K,(2) = ) (E) 1+ 0E)), (C10)
The modified Bessel function is readily evaluated as btai
K(d_2)/2(M\/€i(7T_O)At2 + sz) = K(d—2)/2(m\/b-)’ and we Wwe obtain
have
I'i((d —2)/2 -
Glx, x') — M(a +i0)™7.  (Cl1)
4qrd/2

md-2/2

Gx, x') = T 0 P Kz (m 7). (C8)

(2) timelike (o < 0):
By using the relations "9 A% + Ax? = ¢'7(— o) and
K,(e™?7) = —(im/2)H?(z), we have

7 md-22

Glxx) == ———
(x x) 2 (277.)d/2id—1

(—o)FHE(mJT).  (C9)

B)null (c — 0 +):

The right-hand side actually coincides with the massless
propagator.

It is easy to see that all of the expressions for the three
cases can be derived from a single expression,

(d—2)/2
G(x, x') = m

2o + i)/ Kiz(mvo +10). (C12)

APPENDIX D: PROOFS OF EQS. (183) AND (185)

In order to show Eq. (183), we use the following
equation (6.578-11 in [32]):
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foo dxx#t! K,,(&x)l,,(be)J# (cx)
0

ct eiiﬁ(//v"’%)

B 2am(abyr+!

u=2E0+2  Res>|Reb| + [Imcl,
TS . (DD
Reu>—1, Re(p +v)>—1

_1(y4l +1
(u>—1) ;(M+§)Qf:_l./2(u)

By setting @ = ¢'™/2q and b = ¢™/2p for —7/2 < arga =
7 and —7 < argb = /2, and by using the identities

2i

HP? (ax) = = e™/2K (ax), (D2)
ao
T,(bx) = 7' ™21(bx), (D3)
the equation is rewritten to the form
foo dxx““HS,Z)(ax)J,,(bx)JM(cx)
0
—2i 1
_ \/zc/“'e 217T(H+2) (uz _ ])7%(/L+%)Q/L+% (u)
773/2(ab)”+1 v—1/2
[ u= %, (—Ima) > [Imb| + |Imc|, i|
Reu > —1, Re(u + v) > —1 '
(D4)

We substitute for this x =k, a=e ¥(—n.), b=
e ®(—n<), c=|x —x'|, and u = (d —3)/2. We then
obtain Eq. (183) with u = Z(x, x") — 10 for infinitesimal &.

In order to show Eq. (185), we start from the following
equation (6.578-10 in [32]):

f ® Lot K (@)K, (53], (cx)
0
JrerT(w+v+ DN (e —v+1)
23/2(511;);”1
X (2 = 1) P D )

P24+ JUPN
y=4atbtc T < Re(a+b)>|Imc|, . (D5)
Re(u xv)>—1, Reu>—1

By setting a = e ™2 and b = ™2 with —7/2 <
arga =7 and —7w/2<argh =, and by using the
identities

2i .
HP(ax) = — Zemim2K (ax), (D6)
ar
(2) — 2 imv/2 N
HP(bx) = = ™K, (bx), (D7)
a

the equation is rewritten to the form
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f dxx’”lH,(,l)(ax)Hs,z)(bx)JM (cx)
0

B V2T (m+ v+ Dl —v+1)
= 732 (ab)H !
1 1 —pu—3
X = )P )
[ y=aoprd Im(a—b)>|ImC|yi| DS8)
Re(u=n)>=1, Rep>—1 |

We substitute for this x =4k, a=e*(—7s), b=
e '¥(—=n.),c=x—x',and u = (d — 3)/2. We then ob-
tain Eq. (185) with u = —Z(x, x’) + 10 for infinitesimal &.

APPENDIX E: ASSOCIATED LEGENDRE
FUNCTIONS AND THE ADDITION FORMULAS

In this Appendix, we give several formulas of the asso-
ciated Legendre functions that are used in Sec. IV C. For
details of the associated Legendre functions, see [32,33].

The associated Legendre functions P% (z) and Q4 (z) are
defined over the complex z plane other than the cut along
the real axis to the left of the point z = 1 (running from
—oo to 1), while the associated Legendre functions P% (x)
and QY (x) are defined only on the interval —1 < x <1,

1 z+ 15 11—z
Py E—(—) F(—, + 11— )
@ == \i= i )

(E1)
imwml (v + w + 1) u
i Ee T M —v—u—1 2_1*
Q,V(Z) 2V+1F(V+3/2) (Z )2
v+ut+2 v+utl 31

X F v+ i) (B2

( 2 ’ 2 ,V 2’Z2)’ ( )

P () = %[e%iw PE(x +i0) + e 1R PE(x — 10)]
(- 3)

T — )\l —x prT LT RTT)

(E3)

1 . L L
QY (x)= Ee_””‘[e_i””‘ QN (x+1i0) + '™ Q4 (x —i0)]

[cos TPy (x) — Fy+ptl) Pf"(x)].

=2sin77,u Fv—pu+1) "

(E4)

1. Functional relations

The four functions P(z), Q(z), P(x), and Q(x) are
related to each other as (3.4 and 3.3.1 in [33])

TP (x +i0) = e Ph(x —10) = P4 (x),  (ES)
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. - . - . 2Q7 (x)
—im —ims QM + HTF QM _ —
¢TI Q L (x +10) = &7 Q4 (x — i0)] {—iWPff(x),
(E6)
po o [~€™QEE)  [mz>0]
2(=2) {—eim’Q’;(Z) [Imz < 0]. ED
We also have (8.73 in [32])
—py I'v—u+1)
PA@) I'(v+u+1)

X I:’Pff(z) — %e*i’”‘ sin 77 fo(z):l, (E8)

_ . T'(v — 1
Q,"(x) = e 27m FE;*ZL; Q@) (EY)
_ Tv=—p+1)
Pv¥(x) = T(v+p+1)
2 .
X I:cos TPl (x) — —sin WMQﬁ(x):I, (E10)
_ Tr=pu+1
QO = e

X [g sin 7P (x) + cos quﬁ(x)], (E11)
|

PHYSICAL REVIEW D 88, 024041 (2013)

P, 1(x) = Py (x),

1
sin7(v — u)
+ sin7r(v + w)QY (x)].

Q¥ _(x) = [— 7 cos P4 (x)
Their Wronskians have the forms (8.741 in [32])

Py QU

wPr) £QrK)

1 T+u+1
1-x*Tw—u+1)

P,*(x) Py _ 1 2sinmu
4P #x) LPY(x) 1-x2 =
We also have (8.733-1 in [32])
(1 - )L Pty
dx
=+ DxPy(x) — (v — u + DPY, (%),

(1 -2 S QkW

=+ DxQY(x) — (v — n + 1HQY, (%)

2. Asymptotic forms

The associated Legendre functions have the following asymptotic forms near boundaries (3.9.2 in [33]):

Py (z)zlw{

QU () el

-1 T(v+1/2)
2% 2lﬂ(VV*yHrl) g

1 A T(=v—=1/2) —p—1
2 i e

e 2¥/2sin (arv)T(v)

[Rev > —1/2]
[Rev < —1/2]

T+p+1)
T(v+3/2) °

Py (x)

(1-x3)72

Qr(x) = "2 cos (mn)T()(1 — x2)%  [Rev > 0],

— T'(k+v+1)
PV(X)X:I 27" cos (Wk) F(V+1)F(I;<*VJr1)
k _ 2¥sin(wk)I'(v) (1 o xz)—%

27" gl (k+v+1)

(1—x%)?

QY( )XNI{_Z”_ICOS (k)L (v)(1 — x2)—%
0

T sin(mT (v DL (k—v+1

)(1 - xz)%

[k € 7]
[k EZ+1/2,Rev > 0],

[k € Z, Rev > 0]
[keZ+1/2].
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3. Addition formulas
We find the following formulas, which are useful in obtaining the propagators in the global patch:

im(cos @, cos @) T & . . 42
- 2L +d —2)P_7(sin P?(sin C,* (cos @
2(d — 2)|Qd71| sin (777) LZO( ) k ( 401) k( 902) L ( )

m[(”+ -1 e %<u+)—(u7 ~1)"FQT ()] (d: odd), (E24)

1
2

i(COS @1 Cos QDZ)% i o . -
2L+d_2PV51n QVSIH C2 COSH
(d = 2)|Qq 1| cos (mv) LZ:O( )P 7 (sin ¢1)Qy (sin ¢,)C ( )

ie ™7 i L
~ 2Q2mfcos (m) e, TR - 1)TFQ T (e d: : E25
2(277)%008(7711)[(1“— ) QV E(lfi+) (M ) Q””i(u ):I (d: even) ( )
i(cos @) cos @) T & o Tk=v+1),, b A
@20 22 T4 D g, Pisin @) Q(in 2)C/ 7 (cos )
_ e 1”7[ “imr(u? — 1)77Q 1( D+ e — 1)7%Q%_l(u_)i| (d: even), (E26)
22m)? ! -
2i(cos ¢ cos ) )
7(d ng2)|sz_21| Z(zL +d — 2)Q; *(sin ) QY (sin 2)C/7 (cos )
e—17Td 2

= S DT — 2 - ) )

COSIZTV)I: 7I7TV(M+ - 1)7‘1 : 7%(l/t+) + e”ﬂ/(u _ 1),a 2 szé(u*):l}
S | (GRS R S
_COS’(:TV)|:(142+ “ )RR () — @2 - )P T_%(—u,):l} (d: even), (E27)

where —7/2< @, < ¢, <7/2,0=0 =, k=L + (d—3)/2, and

—singolsingoz-i-cos@' (E28)

ur(@, @2, 0) = —Z(@1, @2, 0) £i0  with  Z(¢y, 95, 0) =
COS @ COS @7
We prove Egs. (E24) and (E25) for the rest of this Appendix. Equation (E26) can be proved in a similar way, and (E27) is
readily obtained from (E25) and (E26).
We start from Eq. (12) of [34],%

&= d—2\ . =2y, . . -1
(sinh y)*%Q (cosh y) =25 2F< 5 ) in(=v+) (sinh B, sinh B,)'T"

-1
2

X i (2L + d — 2)P; " (cosh B1) Q) (cosh Bz)C?(cos ), (E29)
L=0

where
cosh B cosh B, — cos «

, ReBy>|ReB| + [Imd|. E30
sinh B, sinh 3, e, > |ReB| + [Imé| (E30)

coshy(By, B2, 6) =

**Equation (E26) can be proved by replacing Q¥(cosh ;) in (E29) by Q  ”(cosh 3,) with the help of (E9).
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Both sides of Eq. (E29) should be understood as the quan-
tities that are continued analytically from the region where
B1, B>, and 0 take all real values (for which cosh y > 1). We
reparametrize the variables in Eq. (E29) as

pi =5~ eu) tea (@=12)

[—g<¢2<¢l<go<sl<sz <<1] (E31)

and only keep the contributions from &, to the linear order.
We then have

cosh B = sin ¢, * ig, cos ¢, (E32)
sinh B = *icos ¢, + &,sin ¢,, (E33)
and
coshy. = coshy(B;, B5, 0)
= —Z(@y, ¢3, 0) +i0(gy, &) (E34)

If we fix the parameters &, and &,, and vary ¢, ¢,, and
0 within the regions —7/2 < ¢, < ¢; < 7/2 and 0 =
6§ = , then coshy. ranges in the region depicted in
Fig. 9.

In the following, we divide the parameter region of ¢y,
@5, and @ into three parts, where Z takes values in
MHZ>1,2)1>Z>—1,and (3) Z < —1, respectively.
We then derive a simpler expression of Eq. (E29) for
each case and show that the obtained expressions for
the three cases can be summarized in the form
(E24) and (E25).

MHz>1

In this case, coshy. = —Z = i0 as can be seen from
Fig. 9,26 Thus, we have

_FinlE4n) (2 _ -2 0T
e"mETTNZE = 1)TT R 7 (2)

_1
2

d—2
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1.0
coshyy
0.5r
L 1 1 1 1 J
3 2 1 1 2 3
=051

-1.0%

FIG. 9 (color online). Schematic view illustrating the range of
coshy, for &g = 0.001 and &, = 0.02. Here, ¢; and ¢, run
over the range —7/2 < ¢, < ¢; < /2, and 6 runs over its full
range 0 = # = 7. The range of coshy_ can be obtained by
turning the figure by 180° over the horizontal axis.

sithys =2 -0 (E39)
o Fi 1 d—2
Q)7 (coshy.) = =TI QT (77 i0)
! 2
[ — :iﬁ(v—l) # Z E36
¢ ? Q’V—%( ): ( )

where we have used Eq. (E7) and the fact that Q% (z) does
not have a cut in the region Rez > 1. Then, Eq. (E29)
becomes

= 2§_2F<T)ei7(_”1%+%)(cos ©]CoS @) T Y (2L +d — 2)P; " (sin ;) Q(sin @, * iO)CZ%Z(cos 0). (E37)

L=0

By taking the difference between the above equations with the upper and the lower signs, we obtain

% sin[w(d—f + y)](zz ~ 1997 (2)

l—

d d_ 2 s d—2 —1 — . . &=
= —i77271’2I‘< 5 )e”’dT(cos ©1COS @) T Z (2L + d — 2)P, (sin ¢1)P} (sin goz)Cszz(cos 0),
L=0

(E38)

where Eq. (E6) has been used. Similarly, by taking their sum, we obtain

2681 and &, are to be taken to zero, keeping &, > ¢;.

024041-35



MASAFUMI FUKUMA, SOTARO SUGISHITA, AND YUHO SAKATANI PHYSICAL REVIEW D 88, 024041 (2013)

—2COS|:7T($ + v)](22 — 1)_¥Q% (2)

d - 2 . -2 — ad d—z
= 2§‘IF(T)e‘”"T‘(cos @, cos @) T Z (2L + d — 2)P 7 (sin ¢)Q} (sin QDQ)CZZZ(COS 0). (E39)
L=0

The right-hand side of Egs. (E24) and (E25) can then be written as
SER R - )N (@ odd)
77)2 L)

i cos 7(452) tan 7y —177— 2 d—2
- 7 — 1 7
(277)2 ( ) Q -3

(E40)
(Z) (d: even).

Q1>zZ>-1

In this case, as can be seen from Fig. 9, cosh . crosses the branch cut between —1 < z < 1 from above and moves to
another Riemann sheet. On the other hand, cosh y_ crosses the branch cut between —1 < z < 1 from below. Thus, in this
region, we have

sinhy. = e=i5(1 — Z2);, (E41)

d=2 d=2 177-
7

Q7 coshy.) = Q7 -z 210) = 03[ Q)F (-2 T TP (-2) | (E42)

1 _1 -1 —1
2 v—3 2 2

where we have used Eq. (E6). Then, Eq. (E29) becomes

6T - 22)7F [ R R (—Z)]

= 2§—2I‘<d _ 2)ei”(_” 599 (cos @ cos @,) T Z(ZL +d — 2)P "(sin @) Q¥ (sin ¢, *+ 10)C (Cos 0). (E43)

L=0

By taking the difference of the equations with the upper and the lower signs, we obtain

(1-2)"%

(—Z) =25 2F<d )(cos ©1C08 @) T Z(ZL +d — 2)P; “(sin ¢ )P (sin goz)CL (cos 0). (E44)

1
2 L=0

Similarly, by taking their sum, we obtain

(1= 207 (-2 = 2r(%

1
2

)(cos © cos @,)'T Z(ZL +d — 2)P,7(sin ¢;)Q}(sin ¢2)C (cos 0). (E45)
=0

The right-hand side of Eqgs. (E24) and (E25) can then be written as follows:

(1-2)"%P7,(~2) (d: odd),

NI'—

2(277)2 §11’1(7TV)

i (1- ZZ)_%Q?2 (=2Z) (d: even).

()3 cos (mv) 3

(B46)

B)z<-1

In this case, from Fig. 9, we know that, in the region Rez > 1, cosh y . runs above the real axis, or below the real axis in
the next Riemann sheet after passing through the cut on —1 < z < 1 from above. On the other hand, in the region Rez > 1,
cosh y_ runs below the real axis, or above the real axis in another sheet after passing through the cut on —1 < z <1 from
below.

When cosh y. = —Z * 10, we have

silhy. = (22— 1)}, Q7 (coshy.) = Q7 (~2), (E47)

and then the following equation is obtained:
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(22 - 1D7FQ) (-2)

d—2\ . Trid=2 -l o R . R =

I‘( 3 ) im(—rF5H59) (cos ¢y cos @,) 7 Z(ZL +d —2)P, 7(sin ;) Q7 (sin ¢, = i0)C,* (cos §).  (E48)
L=0

By taking the difference and the sum of the above equations with the upper and the lower signs, we obtain

d=2\ L s
0= —i7r2%_2F<T)e‘“ﬁTz(cos @) COS @) T Z (2L +d — 2)P_ (sin ¢ )P} (sin goz)szz(cos 0), (E49)
L=0

_ d=2 d d—2\ . .~ O e . . ==
2022 —1)"F ij_zl(—Z) = 27]‘1F(T>e‘”d72(cos ©COS @) T Z (2L + d — 2)P, "(sin ¢1)Q}(sin goz)Cszz(cos 0).
: L=0

(E50)

3 (cosh Y+) On a new

1
2

On the other hand, when cosh y. = —Z = i0, we need to evaluate the functions sinh y. and Q
Riemann sheet, since cosh y. has already crossed the branch cut. We then have

sinhy, = e*i7(Z2 — 1), (E51)

Q (cosh yi) = 5T Q ( 7) ¥ imei™ T ( Z), (E52)

_1 1
vT3 2

NI._.

and Eq. (E29) takes the form

(22—1)-—[Q ( 7) ¥ imeTimT 2<1+1>? * (2]

-1
2

d—2\ . 4o il — . . . d=2
=2 F( 7 ) Im(=rF5H5) (cos @ cos @,) T Z(ZL +d —2)P, "(sin @) Q[ (sin ¢, £i0)C,* (cos ).  (E53)
L=0

By taking the difference of the above equations with the upper and the lower signs, we obtain

cos (d ; 2 )(22 -)F __2%(—2)

= 2%’*2r(d

In particular, in odd dimensions, we have

=2\ e PR s . 2
)e”T 7 (COS @ COS ¢5) 2 Z(ZL + d — 2)P, ¥(sin ¢)P}(sin ¢,)C,? (cos ). (E54)
L=0

d—2\ . . IR a2
0= 2%_2F( )e”’ﬁTZ(cos @) COS )T Z (2L + d — 2)P ¥ (sin ¢1)P}(sin goz)Ciz (cos 0), (E55)

L=0

which is equivalent to Eq. (49). Similarly, by taking the sum of Eq. (53) with the upper and lower signs, we have

2 - 1)—¥[Q (=2) — 7e™ sin (d - 2 77)?% (—z)]

—1 —1
2 v=3

=23~ 2r(d 5 2) im52 (cos ¢ cos @,)'T Z(ZL +d — 2)P,”(sin ¢1)Q} (sin goz)CL (cos 0). (E56)
L=0

In particular, in even dimensions, we have

d=2

(Z2-1)"FQ7

I—

v—

d—2\ . L -
(=2) = 2§_2F< 3 )e”r%(cos @ CoS @) T Z(2L + d — 2)P, ”(sin ¢)Q} (sin qoz)Cszz(cos 0),
L=0

(E57)

which is equivalent to Eq. (E50). Thus, when Z << —1, the right-hand sides of Eqgs. (E24) and (E25) always take the forms
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0 (d: odd),
: i d—2 a2 ~9432 E
L2 - )T (- 2) (E39)

@m¥ cos (mv) > (d: even).

We thus have obtained simplified expressions for Eq. (E29) for three different regions of Z in the form Eqs. (E40), (E46),
and (E58). One can readily see that three equations can be obtained from Eqs. (E24) and (E25). This completes the proof of
our assertion.

APPENDIX F: INTEGRAL REPRESENTATION OF THE ASSOCIATED LEGENDRE FUNCTIONS
In this Appendix, we give a proof of Eq. (286) (we write it again here for convenience),
—d=2
FaA)r(=ia) 2+ A2

treating the odd- and even-dimensional cases separately. Our discussion is heavily based on the derivation of the heat
kernel in Euclidean AdS space performed in [28] (see also [27]).

Q%40 = e [0 (4 €2 Rer>0] @)
0

1. Odd dimensions

When d is odd, using the direct relation between the associated Legendre functions and the Gegenbauer functions,

B 2 1/2T (d=L

P = sin[7(51 — iA)]?(dTrl(fii)r(% mryVICH D) (F2)

we can rewrite the integral on the right-hand side of (F1) as
f * LG NG~ i) Py W) _ md/zr(d 1)( 2 f "=t W ®

0 T'GAI(—iA) 2+ A2 v?+ A2
By further using the identities for the Gegenbauer function
1-n d n

ACY, _,(coshy) = W[m] cos (Ay) (F4)

with nonnegative integers n, Eq. (F3) can be rewritten as follows:

21/2 imdsl v d 4L oo cos(Ay)
h2y — )7 — dA ———
71/2 (cos ) [d(cosh 7)] fo v: + A

1/2 iﬂﬁ B d d—1 B
=e dzl QV 1/z(cosh y) [Revr > 0] (F5)

Here, in order to show the second equality, we have used the formula [3.723-2] of [32],

00 e Y [Rey>0,Rer>0
fdAcos(Ay):{zy [Rey ] (F6)

2+ A2 Ze?  [Rey <0,Rev>0],

and to show the third equality we have used the following formula [see (A.20) of [28]]:

d—1
e TEQ (cosh y) i oy = D] e Rey > 0] F7)
2 =
St =4 Dl 4
e (cosh2y — 1)F [d(coshy)] e [Rey < 0].
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2. Even dimensions

When d is even, the equality

_d=2 I'ga -

% () =

2
iA=3 IGir + 41 iA—3

holds, and we can show (F1) as follows:

ix)?;7bgu)_(_4y,<[ gy Manh (A)

14 1) 4

2

P2 (u) (F8)

F(d 14 1A)I‘(d
f da 21 )2 2+ 22 iA-1 2(“)
CGEAC(—iA) 2+ A + A Py
42 sof d\F [ . Atanh(7A)
= (D= - 17 (—) fo d)lW ian—1/2(10)
= (-1
= ™R /2<u), (F9)
f
where we have used the identities for the associated o i )%
Legendre functions with integer order. (1, 1) = (@) (a) o ()™ (1)
’ Wp[gon > Pn ]
2 e & . __ ! L [e®() e (1)
(@ = PPy ) = P @), (FIO) 1o F g, g ¢ (e (s
+ e Pl (1) @i (1<)
dr (E) (E)
(2 — l)n/z = Q, () = Q" _,(u), (F11) + e o (1) i (12)
+ e (E)*(t>)90(E)*(t<)]- (G2)
and the formula [7.213] of [32], o . @ ()
We also have multiplied the factor i/W,[¢,", ¢»""] for
X tanh (7)) which we need not care about the normalization of wave
f dA—F——— SRR Pir-12w) = Q,—12(u) [Rev >0]. functions. Thus, if we expand the in-in or out-out propa-
(F12) gator (for each mode) as a quadratic form of go(E) and goﬁ,E)*,

APPENDIX G: @ VACUA

Since the in-in and in-out propagators in de Sitter space
always have de Sitter invariant forms, it is natural to expect
that the in- and out-vacua both in the Poincaré and the
global patch belong to a family of de Sitter invariant vacua,
i.e., the & vacua (or the Mottola-Allen vacua) [10,11]. In
this Appendix, we calculate the values of @ € C associ-
ated to the in- and out-vacua (both in the Poincaré and the
global patch) explicitly. We will set ¢ = 0 in the following
discussions.

Given a mode expansion, a & vacuum is defined for a
complex number « with Rea <0 such that the corre-
sponding wave function for each mode » is given by

o\ (1) = [o'P(1) + e (1)], (G1)

V1 — |e?]?

where goELE)(t) is the wave function of the Euclidean
vacuum. The Feynman propagator associated with the «
vacuum is then given (for each mode) as

we can find the values of « associated to the in- or out-

vacua. Here, the in-in propagator is defined as in (73) and
(75), and the out-out propagator is defined by
GOy, ') = lim G, (1,131, 1),

- (G3)

0,1Tq(0qt ()10,

(0,,10,,)
which can be shown to take the form
Gout/out(t [/)

Gyttt 1) =

i
= lim
n—i Vole(t:ty), o*(t; 1) (T)

e(t=;t)@"(t<s 1y).

(G4)

Since the in-in propagator in the Poincaré patch (185)
coincides with the Feynman propagator in the Euclidean
vacuum, the in-vacuum in the Poincaré patch is identified
with the Euclidean vacuum (i.e., the « vacuum with
a = —). On the other hand, by using (166), we can
show that the out-out propagator for each mode in the
Poincaré patch [which is finite only if m > (d — 1)/2]
takes the following form:
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al(=n)(=n)J" V2
2 sinh (7 )

GZ“‘/O“‘(»,” n') = Jw(—ksﬂ>)]7w(_kfs77<)- (G5)

If we use the wave function associated with the Euclidean vacuum,

o0 =T e %

(=) T HL (—kn), (G6)

with B an arbitrary complex constant, we can expand the out-out propagator for each mode as follows:

outfout;, o _ T i E) (B)* S, B E)
G0 = T T o )][ (1)@ (1) + e 2P (1) P (12)
B . B _au @
e o)) + e el ()l (1) | @)
B B’
If we choose the constant S real, the out-vacuum is shown to correspond to the & vacuum with & = — .

In the global patch, the in-in and out-out propagators for each mode in the heavy mass case (m > (d — 1)/2) take the
following forms:

i, {m[(l—@)(l—ri)]%PkW(r>)PL“(z<) (d: 0dd),
Lt)=

(1= 2)(1 = 2)TFQ M ()Qf (1) (d: even) @)

G/ (1, 1) = (1= 2)1 = 2)]FP # (=P (t2).

T
2 sinh (77 )

On the other hand, the wave function associated with the Euclidean vacuum is known to have the following form
(see, e.g., [18]):

JAD(L + 45 + ip)cosh et +imT
2L+%e—i7r(L+%)e7TMI‘(L +9)

eP() =B 5

F(L+d_1,L+d;1+i,u,2L+d— 1;1+e27—i0)
— B(1 - )5 [Q‘“(r) L P‘“(t)] (t = tanh 7). (G9)

Then, by using the relations

P}CM(I) _ ;i(¢(LE)(t) — oTh Br(k+1+iu) QD(LE)*(I)), Qw(t) o _( (LE)(t) + omh Brk+1+iu) ¢25)*(t))’

e BTk+1—iw) 28 BTk+1—iu)

(G10)
if we choose the constant 8 such that arg 8 = arg I'(k + 1 — i), we find that, in odd dimensions, the in- and out-vacua are
the a vacua with « = — 7 + i, while in even dimensions, the in-vacuum is the & vacuum with &« = —7ru and the out-
vacuum is that with o = —7u + i7.

APPENDIX H: ANOTHER ie PRESCRIPTION

In this paper, the ie prescription is defined by the replacement
p() = e p(t),  w,(1) = e w,), (HID)

which corresponds to the replacement H, (1) = e *[H,, ((1)|,—]. Another standard definition of the ie prescription
(which does not break the symmetry existing in the background spacetime) is given by

m? — m? — ie. (H2)

In this Appendix, we comment on the difference between the two ie prescription.
In fact, for the global patch, there is no difference in the analytical results between the two ie prescription. On the other
hand, for the Poincaré patch, if we use the ie prescription given by m?> — m? — ig, the wave functions have the form
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@ (15 m0) ~ \/TE ekm+ =D (— YT HY) (— k), (H3)
(m; m0) ~ ge‘“k”‘* (=)' H (~ k), (H4)
e(m; ) ~ —%(-m)‘”{% — vy — iﬁn)(—n)d_?fus(—kn), (H5)
B(n:m) ~ — %(—m)%(% = v i (), (). (H6)

These wave functions agree with (163)—(166) after we take the limit € — 0, except for the wave function ¢(7; 17¢). Since
the in-in or in-out propagator does not use ¢(7; 179), the propagators in the Poincaré patch do not depend on the manner of
the ie prescription. Thus, in both patches, there is no difference in the analytical results between the two ie prescriptions.
However, for the numerical calculations given in Sec. V, these two prescriptions give slightly different results, and the ie
prescription used in this paper seems to be better in comparison with the analytical results.
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