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We study particle production in infrared-modified gravitational theories in the contemporary universe.

It is shown that in astronomical systems with rising mass density, the curvature scalar may oscillate with

very high frequency. These oscillations lead to efficient particle production and in an interesting range of

model parameters could be a source of energetic cosmic rays. This effect either excludes some models of

modified gravity or suggests a new mechanism of cosmic ray production.
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I. INTRODUCTION

The discovery of the present-day accelerated cosmologi-
cal expansion [1] has triggered huge theoretical efforts
directed to finding an explanation for its value and for its
very existence, but the driving force behind this phenome-
non is still unknown. A popular possibility is represented
by gravity modifications at large scales and/or small cur-
vatures, which can be realized by adding a nonlinear
function of the scalar curvature R to the usual Einstein-
Hilbert action:1
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The initial suggestion [2] of gravity modification with
FðRÞ ��4=R suffered from strong instabilities in celestial
bodies [3]. Because of that, further modifications have
been suggested [4–6] which are free of these instabilities.
For a review of these and some other versions see e.g.,
[7,8]. The suggested modifications, however, may lead to
infinite-R singularities in the past cosmological history [7]
and in the future in astronomical systems with rising
energy/matter density [9,10]. Some properties of the sin-
gularity found in [10] were further studied in [11]. These
singularities can be successfully cured by the addition of an
R2 term into the action. Such a contribution naturally
appears as a result of quantum corrections due to matter
loops in curved space-time [12,13]. Another mechanism
which may in principle eliminate these singularities is

particle production by the oscillating curvature. If the
production rate is sufficiently high, the oscillations of R
are efficiently damped and the singularity could be avoided
(see below).
The R2 term may also have dominated in the early

universe where it could lead to strong particle production.
The process was studied long ago in [13–15]. Renewed
interest to this problem arose recently [16,17], stimulated
by the interest in possible effects of additional ultraviolet
terms, �R2, in infrared-modified FðRÞ gravity models.
A general approach to the origin of singularities in FðRÞ
theories was considered in Ref. [18].
In this paper we discuss the behavior of a popular FðRÞ

model of dark energy in the case of a contracting system,
discussing the evolution of the curvature scalar R and the
related effects of gravitational particle production. The
calculations are done both numerically and analytically.
For realistic values of the parameters, especially for ex-
tremely small coupling constant g, see Eq. (2.8), numerical
calculations are not reliable, so we have found an approxi-
mate analytical solution and compared it with the numeri-
cal one with small but not too small values of g, for which
numerical solutions are reliable. The comparison confirms
the very good precision of the analytical solution.

II. BASIC FRAMEWORKS AND EQUATIONS

We consider the model proposed in Ref. [6]:

FðRÞ ¼ ��Rc

�
1�

�
1þ R2

R2
c

��n
�
� R2

6m2
; (2.1)

where n is an integer, � > 0, and jRcj is of the order of
8�%c=m

2
Pl, where %c is the present-day value of the total

cosmological energy density. More precisely the value of
Rc is determined by Eq. (2.4) below. The R2 term, absent in
the original formulation, has been included to prevent
curvature singularities in the presence of contracting
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bodies [10], and is relevant only at very large curvatures,
because we need m * 105 GeV in order to preserve the
successful predictions of the standard Big Bang nucleo-
synthesis [16].

Though we made explicit calculations for the model of
Ref. [6], the results are applicable to similar modifications
proposed in papers [4,5] with the addition of the R2 term,
though precise numerical values may be somewhat differ-
ent. The point is that the evolution of R in all three
suggested forms of FðRÞ is determined by the behavior
of the potentialU defined below in Eqs. (2.11) or (2.17) and
this behavior is qualitatively the same.

The evolution of R is determined from the trace of the
modified Einstein equations:

3D2F;R � Rþ RF;R � 2F ¼ T; (2.2)

where D2 � D�D� is the covariant D’Alambertian

operator, F;R � dF=dR, T � 8�T
�
�=m2

Pl, and T�� is the

energy-momentum tensor of matter.
To describe the accelerated cosmological expansion, the

function FðRÞ is chosen in such a way that Eq. (2.2) has a
nonzero constant curvature solution, R ¼ �R, in the absence
of matter. Observational data demand

�R ¼ � 32���%c

m2
Pl

; (2.3)

where �� � 0:75 is the vacuum-like cosmological energy
density, deduced from the observations under the assump-
tion of validity of the usual general relativity (GR) with
nonzero cosmological constant. Using this condition we
can determine Rc from the solution of the equation:

�R� �RF;Rð �RÞ þ 2Fð �RÞ ¼ 0: (2.4)

This equation has two different limiting solutions for suf-
ficiently large �, roughly speaking � > 1, namely �R=Rc ¼
2� and �R=Rc ¼ 1=½nðnþ 1Þ��1=3. Following Ref. [6], we
should consider only the maximal root �R & 2�Rc.
Moreover, for the sake of simplicity and definiteness, we
will neglect these subtleties and assume �� 1 and

Rc ’ �R ’ 1=t2U; (2.5)

where tU � 4� 1017 s is the universe age. Still, for a more
detailed study of the parameter space of the model, it could
be necessary to consider the full numerical solution of
Eq. (2.4) for all values of �.

We are particularly interested in the regime jRcj �
jRj � m2, in which F can be approximated by

FðRÞ ’ �Rc

�
1�

�
Rc

R

�
2n
�
� R2

6m2
: (2.6)

We consider a nearly homogeneous distribution of pressur-
eless matter, with energy/mass density rising with time
but still relatively low (e.g., a gas cloud in the process
of galaxy or star formation). In such a case the spatial

derivatives can be neglected and, if the object is far from
forming a black hole, the space-time would be almost
Minkowski. Then Eq. (2.2) takes the form

3@2t F;R � R� T ¼ 0: (2.7)

Let us introduce the dimensionless quantities2

z � TðtÞ
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T
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(2.8)

where %c � 10�29 g=cm3 is the cosmological energy
density at the present time, %m0 is the initial value of the
mass/energy density of the object under scrutiny, and
T0 ¼ 8�%m0=m

2
Pl. Next let us introduce the new scalar

field:

� � 1

2n

�
T0

Rc

�
2nþ1

F;R ¼ 1

y2nþ1
� gy; (2.9)

in terms of which Eq. (2.7) can be rewritten in the simple
oscillator form:

�00 þ z� y ¼ 0; (2.10)

where a prime denotes derivative with respect to �.
The potential of the oscillator is defined by

@U

@�
¼ z� yð�Þ: (2.11)

The substitution (2.9) is analogous to that done in [10] but
now y cannot be analytically expressed through � and we
have to use approximate expressions.
It is clear that (2.10) describes oscillations around y ¼ z

(the ‘‘bottom’’ of the potential), which corresponds to the
usual GR solution Rþ T ¼ 0. So we can separate solu-
tions into an average and an oscillatory part. For small
deviations from the minimum of the potential, solutions
take the form

�ð�Þ ¼
�

1

zð�Þ2nþ1
� gzð�Þ

�
þ �ð�Þ sinFð�Þ

� �að�Þ þ �1ð�Þ; (2.12)

where

Fð�Þ �
Z �

�0

d�0�ð�0Þ; (2.13)

and the dimensionless frequency � is defined as

�2 ¼ @2U

@�2
; (2.14)

2The parameter g should not be confused with det g��.
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taken at y ¼ z. From (2.10), we find that it is equal to

�2 ¼ � @y

@�

��������y¼z
¼ � 1

@�=@y

��������y¼z
¼

�
2nþ 1

z2nþ2
þ g

��1
:

(2.15)

The conversion into the physical frequency ! is given by

! ¼ �m
ffiffiffi
g

p
: (2.16)

It is assumed that initially �ð�0Þ sits at the minimum of
the potential, otherwise we would need to add a cosine
term in (2.9). If initially �ð�0Þ was shifted from the
minimum, the oscillations would generally be stronger
and the effect of particle production would be more
pronounced.

A. Potential for �

One cannot analytically invert Eq. (2.9) to find the exact
expression for Uð�Þ. However, we can find an approximate
expression for gy2nþ2 � 1 (�>0) and gy2nþ2	1 (�<0).
The value � ¼ 0 separates two very distinct regimes, in
each of which � has a very simple expression [see
Eq. (2.15)] and � is dominated by either one of the two
terms on the right-hand side (rhs) of Eq. (2.9). Hence, in
those limits the relation � ¼ �ðyÞ can be inverted giving
an explicit expression for y ¼ yð�Þ, and therefore the
following form for the potential:

Uð�Þ ¼ Uþð�Þ�ð�Þ þU�ð�Þ�ð��Þ; (2.17a)

where

Uþð�Þ ¼ z�� 2nþ 1

2n

� ½ð�þ gð2nþ1Þ=ð2nþ2ÞÞ2n=ð2nþ1Þ � g2n=ð2nþ2Þ�;

U�ð�Þ ¼ ðz� g�1=ð2nþ2ÞÞ�þ �2

2g
: (2.17b)

By construction U and @U=@� are continuous at � ¼ 0.
The shape of this potential is shown in Fig. 1. We can write
a conservation equation for a quantity which is analogous
to the ‘‘energy’’ of the field �:

1

2
�02þUð�Þ�

Z �

�0

d	
@U

@	
¼ 1

2
�02þUð�Þ�

Z �

�0

d	
@z

@	
�ð	Þ

¼ const; (2.18)

where � and �0 are taken at time moment � coinciding with
the upper integration bound. The oscillating part of � in the
last integral term in (2.18) would be integrated away for
fast harmonic oscillations of �. However, since the oscil-
lations at late time become strongly asymmetric, this term
rises with time (see Fig. 3 and Sec. III C 1 below).
The bottom of the potential, as it is obvious from

Eq. (2.11), corresponds to the GR solution R ¼ �T, or
yð�Þ ¼ z, and its depth (for gz2nþ2 < 1) is

U0ð�Þ ’ � 1

2nzð�Þ2n : (2.19)

We will use a very simple form for the external energy
density z, namely

zð�Þ ¼ 1þ 
ð�� �0Þ; %ðtÞ ¼ %0

�
1þ t� t0

tcontr

�
;


�1 � m
ffiffiffi
g

p
tcontr: (2.20)

Here, 
�1 and tcontr are respectively the dimensionless and
physical time scales of the contraction of the system;
analogously, �0 and t0 are respectively the dimensionless
and physical initial times, which for simplicity and without
loss of generality will be taken equal to 0. This evolution
law may not be accurate when t=tcontr > 1, but results
obtained with more sophisticated functions describing the
contraction of the system are most likely in qualitative
agreement with our results, provided that _% remains
positive at all times.
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FIG. 1. Examples of the variation of potential (2.17) for different values of parameters. (Left panel) (n ¼ 2, z ¼ 1:5) solid line:
g ¼ 0:02; dashed line: g ¼ 0:01; dotted line: g ¼ 0:002; the part of the potential at � < �a is increasingly steeper as g decreases; the
bottom of the potential also moves. (Right panel) (n ¼ 2, g ¼ 0:01) solid line: z ¼ 1:3; dashed line: z ¼ 1:4; dotted line: z ¼ 1:5; the
bottom of the potential moves to higher values of U and lower values of �, as z increases.
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It is also useful to express physical parameters such as
m, the initial energy density %m0, etc., in terms of their
respective ‘‘typical’’ values. Let us define

%29 � %m0

%c

; m5 � m

105 GeV
; t10 � tcontr

1010 years
;

(2.21)

where %c ¼ 10�29 g cm�3 is the present (critical) energy
density of the Universe. In terms of these quantities, we can
rewrite g and 
 as

g ’ 1:2� 10�94 %
2nþ2
29

nm2
5

; 
 ’ 1:9

ffiffiffi
n

p
%nþ1
29 t10

: (2.22)

III. SOLUTIONS

A. Oscillations of �

At first order in �1, Eq. (2.10) can be written as

�00
1 þ�2�1 ¼ ��00

a; (3.1)

with � given by (2.15). The term �00
a is proportional to 
2,

which is usually assumed small, so in first approximation it
can be neglected, though an analytic solution for constant
� or in the limit of large � can be obtained considering
this term as well. Using (2.12) and neglecting �00, we
obtain

2
�0

�
’ ��0

�
) � ’ �0

ffiffiffiffiffiffiffi
�0

�

s

¼ �0

�
1

z2nþ2
þ g

2nþ 1

�
1=4

�
1þ g

2nþ 1

��1=4
: (3.2)

Here and in what follows sub-0 means that the correspond-
ing quantity is taken at initial moment � ¼ �0. We impose
the following initial conditions:

yð� ¼ �0Þ ¼ zð� ¼ �0Þ ¼ 1; y0ð� ¼ �0Þ ¼ y00; (3.3)

which correspond to the GR solution at the initial moment.
In terms of � it means that �1ð�0Þ ¼ 0. The initial value of
the derivative �0

1ð�0Þ can be expressed through y00, which
we keep as a free parameter; according to (2.9): �0

0 ¼
�y00ð2nþ 1þ gÞ. Differentiating Eq. (2.12) with respect

to � and using (3.2) we find

�0 ¼ ð
� y00Þð2nþ 1þ gÞ3=2: (3.4)

Correspondingly,

j�ð�Þj ¼ jy00 � 
jð2nþ 1þ gÞ5=4
�
2nþ 1

z2nþ2
þ g

�
1=4

: (3.5)

Because of the assumptions made to obtain (3.2), we ex-
pect this result to hold when jy00 � 
j � 
 or slightly less.

In this regime the numerical results, shown in Fig. 2, are in
excellent agreement with the analytical estimate (3.5). We
remark that the agreement improves for larger g and/or

smaller 
, while for small g and ‘‘large’’ 
 it may become
significantly worse (see Sec. III C).
For y00 ¼ 
 and �1ð�0Þ ¼ 0, it would seem from

Eq. (3.5) that oscillations are not excited. However, this
is an artifact of the approximation used. In fact, the
‘‘source’’ term in the rhs of Eq. (3.1) produces oscillations
and hence deviations from GR with any initial conditions.

B. Oscillations of y

We shall now exploit this result to evaluate the ampli-
tude of the oscillations of y. We first expand y as it was
done for � in Eq. (2.12):

yð�Þ ¼ zð�Þ þ �ð�Þ sinFð�Þ

� yað�Þ þ �ð�Þ sin
�Z �

�0

d�0�
�
; (3.6)

where it is easy to prove that � must coincide with that
given by Eq. (2.15). For j�=zj< 1, we expand � as

� ¼ 1

z2nþ1½1þ ð�=zÞ sinFð�Þ�2nþ1
� gðzþ � sinFð�ÞÞ

’ 1

z2nþ1
� gz�

�
2nþ 1

z2nþ2
þ g

�
� sinFð�Þ: (3.7)

Comparing this expression with Eqs. (2.12) and (2.15), we
find that

j�j ¼ j�j
�
2nþ 1

z2nþ2
þ g

��1 ¼ j�j�2: (3.8)

Accordingly, � evolves as

�ð�Þ ’ jy00 � 
jð2nþ 1þ gÞ5=4
�
2nþ 1

z2nþ2
þ g

��3=4
: (3.9)

This is in reasonable agreement with numerical results,
especially in both limiting cases gz2nþ2 � 1 and
gz2nþ2 	 1, as expected.
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1

FIG. 2. Numerically calculated oscillations of �1ð�Þ, in the
case n ¼ 2, 
 ¼ 0:01, g ¼ 0:01 and initial conditions y0 ¼ 1,
y00 ¼ 
=2. The amplitude and the frequency of the oscillations

are in very good agreement with our analytical result (3.5).
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C. ‘‘Spike-like’’ solutions

We have found simple analytical solutions for � and y in
two separate limits: gz2nþ2 � 1 and gz2nþ2	1. However,
in the intermediate case numerical calculations show in-
teresting features which are worth discussing. As shown in
Fig. 3, when � approaches (and even crosses) zero but �a

does not, that is when gy2nþ2 ’ 1 but gz2nþ2 < 1, we have
the largest deviations from the harmonic, symmetric oscil-
lations around y ¼ z. This happens especially when g is
very small and 
 is not too small.

The reason for this behavior is qualitatively explained by
the following considerations. Inspecting Eq. (2.17) and/or
Fig. 1, we see that when � < �a the potential becomes
increasingly steep, hence reducing the time spent in that
region. Moreover, a given variation �� in this region
corresponds to a large variation of y. Thus there appear
high, narrow spikes in y. On the other hand, for � > �a the
potential is much less steep, and the oscillation in that
region lasts longer, yielding slow ‘‘valleys’’ between the
spikes of y.

Please note that in the region with spikes, the assumption
j�=zj � 1 is no longer accurate, and we have deviations
from the analytical estimate (3.9), which is usually smaller
than the exact numerical value.

1. Estimate of �

In order to obtain an estimate of � in this region we use
an analogous approach to that of [18]. Let us first introduce
some new notations:

Uð�Þ ¼ U½�ð�Þ; zð�Þ�; Uað�Þ ¼ U½�að�Þ; zð�Þ�: (3.10)

Remember that according to Eq. (2.12) �að�Þ ¼
zð�Þ�ð2nþ1Þ � gzð�Þ is the value of � where the potential
has its minimum value. Let us denote by �a the time at
which � hits the minimum of the potential, i.e., �ð�aÞ ¼
�að�aÞ and correspondingly �1ð�aÞ ¼ 0. Note that
Uð�aÞ ¼ Uað�aÞ, while they are evidently different at other
values of �. We will examine Eq. (2.18) choosing the initial
value of time at the moment when � passes through the

minimum of the potential. Correspondingly Uð�0Þ ¼
Uað�0Þ and hence we denote �0 as �a0. With this initial
value of �0 we rewrite Eq. (2.18) as

1

2
½�0ð�Þ�2 þUð�Þ �

Z �

�a0

d	z0ð	Þ½�að	Þ þ �1ð	Þ�

¼ Uað�a0Þ þ 1

2
½�0ð�a0Þ�2: (3.11)

We start by noticing that the first term under the integral
in the left-hand side of this equation can be explicitly
integrated and is equal toZ �

�a0

d	z0ð	Þ�að	Þ ¼ Uað�Þ �Uað�a0Þ: (3.12)

So Uað�a0Þ disappears from this equation.
Assume that the upper limit of integration, �, is suffi-

ciently high, such that the nearest minimum value of � is
negative. Let us first take � exactly equal to �m, i.e., to one
of the numerous values when � hits a minimum, � ¼
�min < 0. At this point �0ð�mÞ ¼ 0 and we obtain

Uð�mÞ ¼ Uað�mÞ þ 1

2
½�0ð�a0Þ�2 þ

Z �m

�a0

d	z0ð	Þ�1ð	Þ:
(3.13)

Now we need to estimate the last term (integral) in this
equation. To this end let us use again Eq. (3.11) but now
take the upper integration limit equal to the moment when
� happens to be at the minimum of U, at the nearest point
from �m taken above, so that � ¼ �a. According to
Eq. (3.12) the potential terms and the integral of z0�a

cancel out and we are left withZ �a

�a0

d	z0ð	Þ�1ð	Þ ¼ 1

2
½�0ð�aÞ�2 � 1

2
½�0ð�a0Þ�2: (3.14)

When � passes through the minimum of the potential its
velocity reaches maximum value for a given oscillation
and ½�ð�aÞ0�2 ¼ �2�2, where � and � are given by (3.5)
and (2.15), respectively. Notice that ½�ð�aÞ0�2 rises with
time and thus for large time ½�0ð�a0Þ�2 may be neglected. It

0.2 0.4 0.6 0.8 1.0 1.2 1.4

2
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y
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0.8

1.0

FIG. 3. ‘‘Spikes’’ in the solutions. The results presented are for n ¼ 2, g ¼ 0:001, 
 ¼ 0:04, and y00 ¼ 
=2. Note the asymmetry of
the oscillations of y and � around y ¼ z and their anharmonicity. See the text for further details.
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is worth noting that in the limit of harmonic oscillations
symmetric with respect to the minimum ofU the integral in
the rhs of Eq. (3.14) does not rise with time but, as we have
seen above, the oscillations are strongly asymmetric with
respect to �a and because of that the integral rises with time
and Eq. (3.14) is self-consistent.

The upper integration limits in Eqs. (3.13) and (3.14) are
slightly different: �m corresponds to the moment when �
reaches its minimum value (since � < 0, maximum in
absolute value), while �a is the nearest time moment
when � passes through the minimum of the potential. So
they differ by about a quarter of a period as calculated
when � is on the left side of the potential minimum. Since
this time interval is quite short the difference between these
two integral can be neglected.

So we finally obtain

Uð�mÞ¼Uað�mÞþ1

2
½�0ð�aÞ�2�1

2

�
�2�2� 1

nz2n

�
: (3.15)

Using expression (2.17b) for U�ð�Þ and the relation
between � and y: y ’ ��=g, we find

y2 � 2zy� 1

g

�
�2�2 � 1

nz2n

�
¼ 0; (3.16)

which yields the amplitude

�spikes ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

g

�
�2�2 � 1

nz2n

�
þ z2

s
: (3.17)

Quite remarkably, this result is exactly equivalent to (3.9)
in the limit gz2nþ2 	 1, so we will assume that from the
moment the harmonic approximation fails to be accurate,
� will follow (3.17) up to the asymptotic harmonic
regime where gz2nþ2 	 1. In particular, the moment of
transition from harmonic to spike regime is roughly the
time at which

�harm ¼ �spikes: (3.18)

IV. GRAVITATIONAL PARTICLE PRODUCTION

As is well known, an oscillating curvature gives rise to
gravitational particle production. Basically, the energy
stored in oscillating gravitational degrees of freedom is
released into pairs of elementary particles/antiparticles.
As shown in [16] in the case of a minimally coupled scalar
field, the energy released into particles per unit volume and
unit time is

_% PP ’ �2
R!

1152�
; (4.1)

where�R is the amplitude of the oscillations of R, and! is
their (physical) frequency. In our case,

�R � �T0: (4.2)

Moreover, the lifetime of oscillations of R is

�R ¼ 48m2
Pl

!3
: (4.3)

Rigorously speaking, this result is valid when the oscilla-
tions of R are perfectly harmonic, or at least when R can be
separated in a slowly varying and an oscillating part, which
is supposed to have a constant (or almost constant) fre-
quency. As we have seen in the previous section, solutions
of Eq. (2.10) show spikes, which are very far from being
harmonic oscillations. Thus, we must find a more general
result than (4.1).
We consider the gravitational particle production of

pairs of massless scalar particles ’, quantized in the usual
way:

’̂ðxÞ ¼
Z d3k

ð2�Þ32Ek

½âke�ik�x þ âyk e
ik�x�;

ðx � k � !t� k � xÞ
½âk; âyk0 � ¼ ð2�Þ32Ek�

ð3Þðk� k0Þ:
(4.4)

At first order in perturbation theory, the amplitude for the
creation of two particles of 4-momenta p1 and p2 is equal
to [16]

Aðp1; p2Þ ’ 1

6

Z
dtd3xRðtÞhp1; p2j’̂2j0i

¼ ð2�Þ3
3

ffiffiffi
2

p �ð3Þðp1 þ p2Þ
Z

dtRðtÞeiðE1þE2Þt: (4.5)

In terms of the Fourier transform of R, defined by

RðtÞ � 1

2�

Z
d! ~Rð!Þe�i!t; (4.6)

we can recast Eq. (4.5) as

Aðp1; p2Þ ’ ð2�Þ3
3

ffiffiffi
2

p �ð3Þðp1 þ p2Þ ~RðE1 þ E2Þ: (4.7)

In order to calculate the number of particles produced
per unit time and unit volume, we need to integrate
jAðp1; p2Þj2 over all phase space and to divide by the
three-dimensional volume and time duration of the pro-
cess, �t. This yields

_n PP ’ 1

288�2�t

Z
d!j ~Rð!Þj2; (4.8)

and correspondingly, because each particle is produced
with energy E ¼ !=2,

_% ’ 1

576�2�t

Z
d!!j ~Rð!Þj2: (4.9)

The time duration of the process �t may be considered
infinitely large if the characteristic frequency satisfies the
condition !ch�t 	 1. Correspondingly, the square of the

delta functions in ~R would be proportional to �ð0Þ � �t.
For instance, when R is a perfect sine or cosine of
frequency !, one has
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~Rð"Þ � �ð"�!Þ þ �ð"þ!Þ; (4.10)

and

j�ð"
!Þj2 ¼ �t

2�
�ð"
!Þ: (4.11)

Thus, �t does not appear in the probability of particle
production per unit time. The physical cutoff of �t in the
considered case is given roughly by �R in Eq. (4.3), there-
fore for! 	 1=�R the approximation used here is accurate
enough. Moreover, since frequencies must be positive,
only the first delta function in (4.10) gives a nonvanishing
contribution.

A. Regular region

First, let us concentrate on the ‘‘regular’’ region (see
Secs. III A and III B). Substituting �R � �T0 in (4.1),
using (3.9) and (2.16), and taking y00 ’ 0 for simplicity,

we find

_% PP;reg ¼ �
ffiffiffiffiffiffi
6n

p
18

tU%
nþ1
c

m4
Plt

2
contr%

n�1
m0

ð2nþ 1þ gÞ5=2
ð2nþ1
z2nþ2 þ gÞ2

¼ C

�
tU
tcontr

�
2 %2

c

m4
PltU

; (4.12)

where coefficient C has the following expressions in the
two limits:

(1) gz2nþ2 < 1:

C ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6nð2nþ 1Þp

18

�
%c

%m0

�
n�1

z4nþ4; (4.13)

gz2nþ2 > 1:

C ¼ �½6nð2nþ 1þ gÞ�5=2
18

�
%c

%m0

�
5nþ3ðmtUÞ4:

(4.14)

The last factor in Eq. (4.12) is extremely small. Since %2
c �

m4
Pl=t

4
U, this factor is about 1=t

5
U. So unless C is very large,

particle production in the regular region would be negli-
gible. The most favorable possibility would be small g and
large z, but keep in mind that g� %2nþ2

m0 . We present an

estimate of the flux in the conventional units as

_%PP;reg

GeV s�1 m�3
’ 3:6� 10�141 C1ðn; g; zÞz4nþ4

%n�1
29 t210

’ 2:5� 1047
C2ðn; g; zÞm4

5

%5nþ3
29 t210

: (4.15)

The coefficients C1 and C2 are convenient to use when
gz2nþ2 � 1 and gz2nþ2 	 1. They are respectively

C1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð2nþ 1þ gÞ

q �
2nþ 1þ g

2nþ 1þ gz2nþ2

�
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð2nþ 1Þ

p
; (4.16a)

C2 ¼ n5=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1þ g

p
g2
�

2nþ 1þ g

2nþ 1þ gz2nþ2

�
2
z4nþ4

� ½nð2nþ 1Þ�5=2: (4.16b)

B. Spike region

In the spike region the particle production rate would
be strongly enhanced due to much larger amplitude of the
oscillations of R. We parametrize the solutions in this
region as a sum of Gaussians with slowly varying
amplitude �RðtÞ, superimposed on the smooth powerlike
background, �TðtÞ:

RðtÞ ¼ �TðtÞ þ�RðtÞ
XN
j¼1

exp

�
�ðt� jt1Þ2

2�2

�
: (4.17)

Here t1 is the time shift between the spikes and � is
the width of the spikes. The values of these parameters
are determined from the solution obtained above. The slow
variation of the functions TðtÞ and �RðtÞ means that _T �
T=t1 and _�R � �R=t1.
In principle, N could be infinitely large, which for

�R ¼ const corresponds to an infinitely long duration of
the process. As we have mentioned before, this does not
have an essential impact on the probability of particle
production per unit time.
In accordance with the solutions of the equations deter-

mining the evolution of curvature, we consider the case
� � t1, that is the spacing between the spikes is much
larger than their width. At high frequencies the Fourier
transform of (4.17) is dominated by the contribution of the
quickly varying Gaussians, i.e.,

~Rð!Þ ’ ffiffiffiffiffiffiffi
2�

p
�Rj�je�!2�2=2þi!t1

eiN!t1 � 1

ei!t1 � 1
: (4.18)

When squared, this gives

j ~Rð!Þj2 ’ 2��2
R�

2e�!2�2 sin 2N!t1=2

sin 2!t1=2
: (4.19)

The dominant part of this expression comes from ! ¼
!j ¼ 2j�=t1, where it is equal to N

2. Around these points

we have

sin 2N!t1=2

sin 2!t1=2
’

!’2j�=t1

�
sin ½Nð!t1=2� j�Þ�

!t1=2� j�

�
2
: (4.20)

We take the limit N ! 1 and use a representation of
Dirac’s delta function to write
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sin 2N!t1=2

sin 2!t1=2
’ X

j

����������
�
!t1
2

� j�

���������2

¼ X
j

��������2�t1 �ð!�!jÞ
��������2

; (4.21)

which yields

j ~Rð!Þj2 ’ 4�2�2
R�

2e�!2�2
�t

t21

X
j

�

�
!� 2�j

t1

�
: (4.22)

Each particle produced by the oscillation component of
frequency ! has energy !=2, so the gravitational particle
production rate is

_%PP ¼ 1

288�2�t

Z
d!

!

2
j ~Rð!Þj2

¼ ��2
R�

2

72t31

X
j

j exp

�
�
�
2�j�

t1

�
2
�
’ �2

R

576�t1
: (4.23)

In the last step, we have again assumed that �=t1 � 1, so
that the summation over j can be replaced by an integral.
Remarkably, the dependence on � has disappeared from
the result. Lastly, we use �R ¼ �T0 and (3.17), obtaining

_%PP;sp¼ð6nÞ3=2ð2nþ1þgÞ5=2
18ð2nþ1þgz2nþ2Þ

m2t3Uz
2nþ2

t2contrm
4
Pl

%3nþ3
c

%3nþ1
m0

; (4.24)

or in conventional units,

_%PP;sp

GeV s�1 m�3
’ 3:0� 10�47 C3ðn; g; zÞm2

5z
2nþ2

t210%
3nþ1
29

; (4.25)

where

C3 ¼ ð2nþ 1þ gÞ5=2n3=2
ð2nþ 1þ gz2nþ2Þ � ½nð2nþ 1Þ�3=2: (4.26)

All elementary particles couple to gravity, so in order to get
an order-of-magnitude estimate of the overall particle pro-
duction one should multiply (4.15) and (4.25) by the num-
ber of elementary particle species, Ns, with masses bound
from above by m & 2�=�.

C. Backreaction on curvature and
mode-dependent damping

So far we have not taken into account that the oscillation
amplitude should be damped due to the backreaction of
particle production. Neglecting such damping would be an
accurate approximation up to t=�R ’ 1; for larger times,
however, the damping should be taken into consideration.
In the regular region oscillations are practically harmonic,
so only a single frequency mode is involved and one
simply needs to add the exponential damping factor
exp ½�2�ð!Þt� to (4.1) and (4.15). In the spike region the
problem is more complicated because, according to
Eq. (4.3), the damping depends upon the frequency,
so different modes are damped differently and this can

noticeably distort the form of the initial RðtÞ. A simple
approximate way to take into account this damping is to
introduce the factor exp ½�t=�Rð!Þ� into the integrand of
Eq. (4.6). After a sufficiently long time, only the modes
with the lowest frequency survive and one may naively
expect that the lowest frequency modes give the dominant
contribution to particle production. However, one should
keep in mind that the time duration is finite: in fact, it is
equal to the time of stabilization of the collapsing system
and is surely shorter than the cosmological time tc �
4� 1017 s. Thus the energy is predominantly emitted
with the frequencies determined by the condition
�t=�Rð!Þ ’ 1 [see discussion below Eq. (4.31)].
So to take into account the damping of R oscillations we

introduce into the amplitude (4.5) the damping factor
exp ½��ð!Þt�, where �ð!Þ ¼ 1=�Rð!Þ ¼ !3=48m2

Pl and

integrate over time up to a finite upper limit:

Aðp1; p2Þ ’ ð2�Þ3
3

ffiffiffi
2

p �ð3Þðp1 þ p2Þ
Z d!

2�
~Rð!Þ

�
Z t

0
dt0eiðE1þE2�!Þt0��ð!Þt0

¼ ð2�Þ3
3

ffiffiffi
2

p �ð3Þðp1 þ p2Þ
Z d!

2�
~Rð!Þ

� exp ½ið2E�!Þt� �ð!Þt� � 1

ið2E�!Þ � �ð!Þ ; (4.27)

whereE ¼ E1 ¼ E2 and t has here the same meaning as�t
in (4.8).
As we have seen above, ~Rð!Þ can be written as

~Rð!Þ ’ ffiffiffi
2

p
�3=2�R�e

�!2�2=2ei�
X
j

�

�
!t1
2

� �j

�
; (4.28)

where exp ði�Þ is a phase factor of modulus unity.
Substituting this expression in Eq. (4.27) and integrating
over !, we find up to a phase factor:

Aðp1; p2Þ ’ ð2�Þ7=2�R�

3
ffiffiffi
2

p
t1

�ð3Þðp1 þ p2Þ

�X
j

e��2!2
j =2

1� exp ½ði
j � �jÞt�

j þ i�j

; (4.29)

where !j ¼ 2�j=t1, 
j ¼ 2E�!j, and �j ¼ �ð!jÞ.
The energy density of the produced particles is

%¼ �2
R�

2

72�t21

Z 1

0
dEE

X
j

e��2!2
j
1þ e�2�jt � 2e��jt cos ð
jtÞ


2j þ�2
j

(4.30a)

¼ �2
R�

2

288�t21

X
j

e��2!2
j

Z 1

�!jt
d	jð	j þ!jtÞ

� 1þ e�2�jt � 2e��jt cos	j

	2
j þ ð�jtÞ2

: (4.30b)
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We have introduced here a new integration variable 	j �

jt. It was also assumed that the diagonal terms with j ¼ k

dominate in the double sum over j and k in the expression
for jAðp1; p2Þj2; this is a good approximation for small �,
in particular, � � !. Assuming !jt 	 1, the integral is

easily taken at the poles of the denominator and we finally
obtain

% ¼ ��R�
2

144t31

X
j

je��2!2
j
1� e�2�jt

�j

: (4.31)

For �jt � 1 this result coincides with (4.23) after dividing

by the total elapsed time t. The summation over j can
be separated into two regions of large and small �jt.

The boundary value of !j is given by the condition

2�bt ¼ !3
bt=24m

2
Pl ¼ 1. Correspondingly

!b ’ 180 MeVðtc=tÞ1=3; (4.32)

where tc ¼ 4� 1017 s is the cosmological time. The
boundary value of j is

jb ¼ !bt1
2�

¼ !b

�m
ffiffiffi
g

p ; (4.33)

where we took t1 ¼ 2�=! with ! defined in Eqs. (2.15)

and (2.16). In particular, for small g we have � ’
znþ1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
and using Eq. (2.22) we find

jb ’ 1:6� 1041
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2nþ 1Þnp
ðz%29Þnþ1

�
tc
t

�
1=3

: (4.34)

Accordingly, the time t1 can be estimated as t1 �
4� 1018s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2nþ 1Þnp
=ðz%29Þnþ1. Separating the summa-

tion over j into two intervals of small and large �jt,

we obtain

% � ��2
R�

2

144t31

�
2t

Xjb
j¼1

je�ð�!jÞ2 þ X1
j¼jb

je�ð�!jÞ2

�j

�
: (4.35)

If �� 1=m, the exponential suppression factor
exp ð��!jÞ2 is weak near j ¼ jb and the sums over j

can be easily evaluated:

% � ��2
R�

2

144t31

�
j2btþ

6m2
Plt

3
1

�3jb

�
: (4.36)

Alternatively, using the fact that �=t1 � 1, we can replace
the summation with an integral, obtaining the similar, more
general result:

% ’ ��2
R�

2

144t31

�
2t
Z jb

0
djje��2!2

j þ
Z 1

jb

dj
je��2!2

j

�j

�

’ �2
Rt

576�t1
½1� e��2!2

b� þ�2
Rm

2
Pl�

2

12�!bt1

� ½e��2!2
b � ffiffiffiffi

�
p

�!b erfcð�!bÞ�; (4.37)

where erfcðxÞ is the complementary error function:

erfc ðxÞ ¼ 2ffiffiffiffi
�

p
Z 1

x
dte�t2 :

Note that for �!b � 1, as was assumed before, this
gives

% ’ �2
R!

2
b�

2

576�t1

�
tþ 48m2

Pl

!3
b

�
¼ �2

R!
2
b�

2t

192�t1
; (4.38)

which is exactly equivalent to (4.36). For �!b 	 1,
instead, we recover (4.23). This makes sense, because
�!b 	 1 corresponds to jb ! 1 and hence to the limit
in which the time elapsed is not long enough for particle
production to have had a noticeable backreaction on cur-
vature. Nonetheless, during this time particles may have
been effectively produced.
These estimates are valid even in the spike region when

gz2nþ2 � 1 but gy2nþ2 may reach values much larger than
unity.

D. Damping of oscillations

As we have seen, having a wide frequency spectrum of
the Fourier transform of R makes it impossible to simply
use an exponential damping R ! Re��t to include the
effects of particle production. Moreover, the increasing
energy density acts as a source term and increases the
amplitude of the oscillations of R, which makes things
even more complicated. However, the picture for the field
� is relatively simple, because its oscillations are almost
harmonic. We still have a source component, given by the
increasing z, but we can once again use the energy conser-
vation equation to determine the time at which oscillations
basically stop due to the damping. The effect of particle
production on the evolution equation for � [see Eq. (3.1)] is
to transform it into

�00
1 þ 2�ð�Þ�0

1 þ�2�1 ¼ ��00
a; (4.39)

where

�ð�Þ � �ðm�
ffiffiffi
g

p Þ
m

ffiffiffi
g

p ¼ �3m2g

48m2
Pl

; (4.40)

which in fact for �=� � 1 and �00
a=�

00
1 � 1 generates the

wanted behavior

�1 � e��� sin��: (4.41)

Correspondingly, the energy conservation (2.18) becomes

1

2
�02 þUð�Þ þ 2

Z �

�0

d	��02
1 �

Z �

�0

d	z0�

¼ 1

2
�02
0 þUð�0Þ ¼ const: (4.42)

Let us consider values of � in which �ð�Þ ¼ �að�Þ. In this
case the potential disappears from this equation [see
Eq. (3.12)], which can be now symbolically written as an
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equality between the variation of the kinetic energy and
two integral terms:

�K ¼ Isource � I�; (4.43a)

where

�K ¼ K � K0 � 1

2
ð�02 � �02

0 Þ; Isource �
Z �

�0

d	z0�1;

I� � 2
Z �

�0

d	��02
1 : (4.43b)

By definition � ¼ �a is the position of � at the minimum of
the potential. So when � ¼ �a, the kinetic energy, K,
reaches one of the local maxima (in time). This picture is
particularly clear if we compare the system with a classical
oscillator: when the field passes through the equilibrium
point, the potential has minimal value and the velocity is
maximal.

We estimate the effect of damping perturbatively apply-
ing the energy balance (4.42) with unperturbed functions
�ð�Þ for which the effects of damping are neglected. In the
absence of damping, the condition (4.43) turns into �K ¼
Isource, which is essentially Eq. (3.14). Evidently the impact
of damping on the oscillations of � starts to be important
when I� becomes of the order of �K. Though the damping

coefficient is small, i.e., � � !, the integral I� rises with

time faster than �K and ultimately it will overtake it. So
we need to check when the condition

�2ð�Þ�2ð�Þ � 2
Z �

d	�ð	Þ�2ð	Þ�2ð	Þ (4.44)

starts to be fulfilled with � and� given by (3.5) and (2.15).
Keeping in mind that �� ¼ �t and using Eq. (4.3)

for � ¼ 1=�R with ! ¼ �m
ffiffiffi
g

p
, we find that the

equality (4.44) is satisfied when the energy density is
equal to

z3nþ4
� ¼ 24ð2nþ 1Þ3=2ð4nþ 5Þ
m2

Pl

gm2

¼ 24ð2nþ 1Þ3=2ð4nþ 5Þ
g3=2

�
mPl

m

�
3 1

mPltcontr

’ 6� 10123
½nð2nþ 1Þ�3=2ð4nþ 5Þ

t10%
3nþ3
29

: (4.45)

The corresponding boundary value of t is t� ¼ z�tcontr.

For times smaller than t� the effects of damping are

negligible and particle production can be very effective
giving rise to substantial production of cosmic rays, as we
shall see in the next section. Particle production is espe-
cially pronounced in the spike region when the amplitude
of R is very large.

As we have seen, the spikes’ width is ��m�1 while
their spacing, which determines the effective frequency, is
t1 �!�1. High frequency oscillations of R should be
damped very rapidly, since ��!3, but due to the

nonharmonicity of the potential and the nonlinearity of
the relation between � and y or R, the low frequency
oscillations are efficiently transformed into high frequency
spikes of small amplitude in � but of very large amplitude
in R. It is worth noting in this connection that the bulk of
the energy density associated with the oscillations of R is
concentrated at low frequencies, %osc � �2

Rm
2
Pl=!

2, so the

energy reservoir at low frequencies is deep enough to feed
up the spikes.
The physical frequency, ! ¼ �m

ffiffiffi
g

p
, depends upon

the product Q � gz2nþ2. If Q � 1 the frequency may be
rather low, of the order of hundred MeV, while for Q 	 1
the frequency reaches the maximum value ! ¼ m. In the
first case the lifetime of harmonic oscillations could be
larger than the universe age, while in the second case it
would be shorter than a second.

V. ESTIMATE OF COSMIC RAY EMISSION

A. Regular region

Let us consider a cloud (e.g., a protogalaxy) with total
mass M and density %. Particles would be uniformly
produced over its whole volume, which is equal to

V ¼ M

%
¼ 2� 1073 cm3 M11

z%29

; (5.1)

where the mass of the cloud,M, is expressed in terms of the
solar mass M�:

M11 � M

1011M�
¼ M

2� 1044 g
: (5.2)

In the regular case the oscillations of R are almost har-
monic, so we can rely on the adiabatic approximation and
use Eq. (4.1) for the particle production rate or Eq. (4.15)
corrected by the damping factor exp ½�2�ð!Þt�. To be
more precise, in the exponent we should take the integral
of � over time to take into account the (slow) variation
of !.
The total luminosity relative to gravitational particle

production is obtained multiplying the rate of energy
production per unit time and volume (4.15) by the total
volume (5.1), that is L ¼ VðtÞ _%PPðtÞ, or
Lreg

GeVs�1
’ 7:3� 10�74Ns

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2nþ 1þ gÞnp
M11z

4nþ3�
1þ gz2nþ2

2nþ1

�
2
%n
29t

2
10

� exp

�
�2

Z t

t0

dt0�ð!Þ
�
; (5.3)

where! depends upon time due to the variation of zðtÞ, see
Eqs. (2.15) and (2.16). The initial time t0 should be taken at
the onset of structure formation, when the energy density
locally started to rise.
For gz2nþ2 � 1, the luminosity is negligible with

respect to the luminosity in the spike region (see below),
so we will not consider this case further. When gz2nþ2
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becomes larger than unity and !�m, the lifetime of
oscillations turns out to be at most a few seconds and
an explosively fast particle production takes place. The
integrated luminosity can be approximately obtained
from Eq. (5.3) dividing it by �ðmÞ and taking the exponen-
tial factor equal to 1. The time duration of the production
process, of the order of a few seconds, is close to that of
some gamma ray bursts but the characteristic particle en-
ergies are much higher, instead of MeV it is of the order of
the scalaron mass m * 105 GeV.

If g > 1, oscillations are very mildly excited and particle
production is negligible. This can be seen from (3.9) with

g > 1, keeping in mind that 
� g�1=2. Alternatively one
may use Eq. (5.3) with g > 1 taking into account that
a large value of g corresponds to large values of %29 and/
or of n.

B. Spike region

There remains to consider the spike region, where we
need to use (4.25) instead of (4.15), or (4.31) and (4.36).
Equation (4.25) yields

Lsp

GeV s�1
’ 6:0� 1020

C3NsM11m
2
5z

2nþ1

t210%
3nþ2
29

; (5.4)

where C3 is given by Eq. (4.26). This result is valid when
�jt < 1 for all essential values of j, see Eq. (4.31), that is

when the damping due to particle production is negligible.
See also the discussion in Sec. IVD.

In the opposite case, we cannot use the approximate
account of damping made above [see Eq. (5.3)] because
oscillations are strongly anharmonic. If modes with
both �jt greater and smaller than unity are essential, we

have to use Eq. (4.31) or Eq. (4.37). We start by rewriting
Eq. (4.38) using !3

b ¼ 24m2
Pl=t, �R ¼ �spikesT0 and t1 ¼

2�=!, where �spikes and ! are given, respectively,

by (3.17), (2.15), and (2.16). This yields, assuming
gz2nþ2�1 and t ’ ztcontr,

%

GeVm�3
’ 1:1� 10�40 C3ð�mÞ2z2nþ7=3

t5=310 %3nþ1
29

(5.5)

and

_%

GeV s�1 m�3
’ 6:9� 10�58

~C3ð�mÞ2z2nþ4=3

t8=310 %3nþ1
29

; (5.6)

where

~C 3 ¼ ð2nþ 1Þðnþ 1Þ
ð2nþ 1þ gz2nþ2ÞC3: (5.7)

From (4.31) it is clear that for each mode labeled by j we
have

_% j ’ ��2
R�

2je��2!2
j

72t21
e�2�jt; (5.8)

which has the predicted behavior _%� e�2�t. However,
this behavior is not obvious in the complete solution
(5.6). This means that in this case the overall effect is
more complicated than a simple exponential damping.
The anharmonicity of the oscillations and the dependence
of both _% and � on the frequency give nontrivial results
which were impossible to predict without performing
explicit calculations.
When the damping due to particle production is relevant,

the total luminosity becomes

Lsp

GeV s�1
’ 1:4� 1010

~C3NsM11ð�mÞ2z2nþ1=3

t8=310 %3nþ2
29

: (5.9)

This value, though smaller than (5.4), might not be
completely negligible, especially for short contraction
times and relatively small initial densities. This means
that even with the damping of oscillations taken into
account, the produced cosmic rays could in principle be
detectable.

VI. DISCUSSION AND CONCLUSIONS

We have shown that in contracting astrophysical systems
with rising energy density, powerful oscillations of
curvature scalar R are induced. Initially harmonic, these
oscillations evolve to strongly anharmonic ones with high
frequency and large amplitude, which could be much
larger than the value of curvature in standard general
relativity.
Such oscillations result in efficient particle production in

a wide energy range, from a hundred MeV up to the
scalaron mass, m, which could be as large as 1010 GeV
(and maybe even larger). Such high frequency oscillations
could be a source [19] of ultrahigh energy cosmic rays
with E� 1019–1020 eV, see e.g., the review [20], which
might avoid the Greisen-Zatsepin-Kuzmin cutoff [21].
Possibly the considered mechanism would give too large
a fraction of high energy photons in ultrahigh energy
cosmic rays, see Ref. [22] if no special care is taken,
because gravity couples to all elementary particles with
the same intensity. However, direct photon production may
be suppressed due to the conformal invariance of electro-
dynamics. To avoid a too strong indirect photon production
one may need to introduce ‘‘photo-fobic’’ heavy particles
predominantly created by the oscillating curvature.
It is tempting to explain gamma bursts by these

curvature oscillations, but the emitted particle energy
seems to be much above the MeV range. To this end
some modification of the model or a mechanism of energy
depletion would be necessary, and could be an interesting
subject of future research.
The oscillations considered here may also have an

essential impact on the gravitational (Jeans) instability in
FðRÞ gravity studied for instance in Ref. [23], where this
effect was not taken into consideration.
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The efficiency of particle production strongly depends
upon the system under scrutiny, the values of the
parameters of the theory, and upon the explicit form of
the function FðRÞ. These problems deserve further study,
but the framework presented in this paper can be applied to
many possible cases.
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