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Conformal geometry is considered within a general relativistic framework. An invariant distant for

proper time is defined and a parallel displacement is applied in the distorted space-time, modifying

Einstein’s equation appropriately. A particular solution is introduced for the covariant acceleration

potential that matches the observed velocity distribution at large distances from the Galactic Center,

i.e. modified Newtonian dynamics. This explicit solution of a general framework that allows both

curvature and explicit local expansion of space-time, thus reproduces the observed flattening of galaxys’

rotation curves without the need to assume the existence of dark matter. The large distance expansion rate

is found to match the speed of a spherical shock wave.
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I. INTRODUCTION

The motion of stars around spiral galaxies trace flat
rotation curves which do not equate to those calculated
from Newtonian dynamics applied to the luminous matter
of the Galaxy [1]. One possible explanation for this is the
existence of nonluminous dark matter such as weakly
interacting massive particles [2] which, when included in
the calculation, reproduce the observed velocity profiles.
Observations made on the bullet cluster of galaxies suggest
the existence of dark matter [3], although other effects have
also been attributed to these observations [4]. Another
possible explanation is that galactic motions are governed
by non-Newtonian physics. This viewpoint is backed
by the Tully-Fisher relation [5] that shows a correlation
between the speed of rotation of stars and luminosity in a
galaxy without the requirement for dark matter. One sug-
gestion is a modification to Newtonian dynamics named
modified Newtonian dynamics (MOND) [6] which pro-
duces the motions of spiral galaxies, and McGaugh [7]
has demonstrated that it also fits the motions for gas-rich
galaxies. A relativistic gravitation theory to support
MOND dynamics has been developed [8], although it has
been suggested that this might lead to unstable dynamics
for stars [9]. Other theories have also been suggested, for
example conformal gravity [10,11], expanding space-time
[12], a theory based on curvature effects [13], and a modi-
fication to the gravitational field equations [14]. In the
present paper, conformal geometry is used within a general
relativistic framework. This formulation has similarities
with Weyl theory [15–17] which considers a gauge rescal-
ing that changes the vector length, and Weyl relates this
to the electromagnetic potential satisfying Maxwell’s
equations. However, this leads to a variance in the atomic
time of clocks which is not observed and which led to the
theory being discounted in particular by Einstein [18]. To
overcome this, conformal gravity considers a variational

in which an infinitesimal gauge rescaling occurs simulta-
neously with a conformal transform that allows a counter-
balancing length rescaling such that the line element
remains invariant [10,11]. Similarly, the formulation
presented here can equivalently be viewed as a gauge
rescaling together with a length rescaling to ensure that
for weak distortion of space-time the invariant (line
element) proper time is the atomic time and so does not
vary as it does in Weyl theory. Defining an invariant
distance for proper time and applying parallel displace-
ment in the distorted space-time leads to a formulation that
fits MOND for the dynamics of galaxies by introducing a
particular solution for the covariant acceleration potential.

II. THE DISTORTION OF SPACE-TIME

The notation and arguments as laid out by Dirac [19] are
followed. Assume that there exists a higher N-dimensional
space described by rectilinear contravariant coordinate
points z0nðn ¼ 1; 2; . . .NÞ, such that there is a distance
measure ds0 between two neighboring points given by

ds02 ¼ dz0ndz0n ¼ hnmdz
0mdz0n; (1)

where dz0n and dz0n are the covariant and contravariant
infinitesimal changes in position respectively, and the
tensor hnm is constant. In the presence of matter, assume
that this space is distorted by both local expansions and
curvature.
Consider local expansions first. Allowing explicit

expansions that are isotropic at point zm such that
dz0m ¼ ffiffiffiffi

�
p

dzm, then (1) becomes

ds02 ¼ �hnmdz
mdzn; (2)

where the factor 1=� is a function of position.
Now consider curvature. In particular, consider a

lower-dimensional curved ‘‘surface’’ lying in the higher
dimensional plane. The lower-dimensional 4-space x�,
(� ¼ 0, 1, 2, 3) is defined, where x0 denotes the time
coordinate, and ðx1; x2; x3Þ denote the spatial coordinates.*t.f.hodgkinson@salford.ac.uk
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Follow the convention where greek symbols denote indices
summed from 0 to 3, and roman symbols denote indices
summed from 1. Let the point ynðxÞ in the higher dimen-
sional plane correspond to a point x� in four-dimensional
space-time. Then from (2) we get

ds02 ¼ �hnmy
n
;�y

m
;�dx

�dx�

¼ �yn;�yn;�dx
�dx�

¼ g��dx
�dx� (3)

where the comma denotes a differentiation, and the
convention for inner product is a�b� ¼ a0b0 � a1b1 �
a2b2 � a3b3. The metric is therefore defined as

g�� ¼ �yn;�yn;�: (4)

Hence, the components of the metric tensor are determined
by both local expansion and curvature, from the � factor
and from the yn;�yn;� factor respectively.

III. INVARIANT DISTANCE AND
PARALLEL DISPLACEMENT

Requiring an invariant distance means that

ds2 ¼ yn;�yn;�dx
�dx�; (5)

where ds is the invariant infinitesimal distance (line ele-
ment or proper time) between two infinitesimally close
points. For weak curvature (5) becomes ds ¼ dx0, so
proper time becomes atomic time without a scaling factor
present; in Weyl theory, the distance measure is chosen as
the rescaled gauge, and so for weak curvature the scaling
factor is present, leading to Einstein’s objection. Equating
this with (3) gives

�ds2 ¼ ds02 ¼ �yn;�yn;�dx
�dx�; (6)

which is equivalent to a gauge rescaling together with a
counterbalancing length rescaling on the left-hand side and
right-hand side of (6) respectively.

The change in vector length due to parallel displace-
ment is

dA� ¼ ðA��yn;�yn;�� þ A�ðln�Þ;�Þdx�: (7)

Note that when � ¼ 1 there is no expansion and the
standard result for parallel displacement is recovered.

IV. EXPANSION SYMBOLS AND COVARIANT
DIFFERENTIATION

This analysis works on the metric and its rescaling,
so produces the same formulations obtained by Weyl for
gauge invariance [15–17], and gives rise to expansion
symbols E��� and Christoffel symbols ����. The standard

Christoffel symbol is

���� ¼ 1=2ðg��;� � g��;� þ g��;�Þ;

and the expansion symbol given by

E��� ¼ 1=2ðg��ðln�Þ;� � g��ðln�Þ;� þ g��ðln�Þ;�Þ
(8)

is introduced. So, the change in the covariant vector A�

given by (7) can be rewritten as

dA� ¼ A�ð���� � E��� þ g��ðln�Þ;�Þdx�
¼ A������dx

�; (9)

where the Christoffel symbol has been modified to

����� ¼ ���� � E��� þ g��ðln�Þ;� ¼ ���� þ E���:

(10)

The infinitesimal change in the covariant vector is
now used to define covariant differentiation. Noting that
A�ðxÞ þ �����A�dx

� is a parallel displaced tensor so is also

a tensor (where g���
���� ¼ �����), then define a modified

covariant derivative

A�;� ¼ A�;� � �����A�; (11)

as opposed to the standard covariant derivative given by
A�:� ¼ A�;� � ��

��A�. So the modified curvature tensor is

R�
���� ¼ ��

���;� � ��
���;� þ ������

�
��� � ������

�
���:

For weak curvature, dropping quadratics, this becomes

R��� ¼ �����;� � �����;� ¼ g��ð�����;� � �����;�Þ:
(12)

V. CHANGE IN VECTOR LENGTH AND
CONTRAVARIANT CHANGE

The change in the dot product of two vectors is

dðA�B�Þ ¼ dðg��A�B�Þ
¼ g��A�dB� þ g��B�dA� þ A�B�g

��
;�dx

�:

Substituting in for the covariant change (9), and using
the fact that ���� þ ���� ¼ g��;� and E��� þ E��� ¼
g��ðln�Þ;�, gives

dðA�B�Þ ¼ ½A�B�g��;� � A�B�g��ðln�Þ;�
þ 2A�B�ðln�Þ;� þ A�B�g

��
;��dx�:

Noting that A�B�g
��

;� ¼ �A�B�g��;�, then gives

dðA�B�Þ ¼ A�B�ðln�Þ;�dx� ¼ A�B�dðln�Þ: (13)

Therefore, dðA�B�

� Þ ¼ 0 and so letting A� ¼ B� gives a

change in vector length

dðð1=�ÞðA�A�ÞÞ ¼ 0;

so the length of a vector changes by the factor
1=� from point to point. Letting A� ¼ dx�, then
dðð1=�Þðdx�dx�ÞÞ ¼ dðds02=�Þ ¼ 0, giving
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dðdsÞ ¼ 0;

and so ds is an invariant distance as expected from (5) for
consistency.

From (13), dðA�B
�Þ¼A�B

�dðln�Þ¼A�dB
�þdA�B

�,
this gives

A�B
� ¼ dðA�B

�Þ � A�B
������dx

�

¼ A�B
�dðln�Þ � A�B

������dx
�:

This holds for any A�, and so cancelling the repeated term
gives

dB� ¼ �B����
��dx

�; (14)

where ���
�� ¼ ��

�� � g��ðln�Þ;�, and so

��
��� ¼ ���� � E���:

VI. GEODESIC ACCELERATION

Letting

dx� ¼ dx�

ds
ds ¼ V�ds;

where ds is the invariant distance, then from (14) the
contravariant velocity V� in weak distorted space is

dV�

ds
¼ ��

��
��V�V�

dVm

ds
¼ ���m

��V
�V� ¼ ���m

00 V
0V0 ¼ �gmn��

n00V
0V0:

(15)

For a static gravitational field, g��;0 ¼ �;0 ¼ 0 and

also gn0 ¼ 0. So, �n00 ¼ ð�1=2Þg00;n and En00 ¼
ð�1=2Þg00ðln�Þ;n. Furthermore, from (3) �dx2 ¼
g��dx

�dx�, and so for a static field (such that

gm0 ¼ g0m ¼ 0) and for velocities small compared with
light such that quadratics VmVn can be dropped, then
� ¼ g00V

0V0. Substituting these results into (15) gives

dVm

ds
¼ �gmn��

n00V
0V0

¼ ð1=2Þgmnðg00;nV0V0 � g00ðln�Þ;nV0V0Þ
¼ ð1=2Þð�gmnÞðln ðg00=�ÞÞ;n
¼ ð�gmnÞ�;n;

where

� ¼ ln

ffiffiffiffiffiffiffi
g00
�

r
�

ffiffiffiffiffiffiffi
g00
�

r
� 1 � ð1=2Þ

�
g00
�

� 1

�
(16)

is the covariant acceleration, since in the weak distortion
limit �gmn ¼ �1 for m ¼ n. It is noted that when � ¼ 1,
the standard result for geodesic acceleration is obtained.

VII. EINSTEIN’S FIELD EQUATIONS AND
THE GRAVITATIONAL FORCE

In empty space, Einstein’s field equations then become

R��� � ð1=2Þg��R� ¼ 0:

In the presence of matter, a material energy tensor T�� is
required such that T��

;� ¼ 0, for the modified covariant

differentiation given by (11). Defining a velocity V
�
� given

by differentiating distance with respect to the higher
dimensional distance measure s0, then V

�
� ¼ dx�=ds0 ¼

ð1= ffiffiffiffi
�

p ÞV� and so g��V
�
� V�� ¼ 1, leading to V��V��;� ¼ 0.

Together with the condition for conservation of matter
ð�V�

� Þ;�, then gives T��
;� ¼ ð�V�

� V�� Þ;� ¼ 0. So, consider

generalizing Einstein’s field in the presence of matter by

R��� � ð1=2Þg��R� ¼ �8��V��V��: (17)

For � ¼ 1, R� ¼ R and V�� ¼ V�, and the standard law is

recovered. Rearranging in the usual way to incorporate the
term R� into the right-hand side of (17), substituting for
R��� given by (12) and neglecting quadratic quantities in �

and E for weak distortion, gives when � ¼ � ¼ 0

�g��ð��0�;0 � ��00;�Þ þ �g��ðE0��;0 � E0�0;�Þ
¼ �4��V0V0:

A static field such that g��;0 ¼ ðln�Þ;0 ¼ 0 gives

��0�;0 ¼ 0, ��00;� ¼ ð�1=2Þg00;��, E0��;0 ¼ 0 and

E0�0;� ¼ ð1=2Þ½g00ðln�Þ;���. So
ð1=2Þgmnðg00;mn � ½g00ðln�Þ;n�;mÞ ¼ �4��V0V0:

For a weak field

yn�yn;� �

8>><
>>:
1 for � ¼ � ¼ 0

�1 for � ¼ � � 0

0 otherwise

and so

g�� ¼ �yn�yn;� ¼

� 0 0 0

0 �� 0 0

0 0 �� 0

0 0 0 ��

0
BBBBB@

1
CCCCCA;

g�� ¼

1=� 0 0 0

0 �1=� 0 0

0 0 �1=� 0

0 0 0 �1=�

0
BBBBB@

1
CCCCCA:

For a static and weak field g00V0V0 ¼ 1=�, so V0 ¼ 1 and

g00;mm � ½g00ðln�Þ;m�m ¼ 8��: (18)

From (16) the covariant potential � is such that ð1=2Þ�
½ðlng00Þ;n � ðln�Þ;n� ¼ �;n, and so substituting this into

(18) gives
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ðg00�;mÞ;m ¼ 4��; (19)

and rearranging (16) gives

g00
�

¼ 1þ 2�:

It is seen that although g00=� must be close to unity for
weak distortion, g00 is unrestricted. So g00 can be equated
to the MOND function, retrieving MOND dynamics in a
simple and straightforward way.

For a point source, following the same arguments
as [20], from (19) we get Newton’s second law given
explicitly as

Mg00a ¼ F (20)

assuming no curl vector field present, whereM is the point
mass, a the acceleration and F the force, which is the
standard MOND modification but with g00 identified as
the MOND interpolation function �.

VIII. POINT SOURCE AND GENERAL SOLUTION

Using (16) and substituting g00 ¼ �e2� into (19) yields
after integration that

�e2� ¼ D

ðr2j~r�jÞ (21)

for point source of mass M, � ¼ M	ðrÞ, where D is an

integration constant, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22 þ x23

q
and 	ðrÞ is the

Dirac delta function. Matching this solution to the
observed flattening of galaxys’ rotation curves imposes

that j~r�j ! D=r2 when j~r�j � a0 and that j~r�j !ffiffiffiffiffiffiffiffiffi
a0D

p
=r when j~r�j � a0, where a0 is the acceleration

parameter of MOND theory. Thus a consistent solution for
the potential is derived to be

� ¼ �M=rþ ffiffiffiffiffiffiffiffiffiffi
a0M

p
ln r; (22)

where D has been identified as the point source mass.
This empirical derivation allows interpretation of the rate
of expansion, suggesting a physical context and thus an
alternative derivation (see later). The first term is the
Newtonian potential due to the curvature �NEWT, and the
second term is the MOND potential due to local expan-
sions �MOND, see Fig. 1. Then, ðg00�;mÞ;m ¼ 4�� means

that g00�;m ¼ ðM=r2Þ ~r. So

g00 ¼ M=r2

M=r2 þ ffiffiffiffiffiffiffiffiffiffi
a0M

p
=r

; (23)

and g00=� ¼ 1� 2M=rþ 2
ffiffiffiffiffiffiffiffiffiffi
aoM

p
ln r. Two limits can

now be considered.
For small r such that the curvature termM=r2 dominates

the expansion term
ffiffiffiffiffiffiffiffiffiffi
a0M

p
=r, then this equates to a domi-

nant solution of the Newtonian potential �NEWT where
the accelerations are such that j�N

;mj=a0 � 1. Then (22)

becomes �NEWT ¼ �M=r, �NEWT
;m ¼ ðM=r2Þ ~r, and (23)

becomes g00 ¼ 1�
ffiffiffiffi
a0
M

q
r � 1, g00=� ¼ 1� 2M=r. So,

the Newtonian point source potential is recovered.
For large r such that the expansion term

ffiffiffiffiffiffiffiffiffiffi
a0M

p
=r domi-

nates the curvature term M=r2, then this equates to a
dominant solution of the MOND potential �MOND where
the accelerations are such that j�M

;mj=a0 � 1. Then (22)

becomes �MOND ¼ ffiffiffiffiffiffiffiffiffiffi
a0M

p
ln r, �MOND

;m ¼ ð ffiffiffiffiffiffiffiffiffiffi
a0M

p
=rÞ ~r,

and (23) becomes g00 ¼
ffiffiffiffi
M
a0

q
1
r .

Substituting into (19), gives ½
ffiffiffiffi
M
a0

q
1
r ð

ffiffiffiffiffiffiffiffiffiffi
a0M

p
ln rÞ;m�;m ¼

½M
r2
~r�;m ¼ 4�M	ðxÞ ¼ 4�� as expected.

Also if limits are introduced directly into (21) such that
for the Newtonian case as r ! 0, � ¼ 1 and 2� � 1, this
gives

r2ð1þ 2�Þ~r� ¼ M: (24)

After integration, and j�2j � j�j yields, � ¼ �M=r as
expected.
In the MOND limit j�2j � j�3j and � ¼ �ðrÞ. After

integration this gives �ðrÞ / ffiffiffiffiffiffiffiffiffiffi
a0M

p
ln r, where

�ðrÞ ¼ 1

2a0r ln r
: (25)

Interestingly, the 1=r ln r dependence for� (the space-time
expansion) is identical to the large r radial velocity of a
spherical shock wave [21–23]. So, if one assumed this
physical origin for expansion one can directly derive the
second term in (22) without fitting MOND characteristics
to the solution.
It is noted that the factor g00 is approximately unity in

the Newtonian approximation, meaning that (19) is linear
and so a system of point sources can be considered as a
summation of separate point source solutions. However, in
the MOND approximation, g00 is a varying function, and
so (19) is nonlinear and cannot be broken down in this way.
Furthermore, the mass term on the right-hand side of (19)

is split into a factor
ffiffiffiffiffi
M

p
with the potential and a factor

ffiffiffiffiffi
M

p
with g00. So, the momentum equation of Newton’s second

φ,NEWT
n ~ 1/r2

a0

a0φ,n <<| |

a0

ac
ce

le
ra

tio
n

distance

n ~φ,MOND
1/r

φ,n| | >>

FIG. 1. The change in acceleration with distance.
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law only makes sense if it is modified to include the factor
g00. Furthermore, because of the nonlinearity this factor
g00 can only be calculated once the complete system is
known.

The point source solution suggests a general solution
given by

� ¼ �NEWT þ�MOND;

g00 ¼
��������

r�NEWT

r�NEWT þr�MOND

��������;

� ¼ 1� 2�NEWT � 2�MOND

1þ jr�MOND=r�NEWTj ;

g00=� ¼ 1þ 2�NEWT þ 2�MOND;

where r is the differential operator ð @
@x1

; @
@x2

; @
@x3

Þ
for Cartesian coordinate system vector representation
ðx1; x2; x3Þ. �NEWT and �MOND are connected in the sense
that they can be seen as limiting values of the same general
potential �, such that the first is the limit of small relative
radius for solar systems, and the second is the limit of large
relative radius for galaxies. So this choice of � has a
certain degree of physical justification in that it gives the
expected physics in these limits. The two limits are then as
follows.

When j�;nj=a0 � 1, then curvature dominates so

jr�NEWTj � jr�MONDj, and
� ¼ �NEWT; g00 ¼ 1; � ¼ 1� 2�NEWT;

g00=� ¼ 1þ 2�NEWT;

and so �NEWT
;mm ¼ 4��, and the Newtonian gravitational

representation is recovered. Such accelerations feature in
solar system dynamics.
However, when j�;nj=a0 � 1, then expansion domi-

nates jr�MONDj � jr�NEWTj, and

� ¼ �MOND; g00 ¼
��������
r�MOND

a0

��������;

� ¼
��������
r�MOND

a0

��������ð1� 2�MONDÞ;
g00=� ¼ 1þ 2�MOND;

and so (19) becomes

ðg00�;mÞ;m ¼
�jr�MONDj

a0
�MOND

;m

�
;m

¼ 4��;

which is the MOND representation for the potential
acceleration. Such accelerations feature in the motions of
galaxies.
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