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Coalescing compact binary systems consisting of neutron stars and/or black holes should be detectable

with upcoming advanced gravitational-wave detectors such as LIGO, Virgo, GEO and KAGRA.

Gravitational-wave experiments to date have been riddled with non-Gaussian, nonstationary noise that

makes it challenging to ascertain the significance of an event. A popular method to estimate significance is

to time shift the events collected between detectors in order to establish a false coincidence rate. Here we

propose a method for estimating the false alarm probability of events using variables commonly available

to search candidates that does not rely on explicitly time shifting the events while still capturing the non-

Gaussianity of the data. We present a method for establishing a statistical detection of events in the case

where several silver-plated (3–5�) events exist but not necessarily any gold-plated (> 5�) events. We use

LIGO data and a simulated, realistic, blind signal population to test our method.
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I. INTRODUCTION

Detecting the gravitational-waves (GWs) from coales-
cing neutron stars and/or black holes should be possible
with advanced GW detectors such as LIGO, Virgo, GEO
and KAGRA [1–5]. If the performance of past detectors is
any indicator of the performance of future GW detectors,
they are likely to be affected by non-Gaussian noise [6].
Coincident observations are crucial in validating the
detection of GWs but it is necessary to establish the
probability that the coincident event could arise from
noise alone.

If the detectors’ data were Gaussian and stationary, it
would be straightforward to compute the false alarm
probability (FAP) of a coincident event based solely on
its signal-to-noise ratio (SNR) and the number of indepen-
dent trials. With nonstationary, non-Gaussian data the SNR
is not sufficient to describe the significance of an event
and, furthermore, the distribution of detector noise is not
known a priori.

Estimating false-coincident backgrounds from time
delay coincidence associated with searches for GWs was
first proposed for targeted compact binary coalescence GW
searches in [7]. This method has been the commonest used
in subsequent searches [8–18]. We present a method to
estimate the false alarm probability of a GW event from
coalescing compact objects without time shifts by measur-
ing the false alarm probability distributions for noncoinci-
dent events using a set of common variables available to

the searches. This greatly simplifies analysis and lends
itself nicely to an online analysis environment.
This paper is organized as follows. In Sec. II we describe

a formalism for ranking GW events and establishing the
probability distribution for a given event’s rank in noise. In
Sec. II C we present how to estimate the significance of a
population of events associated with GW signals from
compact binary mergers, which might include silver-plated
(i.e. less than 5�) events. In Sec. III, we test our method
with a mock, advanced detector search that uses four days
of LIGO fifth science run (S5) data that has been recolored
to have an Advanced LIGO spectrum containing a plau-
sible, simulated, blind population of double neutron star
binary mergers. We demonstrate that we can detect GWs
from neutron star binaries with very low false alarm
probability.

II. METHOD

GW searches for compact binary coalescence begin
by matched filtering data in the detectors [19]. If peaks in
SNR times series for more than one detector are consistent
with the light travel time between detectors and timing
errors, these peaks are considered to be a coincident event.
GW data to date have not been stationary and Gaussian

[6] thus making it difficult to model the noise in GW
searches. Nonstationary noise degrades the effectiveness
of standard matched filter searches. For that reason addi-
tional signal consistency tests are often employed, such as
explicit �2 tests [20,21]. Nonstationarity occurs on several
time scales. Here we are more concerned with short dura-
tion nonstationary bursts of noise called glitches for which
�2 tests are very useful discriminators.
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In this section we will present a method using common
variables available to a compact binary search to estimate
the FAP without relying on time shifting the detector data.
Although many variables and measurements may be used,
in this paper we consider two parameters: the matched
filter SNR �i and the �2 statistic �2

i , which depend on
the detector i, as well as parameters intrinsic to the source
that the template describes such as mass and spin, ��. In this
section, we introduce the framework for evaluating the
FAP of GW candidates.

A. Ranking events

Here is our concise definition of a coincident
gravitational-wave search for compact binary sources.
(i) The search consists of D detectors. (ii) We seek to
find the significance of an event found in the D detectors
localized in time. (iii) The intrinsic parameters of the event
will be unknown a priori. Our detection pipeline will
measure the significance as a function of the parameters
of the template waveform ��.

For each detector i of a D detector network we use �i

and �2
i to rank candidates with parameters �� from least

likely to be a gravitational wave to most likely. We use a
standard likelihood ratio [22] defined as

Lð�1;�
2
1; . . .�D;�

2
D;

��Þ ¼ Pð�1;�
2
1; . . .�D;�

2
D;

��jsÞ
Pð�1;�

2
1; . . .�D;�

2
D;

��jnÞ ; (1)

where Pð. . . jsÞ is the probability of observing ð. . .Þ given a
signal, and Pð. . . jnÞ is the probability of observing ð. . .Þ
given noise. It is assumed that the signal distribution has
been marginalized over all relevant parameters and the ��
refers only to the template waveform parameters that are
measured by the pipeline. We make the simplifying as-
sumption [23] that the likelihood ratio can be factored into
products of likelihood ratios from individual detectors,

Lð�1; �
2
1; . . .�D; �

2
D;

��Þ � YD
i

Lið�i; �
2
i ;

��Þ: (2)

The simplification that the likelihood ratio function can be
factored implies statistical independence between detec-
tors for both signals and noise. This results in a suboptimal
ranking statistic. However, we can compute the FAP asso-
ciated with this statistic, and in fact, it becomes much
easier to do so.

B. Computing the FAP

The FAP is the probability of measuring a givenL if the
data contain only noise. N.B., this is not the same as
assessing the probability that the data contain only noise,
which requires knowing the prior probabilities of both
signal and noise. In constructing the FAP, PðLjnÞ, we start
with

PðL; ��jnÞ ¼
Z
�
PðL1; . . .LD; ��jnÞdD�1�; (3)

where � is the surface of constant L ¼ Q
D
i Li. From (2),

we have, assuming that the likelihood ratio values in noise
are independent between the detectors,

PðLi; . . .LD; ��jnÞ ¼
YD
i

PðLi; ��jnÞ; (4)

where PðLi; ��jnÞ is obtained by marginalizing over �i, and
�2
i in the single-detector terms,

PðLi; ��jnÞ ¼
Z
�
Pð�i; �

2
i ;

��jnÞd�; (5)

where � is the contour of constant Li in the f�i; �
2
i g

surface at constant ��. Implicit in (4) and (5) is the assump-
tion that the coincidence criteria do not depend on �i, �

2
i or

��. Finally, PðLjnÞ is obtained by marginalizing over ��,

PðLjnÞ ¼
Z

PðL; ��jnÞd ��: (6)

Given an event resulting from noise, the probability of
observing it to have a likelihood ratio value at least as large
as some threshold L� is

PðL � L�jnÞ ¼
Z 1

L�
PðLjnÞdL: (7)

A GW search will typically produce multiple coincident
events during a given experiment. That means that there
will be multiple opportunities to produce an event with a
certain likelihood value. We are ultimately interested in the
probability of getting one or more events with L � L�
after all the events are considered. The probability of
getting at least one such event after formingM independent
coincidences1 can be adjusted by the complement of the
binomial distribution

PðL�L�jn1; . . . ; nMÞ :¼ 1� M

0

 !
PðL�L�jnÞ0

� ð1�PðL�L�jnÞÞM
¼ 1� ð1�PðL�L�jnÞÞM: (8)

This is the FAP at L� in an experiment that yielded M
coincident events.

1In practice it can be difficult to know if the coincidences
formed are independent; however as long as they are related to
the true number of independent trials by an overall scaling, one
can adjust the number so that it agrees with the observed rate of
coincidences for low significance events. This works because
GWs are very rare and true signals will vastly underwhelm the
false positives that a pipeline produces at high FAP. Thus the bias
in calibrating M to high FAP events is very small.
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C. FAP of populations of GW events

A population of events can collectively be more signifi-
cant than the single most significant event alone. Indeed,
population analyses have previously been employed in
looking for GW signals associated with gamma-ray bursts
(GRBs). For example, a Student’s t-test was proposed in
[24] to test for deviations in the cross correlation of detec-
tors’ output preceding a set of times associated with GRBs
(i.e., on-source times) when compared to other off-source
times not associated with GRBs, a binomial test was
employed in [25,26] using the X% most significant events
to test for excess numbers of events at their associated
FAPs, a Kolmogorov test was used in [27] to look for
deviations from isotropy in GRB direction based on the
directional sensitivity of the bar detectors, and a Mann-
Whitney U (or Mann-Whitney-Wilcoxon) test was per-
formed in [28] to test if all the FAPs associated with the
on-source events of the GRBs were on average smaller
than the expected distribution given by the off-source
events, as would be the case if the average significance
were elevated due to the presence of GWs in the on-source
events.

As noted in [25,26], seeking significance by considering
different choices of populations diminishes the significance
of each on account of the trials that have been conducted.
We propose to control this by restricting ourselves to con-
sidering only populations consisting of events for whose
ranking statistic values the expected number of back-
ground events was less than 1 (i.e., MPðL � L�jnÞ< 1).
Although it is conceivable that still less significant events
could be sufficiently numerous to be statistically significant
as a population, we consider it unlikely that such events
will be interesting and so this is a natural stopping condi-
tion for considering events. The statistic we propose is

Q :¼ min
i
fPð� ijxiÞg; (9)

where xi is related to the significance of the ith most
significant event and Pð� ijxiÞ is the probability of obtain-
ing i or more events of that significance. In Appendix Awe
go into more detail defining xi as well as providing an
algorithm for computing the FAP of this statistic semi-
analytically (i.e., without the use of a potentially computa-
tionally costly Monte Carlo simulation).

III. EXAMPLE

We have applied these techniques to a mock search for
GWs from binary neutron stars in four days of S5 LIGO
data that have been recolored to match the Advanced LIGO
design spectrum2 [29]. This provides a potentially realistic
data set that contains glitches from the original LIGO
instruments. A population of neutron star binaries was

added at a rate of 4Mpc�3 Myr�1 (see [1] for the expected
rates.) We self-blinded the signal parameters with a ran-
dom number generator.
Our analysis targeted compact binary systems with com-

ponent masses between 1.2 and 2M�. We used 3.5 post-
Newtonian order stationary phase approximation templates
to cover the parameter space with a 97% minimal match
[30] by neglecting the effects of spin in the waveform
models [31]. This required�15; 000 templates. We started
the matched filter integrals at 15 Hz and extended the
integral to the innermost stable circular orbit frequency.
The analysis gathered the data, whitened it, filtered it,
identified events in the single detectors, found coinci-
dences and ranked the events by their likelihood ratios.
The filtering algorithm is described in [32].
The previous section described our method for estimat-

ing the significance of events but did not describe many
details of how the calculation is done in practice. We will
point out a few of those details now.
The numerator of (1) is evaluated by assuming the

signals follow their expected distribution in Gaussian
noise. We note that this is a reasonable assumption because
detections are likely to come from periods of relatively
stationary and Gaussian data. Note that the expectation for
� can be obtained by assuming that sources are distributed
uniformly in space. The expectation for the �2 of a signal
can be found in [20].
The denominator of (1) is found by explicitly histogram-

ming the single detector events that are not found in
coincidence. By excluding coincident events we lower
the chance that a gravitational wave will bias the noise
distribution of the likelihood ratios. In general the histo-
gramming will suffer from finite statistics and ‘‘edge’’
effects. We generate the histograms at a finer resolution
than required to track the likelihood ratio and then apply a
Gaussian smoothing kernel with a width characteristic of
the uncertainty in �.
We are unable to collect enough statistics to fully resolve

the tail of the background � distribution. Thus, we add a
prior distribution into the background statistics that models
the � falloff as expected from a 2 degree of freedom
matched filter in Gaussian noise, i.e. pð�jnÞ /
exp ½��2=2�. This helps ensure that the likelihood ratio
contours increase as a function of � at large �. At some
point the probability of getting a given value of �, �2

becomes smaller than double-precision floating-point ep-
silon. We extend the background distribution above a given
value of � with a polynomial in � that falls off faster than
the signal distribution (which is / ��4) but is shallow
enough to prevent numerical problems. In both cases the
point of the prior is not to influence the ranking of typical
events but rather to make the calculations more numeri-
cally well behaved. The prior is added so that the total
probability amounts only to a single event in each detector.
Thus the background (as billions of events are collected)

2Specifically the zero-detuned, high-power noise curve was
used.
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quickly overwhelms the prior except for at the edges where
there are no data. The point where the calculation is no
longer based on having at least one actual event in back-
ground is important since it will effectively mark the
limiting FAP. More discussion of that point follows.

In Fig. 1 we show some of the intermediate data used in
estimating the significance of events in our example.
Namely, we show the individual likelihood ratio contours
for � and �2 described in (1) in the H1 and L1 instruments
for signals with a chirp mass consistent with a neutron star
binary (1:2M�) in Figs. 1(a) and 1(b) respectively. The
probability of getting an event with a likelihood ratio
greater than L� after M trials for the H1 and L1 instru-
ments (8) is shown in Fig. 1(c). Our ability to measure
PðL � L�jn1; . . . ; nMÞ is limited by the number of events
that we collect in our background estimate. The shaded

region shows the
ffiffiffiffi
N

p
error region found by assuming

Poisson errors on the number of events that went into
computing a given point on the curve. We have indicated
the FAP at which there ceases to be more than 1 event
collected in the background by a dashed line. The dashed
line shows the PðL � L�jn1; . . . ; nMÞ has background
events to P :¼ 7� 10�5 which is nearly the FAP required
for a 4� detection. Below the dashed line the FAP estimate
is dominated by the Gaussian smoothing kernel applied to
the planes in Figs. 1(a) and 1(b). We believe that it is
reasonable to trust the FAP estimate beyond the single
background event limit but note that 5� level confidence
can still be reached without extrapolation with tighter
coincidence criteria. Tighter coincidence criteria would
reduce the trials factor and permit higher significances to
be estimated. The best way to do this is to demand that
three or more detectors see an event. In our example a third
detectorwould lower the trials factor by�100, whichwould
shift the limiting FAP,P to�7� 10�7. It is worthmention-
ing that the background events and number of independent
trials are accumulated at the same rate. Thus one cannot
decrease the limiting FAP by collecting more data.

After assigning the FAP to events we also assign a false
alarm rate (FAR), which is described in Appendix A and
given by (A6). This allows us to produce the standard
inverse FAR (IFAR) plot commonly produced in recent
searches for compact binaries [14–18] without having
relied on time shifting the detector events to estimate the
background. This is shown in Fig. 2(a).

The IFARs of the most significant events that came out
of this search in Fig. 2(a) can be identified as the long tail in
the observed events distribution. The top event has a sig-
nificance greater than 5�, the level necessary for claiming
the detection of GWs. The second loudest event has a
significance greater than 4�. Both events surpass the single
background event limit P . If restricted to this limit then
both events are nearly 4�.

Applying the population procedure we have put forth in
Sec. II C, we produced a more significant statement about

the presence of GWs beyond that of the loudest event. This
effect is mostly attributed to the similar significance of the
top two events. This could happen in a real analysis in two
ways: (1) nature could just provide such a set of events as
in this example; (2) both events exhaust our ability to
measure significance and we must place an upper bound

FIG. 1. (a), (b) Show the likelihood ratios LH1, LL1 as a
function of � and �2 for H1 and L1 respectively for templates
with masses consistent with neutron star binaries (1:2–2M�).
LH1, LL1 appear as the right-hand side of (2). White indicates
high likelihood ratio values. (c) Shows the probability of
having obtained a given value of likelihood ratio L� or greater
from noise as defined in (8) after M trials (where M is the
number of independent coincidences formed). In this example
M ¼ 6� 104.
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on the FAP. The latter case, although somewhat artificial,
could still play an important role in analysis, especially if
one is unable to confidently declare a single 5� event but
finds two or more events with 3 or 4�. With our example
analysis the combination of the two loudest events was a
5� excursion even after restricting the FAP of both events
to be P . After examining the signal population we found
that both candidates were separately associated with signal
injections.

IV. CONCLUSION

We have provided a method for estimating the signifi-
cance of GWs from compact binary coalescence using
measurements of single instrument populations of � and
�2 as a function of the template waveform intrinsic
parameters. We demonstrated our method with mock
Advanced LIGO data derived from initial LIGO data
including a realistic population of compact binary merger
signals and glitches. We found that between our two loud-
est events we were able to establish detection at greater
than 5� confidence. Both of the loudest two events
exhausted the P (� 4�) background estimate, but the
extrapolated FAP of the loudest event exceeded 5� on its
own. Both of the loudest events were associated with the
blind signal population introduced into the data and the
remaining events were consistent with the expectation
from background.
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APPENDIX A: FALSE ALARMPROBABILITYOFQ

In this section we describe how we can compute the
FAP of our statistic (9) in two scenarios with different

FIG. 2. (a) It is a standard IFAR plot where the shaded
regions correspond to the ‘‘1�’’ through ‘‘7�’’ regions com-
puted using the survival function and point percent function
associated with the Poisson distribution. This is used to deter-
mine where to stop the accumulation of events for the popula-
tion statement. (b) Shows the FAP associated with each of the
individual events in the population we are considering, given by
(8), as well as the FAP of obtaining the N loudest events, given
by (A4). Also shown in (c) are the same traces obtained after
restricting the individual FAPs to be greater than P ¼
7� 10�5. Note in both (b), (c) the circle marker indicates the
FAP of having observed the minimum point on this curve, Q. It
is important to note that even in the case where the limiting
FAP for individual events cannot meet the ‘‘5�’’ criterion, a
population can. This could be a realistic scenario for early GW
detections.

METHOD TO ESTIMATE THE SIGNIFICANCE OF . . . PHYSICAL REVIEW D 88, 024025 (2013)

024025-5



choices of xi: the exact solution valid for all values of M,
and the solution in the limit of M 	 1.

The exact solution is given by computing the statistic
using the binomial probability of observing k or
more events for each of the events in the region
MPðL � L�jnÞ< 1, where PðL � L�jnÞ refers to the
values calculated in (7). The probability of obtaining k
events with PðL � L�jnÞ 2 ½0; xÞ is given by

PðkjxÞ ¼ M

k

 !
xkð1� xÞM�k (A1)

and the probability of getting k or more events more
significant than x is given by

Pð� kjxÞ ¼ 1� Xk�1

j¼0

M

j

 !
xjð1� xÞM�j: (A2)

When M 	 1, the factorials and exponential operations
involved in (A1) and (A2) will become unwieldy. In the
limit of M ! 1, since the interval we are interested in is
½0; 1=MÞ the average number of events in the interval is
unity and the distribution of events in this interval can be
approximated by the Poisson distribution. In this case, the
probability of observing k when � are expected is

Pðkj�Þ ¼ �k

k!
e�� (A3)

and the probability of getting k or more events when � are
expected is

Pð� kj�Þ ¼ 1� e��
Xk�1

j¼0

�j

j!
: (A4)

To obtain the expected number of events due to
background associated with the single event FAP
PðL � L�jnÞ, we can use (A4), settingN ¼ 1, and solving
for �,

�ðL�Þ ¼ � ln ½1� PðL � L�jnÞ�: (A5)

This is the quantity that would be used in (A4) associated
with our Q statistic (9) and only those events with
�ðL�Þ< 1 are considered for this statistic. Historically,
GWexperiments have used false alarm rates to rank events
[14–18]. The quantity, inverse false alarm rate, is given
here by

IFARðL�Þ ¼ T=�ðL�Þ; (A6)

where T is the observation time of the experiment.
For either case, the derivation of the FAP associated with

the statistic from (9), Q ¼ min ifPð� ijxiÞg, proceeds in
the same manner, where xi is PðL � L�

i jnÞ or �i for the
binomial or Poisson cases, respectively. For ease of nota-
tion, we outline the derivation for the Poisson case in
Appendix A 1 and give the differences in the final result
for the binomial case in Appendix A 2.

1. The Poisson approximation

The computation of the FAP of the statistic Q from (9)
for events that have �ðL�

i Þ< 1, where Pð� ij�ðL�
i ÞÞ is

given by (A4), proceeds as follows. Let us only consider
events that are produced from the background alone. With
each of these background events, let us associate with the
ith most significant event a rate �i. The possible numbers
of events that could have been obtained with �i < 1 and
min ifPðij�iÞg>Q are given by fk 2 N�

N: Pðkj1Þ � Qg,
where Pðkj1Þ is given by (A3). Since there are only a finite
number of these events, we find it easier to compute the
probability of obtaining a statistic (9) less significant than
Q, rather than more significant than Q, and then take the
complement to compute the FAP of obtaining Q.
When k events are observed, the probability of getting

min ifPð� ij�iÞg>Q is given as

Pðmin
i
fPð� ij�iÞg>QjkÞ ¼ AkðQÞ

Bk

; (A7)

which can be computed as a series of integrals, one for each
of the A’s and B’s.
The first set of k integrals compute the normalization Bk,

which is the volume of the k-event parameter space. This is
given by

Bk ¼
Z �k¼1

�k¼0

Z �k�1¼�k

�k�1¼0

 
 


Z �1¼�2

�1¼0
Pð�1Þ . . .Pð�k�1Þ

� Pð�kÞd�1 . . . d�k�1d�k; (A8)

where the distribution of each event in �, Pð�iÞ, can be
approximated as uniform in the limit M 	 1. The upper
limits on these integrals impose the constraint that the
events are ordered by their rates (i.e., �1< 
 
 
<�k<1).
Performing these integrals, we find Bk ¼ 1=k!.
The second set of k integrals computes the volume of the

k-event parameter space that would have produced
min ifPð� ij�iÞg>Q. Let us identify the root zi of the
function Pð� ij�Þ �Q as the solution of the transcenden-
tal equation

ð1�QÞezi ¼ Xi�1

j¼0

zji
j!
: (A9)

For the ith event, if the event had �i < zi, then this event
would have produced Pð� ij�iÞ<Q, an example of which
is visualized in Fig. 3. Thus, in order to limit the integrals
of (A8) to only the region wheremin ifPð� ij�ðL�

i ÞÞg>Q,
we need to set the lower limit of the integral over the rate �i

to be the root zi. These integrals then take the form

AkðQÞ ¼
Z �k¼1

�k¼zkðQÞ

Z �k�1¼�k

�k�1¼zk�1ðQÞ

 
 


Z �1¼�2

�1¼z1ðQÞ
Pð�1Þ . . .

� Pð�k�1ÞPð�kÞd�1 . . . d�k�1d�k: (A10)

We find a recursion relation exists for the computation of
AkðQÞ, where
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AkðQÞ ¼ UðQ; k; 1Þ; (A11)

UðQ; k; lÞ ¼ 1

k!
WðQ; k; kþ l� 1Þ

� Xk�1

i¼1

zilþi

i!
UðQ; k� i; lþ iÞ; (A12)

WðQ; i; jÞ ¼ 1� zijðQÞ: (A13)

Combining the results from (A8) and (A10), we find
(A7) to be

Pðmin
i
fPð� ij�iÞg>QjkÞ ¼ k!UðQ; k; 1Þ: (A14)

Finally, combining the probability of observing k events
(A3) with the conditional probability of k events producing
a result less significant that Q (A14), we obtain the FAP of
the statistic min ifPð� ij�ðL�

i ÞÞg,
Pðmin

i
fPð� ij�ðL�

i ÞÞg<QjnÞ

¼ 1� XkðQÞ

i¼0

Pðij1ÞPðmin
j

fPð� jj�jÞÞg>QjiÞ: (A15)

This result is displayed visually in Fig. 4 where we show
the effective trials factor, Pðmin ifPð� ij�iÞg<QjnÞ=Q, as
a function of the observed statistic Q.

2. The binomial solution

The equivalent statistic for which we wish to compute
the FAP is min ifPð� ijPðL � L�

i jnÞÞg. This calculation
proceeds as in Sec. A 1 with one minor difference.
The polynomial (A13) of the recurrence relation is then
given by

WðQ; i; jÞ ¼
�
1

M

�
i � zijðQÞ; (A16)

where the roots fzig are associated with Pð� ijziÞ ¼ Q
and Pð� ijziÞ is given by (A2). The final FAP of
min ifPð� ijPðL � L�

i jnÞÞg is then
Pðmin

i
fPð� ijPðL�L�

i jnÞÞg<QjnÞ

¼1�XkðQÞ

i¼0

Pðij1=MÞPðmin
j
fPð� jjPðL�L�

j jnÞÞg>QjiÞ;

(A17)

where Pðij1=MÞ is given by (A1) and the conditional
probability Pðmin ifPð� ijPðL � L�

i jnÞÞg>QjiÞ is given
by

Pðmin
i
fPð� ijPðL � L�

i jnÞÞg>QjiÞ ¼ i!MiUðQ; i; 1Þ;
(A18)

with UðQ; i; 1Þ internally using (A16).

APPENDIX B: NUMERICAL CONSIDERATIONS

1. Equation (8)

As the duration of the experiment increases, the numeri-
cal evaluation of (8) using fixed-precision floating-point
numbers becomes challenging. In this limit, the per-trial
false alarm probability of interesting events is very small
and the number of trials is very large. Using double-
precision floating-point numbers, when the number of
trials gets larger than about 1010, FAPs of 10�6 and 0
become indistinguishable, and as the number of coinci-
dences that are recorded increases further ‘‘4�’’ and ‘‘5�’’
events cannot be differentiated—it is no longer possible to
make detection claims. The following procedure can be
used to evaluate (8) for all PðL � L�jnÞ and M. If
MPðL � L�jnÞ< 1 the Taylor expansion of (8) about
PðL � L�jnÞ ¼ 0 converges quickly:

FIG. 3. The Poisson probability of obtaining i or more events
with a rate � for several values of i. The horizontal line is an
example observed statistic of Q ¼ 0:1. Looking at the right edge
of the i ¼ 3 curve shows us that we would have obtained a
statistic value less thatQ if there had been three events anywhere
in the region �3 < 1. The vertical lines show the roots of
Pð� ij�Þ �Q for the cases i ¼ 1, 2.

FIG. 4. The effective trials factor that is applied to the statistic
Q ¼ min ifPð� ij�ðL�

i ÞÞg in order to obtain the FAP for Q. The

effective trials factor grows with increasing significance of the
observed statistic.
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1�ð1�PÞM¼MP�ðM2�MÞP
2

2

þðM3�3M2þ2MÞP
3

6

�ðM4�6M3þ11M2�6MÞP
4

24
þ




¼X1
i¼0

�1i
Pðiþ1Þ

ðiþ1Þ!½ðM�0ÞðM�1Þ . . .ðM� iÞ�:

(B1)

The last form yields a recursion relation allowing subse-
quent terms in the series to be computed without explicit
evaluation of the numerator and denominator separately
(which, otherwise, would quickly overflow): if the
(i� 1)th term is X, the ith term in the series is X i�M

iþ1 P.

If MPðL � L�jnÞ � 1 the Taylor series still converges
(in fact, as long as the number of trials M is an integer the
series is exact in a finite number of terms) but the series is
numerically unstable: the terms alternate sign and one must
rely on careful cancellation of large numbers to obtain an
accurate result. In this regime the expression’s value is
close to 1, so ð1� PÞM is small. If P is small, we can write

1� ð1� PÞM ¼ 1� eM ln ð1�PÞ (B2a)

and then the Taylor expansion ofM ln ð1� PÞ about P ¼ 0
converges quickly,

M ln ð1� PÞ ¼ �MP

�
1þ P

2
þ P2

3
þ 
 
 


�
: (B2b)

Altogether, the algorithm for evaluating (8) is as follows:
if MPðL � L�jnÞ< 1 use (B1) computed via the recur-
sion relation; otherwise if PðL � L�jnÞ< 0:125 use (B2);
otherwise evaluate (8) directly using normal floating-point
operations. The threshold of PðL � L�jnÞ< 0:125 for

using (B2) is found empirically; the results are not sensi-
tive to the choice of this number.

2. Equation (A5)

The evaluation of (A5) for events that are interesting as
detection candidates after an experiment is concluded is
straightforward using double-precision floating-point
arithmetic. In this regime, PðL � L�jnÞ � 10�5, and there
is plenty of numerical dynamic range available. However,
the practical use of (A5) is in its ability to identify ‘‘once a
day’’ or ‘‘once an hour’’ events for the purpose of provid-
ing alerts to the transient astronomy community. After just
one day, 24 ‘‘once an hour’’ background events are
expected, and their FAP—the probability of observing at
least one such event from a Poisson process you expect to
have produced 24—is 0.9999999999622486. After 37
events are expected, double-precision numbers can no
longer be used to differentiate those events’ FAPs from
1; that is, (A5) can only assign reliable false alarm rates to
the 30 or so most significant background events in any
experiment.
This problem is addressed by not computing the

expected number of events, �ðL�Þ, from the false alarm
probability, PðL � L�Þ, as shown in (A5), but by first
rewriting (7) and (8) as

1�PðL�L�jn1; . . . ; nMÞ ¼
�Z L�

0
PðLjnÞdL

�
M
; (B3)

from which we can rewrite (A5) as

�ðL�Þ ¼ �M ln
Z L�

0
PðLjnÞdL: (B4)

This form of the expression presents no challenges to
its evaluation using double-precision floating-point
arithmetic.
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