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We study the linearization of a class of thick K-branes, namely, four-dimensional domain walls

generated by a scalar field with particular nonstandard kinetic terms. The master equations for linear

perturbations are derived from the point of view of both dynamical equations and quadratic action. The

spectra of the canonical normal modes are studied using supersymmetric quantum mechanics. Our results

indicate that the scalar perturbation is nonlocalizable in general. Conditions for stable K-branes are also

found.
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I. INTRODUCTION

The K-field, namely, a scalar field with nonstandard
kinetic terms, was firstly introduced to establish a new
mechanism of inflation in cosmology [1–3]. However,
with the development of brane-world scenarios [4–13]
(see Refs. [14–17] for reviews), the K-field was applied
frequently in brane-world models. For example, the
K-field was employed to model a smooth version of
the negative 3-brane [18] that appears in the Randall-
Sundrum-I brane-world scenario [5]; to stabilize the
distance between thin branes [19–21] via the Goldberger-
Wise mechanism [22,23]; to offer a new mechanism of
field localization [24]; or to construct new brane-world
solutions [25–32], and so on.

One of the important issues in brane-world models is the
linearization of the system. For one thing, linearization is a
key procedure for the study of the stability of the classical
brane solution [11,33]. For the other, to reproduce the four-
dimensional Newtonian potential and its short distance
modification, we need also to study the linear structure of
the system [10,12]. The linearization of the standard thick
branes (namely, models with a standard bulk scalar field)
was extensively studied in Refs. [11,12].

As to the thick K-branes, tensor perturbation and the
localization of gravity were discussed in Ref. [28]. The
study indicates that the introduction of theK-field does not
affect the pattern of the tensor perturbation. The stability of
the domain wall solution under only matter perturbation
was discussed in Refs. [24,27]. But the complete discus-
sion should contain both matter and metric perturbations.
However, the scalar part of the metric perturbations usually
couples with the matter perturbation, that renders the dis-
cussion a nontrivial work. To our knowledge, a systemati-
cal discussion on the linearization of the thick K-brane is
still lacking in the literature.

Therefore, in this paper, we try to give a general and
systematical discussion on the linearization of a class of
K-brane models. We will study the linearization of our
model, both by linearizing the dynamical equations to first
order, and by perturbing the action to the second order. We
consider both approaches, because as stated in Ref. [12],
they are only partly equivalent. More importantly, the
normal modes of the perturbations can be found only
from the action approach. Our aim is to figure out whether
the modification in the matter Lagrangian affects the
localization of the scalar zero mode, and to what extent a
classical K-brane solution is stable.
In the next section, we present the setup of the model and

derive the background field equations. In Sec. III, we
linearize the dynamical equations. The master equations
are obtained by using the scalar, tensor, and vector (STV)
decomposition of the metric perturbations. The issue of
gauge invariance of the master equations is also discussed
briefly in this section. Then in Sec. IV, we reconsider the
linearization of our model from the point view of quadratic
action of perturbations. The normal mode of each type of
perturbations is found. In the end, we give a brief summary
on our results.

II. K-BRANE MODEL AND BACKGROUND
EQUATIONS

In the present paper, we study a model with the follow-
ing action:

S ¼
Z

d5x
ffiffiffiffiffiffiffi�g

p �
1

2�2
5

RþLð�;XÞ
�
; (1)

where �2
5 ¼ 8�G5 is the gravitational coupling constant

and G5 is the five-dimensional Newtonian constant. X �
� 1

2g
MNrM�rN� represents the kinetic term of the scalar

field; the model with L ¼ X � Vð�Þ is referred to as the
standard model. In this paper, we always use �, � ¼ 0, 1,
2, 3 to denote the indices of brane coordinates and use M,
N ¼ 0, 1, 2, 3, 5 to represent the indices of bulk
coordinates.
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The Einstein equations are

GMN � RMN � 1

2
gMNR ¼ �2

5TMN; (2)

where

TMN ¼ gMNLþLXrM�rN� (3)

is the energy-momentum tensor. In this paper, LX �
@L=@X and L� � @L=@� and so on.

The metric for a domain wall brane is assumed to be

gMN ¼ a2ðrÞ�MN; (4)

from which we immediately obtain the Einstein equations:

6

�
a0

a

�
2 ¼ �2

5a
2Lþ �2

5LX�
02; (5a)

3
a00

a
¼ �2

5a
2L; (5b)

where primes denote the derivatives with respect to the
extra-dimensional coordinate x5 ¼ r.

The equation of motion for the scalar field is

�0L0
X þLX

�
�00 þ 3

a0

a
�0

�
¼ �a2L�: (6)

This equation can be derived from the Einstein equations
as a natural result of the Bianchi identity rNGMN ¼ 0.

III. LINEARIZATION OF THE FIELD EQUATIONS

Consider small perturbations around an arbitrary back-
ground solution f �gMNðrÞ; ��ðrÞg, so that the perturbed fields
are given by

� ¼ ��ðrÞ þ ��ðxPÞ; (7)

gMN ¼ �gMNðrÞ þ �gMNðxPÞ: (8)

It is more convenient to define �gMN � a2hMN . Up to the
first order, the orthogonal relation gMPg

PN ¼ �N
M implies

�gMN � �gMPgNQ�gPQ ¼ �a�2hMN . The indices of

hMN are raised or lowered by �MN; consequently, h �
�MNhMN .

It is always possible to make the so-called STV
decomposition (see Ref. [34] for a similar discussion in
cosmology):

h�r ¼ @�FþG�; (9a)

h�� ¼ ���Aþ @�@�Bþ 2@ð�C�Þ þD��; (9b)

where C� and G� are transverse vector perturbations:

@�C� ¼ 0 ¼ @�G�; (10)

and D�� is transverse and traceless perturbation:

@�D�� ¼ 0 ¼ D
�
�: (11)

Here all indices are raised with ���, so that @� � ���@�.

Likewise, we denote @P � �PQ@Q and hð5Þ � �MN@M@N ,

hð4Þ � ���@�@� in our following discussions.

It is well known that, due to the general covariant
principle, these linear perturbation equations are invariant
under the following gauge transformations (see Ref. [35]
for details):

�hMN � ~hMN � hMN ¼ �2�ðM;NÞ � 2�MN

a0

a
�r (12)

and

��� ¼ ��r ��0: (13)

Here, we use ‘‘�’’ to indicate the change of perturbations,
and �M � �MN�

N relates to an infinitesimal transforma-
tion of the coordinate

xM ! ~xM ¼ xM þ �MðxPÞ: (14)

Since (��, hMN) and (f��, ~hMN) satisfy the same
equations, nonphysical perturbations exist due to our free-
dom in choosing �M. We can eliminate the nonphysical
freedoms by taking gauge directly [36]; for instance, we

can take f�� ¼ 0, simply by asking

�r ¼ ��
��0 : (15)

Likewise, we can eliminate some other perturbations by
using the residual freedoms in choosing ��. Some authors
prefer to take gauges in the light-cone coordinates [37].
However, it is difficult to eliminate all the gauge freedoms
completely if we directly take gauges.
Nevertheless, with the decomposition we introduced

previously, we are ready to construct gauge-invariant quan-
tities which not only completely fix the gauge freedom, but
can serve as the physical dynamic variables in the quanti-
zation procedure. This method was introduced to study
cosmological perturbations [38] and then generalized in
brane-world models [11,13].
Using the properties of the decomposed metric perturba-

tions, the gauge transformation Eq. (12) can be rewritten as

�A ¼ �2
a0

a
�r; �hrr ¼ �2�r0 � 2

a0

a
�r;

�B ¼ �2	; �F ¼ ��r � 	 0; �C� ¼ ��?
�;

�G� ¼ ��?0
� ; �D�� ¼ 0: (16)

Here, we applied the decomposition �� ¼ @�	 þ �?�

such that @��
?� ¼ 0.

Defining c ¼ F� 1
2B

0 and v� ¼ G� � C0
�, we con-

clude that �c ¼ ��r, while v�, D�� and the following

scalar quantities are invariant under gauge transformations:

� � hrr � 2
1

a
ðac Þ0; (17)
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� � A� 2
a0

a
c ; (18)

� � ����0c : (19)

Following a similar discussion in Ref. [11], one would
obtain the master equations for the vector

hð4Þv� ¼ 0; (20)

3
a0

a
@ð�v�Þ þ @ð�v0

�Þ ¼ 0; (21)

and tensor perturbation:

hð4ÞD�� þD00
�� þ 3

a0

a
D0

�� ¼ 0: (22)

Because of the decoupling of different perturbation
types, the modification of the matter Lagrangian does not
affect the vector and tensor parts. So, here we just summa-
rize some of the main conclusions of Ref. [11]:

(1) The tensor and vector perturbations do not destroy
the stability of brane solutions. The vector perturba-
tion supports only zero mode, while the tensor
perturbation usually permits both zero mode and a
series of massive modes.

(2) If we demand a finite four-dimensional Planck mass
and the reproduction of the four-dimensional
Newtonian gravity, the zero mode of tensor
perturbation must be localized on the brane. As a
cost, the vector zero mode cannot be localized due to
Eq. (21).

Similarly, we can express the scalar perturbation equa-
tions in terms of the gauge-invariant quantities:

��� 1

2
� ¼ 0; (23)

3

2

a0

a
�� 3

2
�0 ¼ �2

5LX�
0�; (24)

3

2
hð4Þ�� 3

2
�00 � 3

2

a0

a
�0 þ �2

5�
02LXXa

�2�02�

¼ 2�2
5LX�

0�0 � �2
5�

02LXXa
�2�0�0 þ �2

5�
02LX��:

(25)

Note that the use of gauge-invariant variables here is
equivalent to taking the so-called longitudinal gauge gauge,
which takes c ¼ 0, B ¼ 0 and C� ¼ 0. Under this gauge,

f�;�;�; v�g simply reduce to fhrr; A;�;G�g, respec-

tively. So, the final equations for fhrr; A;�g are nothing
but Eqs. (23)–(25). What we need to do is simply replace
f�;�;�g to fhrr; A;�g. Both methods completely
eliminate the gauge freedoms. In fact, for any gauge that
completely eliminates the gauge freedoms, we can always
construct the corresponding gauge-invariant variables.

A good choice of gauge usually helps us to simplify the
perturbation equations.
Eliminating �, � and LX� by using Eqs. (23) and (24)

and background equations, correspondingly, one can
reexpress Eq. (25) as

hð4Þ�þ ð1þ 2fÞ�00 þ ð1þ 2fÞ
�
@y ln

�
a3

LXð�0Þ2
��

�0

þ 2ð1þ 2fÞH
�
@y ln

�
H 2

LXð�0Þ2
��

� ¼ 0; (26)

where H � a0=a. For non-negative LX, the above equa-
tion takes a more compact form:

hð4Þ�þ 
�00 � 
zðz�1Þ00� ¼ 0; (27)

after redefining � ! a�3=2L1=2
X �0�. Here

z ¼ a3=2
�0

H
L1=2

X ; 
 ¼ 1þ 2
LXXX

LX

: (28)

If further 
 > 0, then we can use the Regge-Wheeler
‘‘tortoise’’ coordinate r�, such that

dr�

dr
� 
�1=2; (29)

to rewrite Eq. (27) as

hð4Þ�þ €�� _


2

_�� zðz�1Þ���þ _


2

ðz�1Þ�z� ¼ 0:

(30)

Here, we have used dots to denote the derivative with

respect to r�, for example, _� � d�
dr� . After a further rede-

finition of the field � ! 
1=4�, we finally obtain

hð4Þ�þ €����ð��1Þ�� ¼ 0; (31)

where � � 
1=4z. The massive modes of � satisfy the
following equation:

AyA�m ¼ m2
��m; (32)

with

A ¼ d

dr�
þ

_�

�
; Ay ¼ � d

dr�
þ

_�

�
: (33)

Obviously, the zero mode takes the form �0 / ��1.
So far, we have shown that after a series of redefinitions of

both the field� and the coordinate, we have transformed the
master equation of � into the Schrödinger-like equation
(31). The factorization of the Schrödinger-like equation
ensures that m2

� � 0. Consequently, we can say that any

solution with LX > 0 and 
 > 0 is stable. However, from
the point of view of quadratic action, � and many other
gauge-invariant quantities, despite satisfying some simple
equations, are not the canonical normal modes that diago-
nalize the quadratic action [12]. As we will see in the next
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section, only by considering the quadratic action can we
obtain the normal modes of the perturbations. It is the
normal modes that should be considered as the dynamical
variables in the quantization procedure.

IV. QUADRATIC ACTION AND THE
NORMAL MODES

Following a similar procedure to Ref. [12], we obtain the
second-order expansion of the gravitational Lagrangian:

�ð2ÞLgravity¼1

2

ffiffiffiffiffiffiffi�g
p

a�2

�
@MhNP@

PhMN�@Mh@NhMN

�1

2
@PhMN@

PhMNþ1

2
@Mh@Mh

þ3
a0

a
h@MhMrþ

�
a0

a

�
2
12hMrhMr

þa00

a

�
6hrrh�3

2
h2þ3hMNhMN�6hMrhMr

��
:

(34)

Likewise, the second-order perturbation of the matter
Lagrangian density Lmatter ¼ ffiffiffiffiffiffiffi�g

p
Lð�;XÞ is given by

�ð2ÞLmatter¼1

2
a3
�
1

4
a2Lh2�1

2
a2LhMNh

MNþa2L��ð��Þ2

þa�2LXXð�0Þ2
�
��0�1

2
�0hrr

�
2

þLX

�
1

2
ð�0Þ2hhrrþ2hMr�0@M��

þ�0h0���@M��@M���ð�0Þ2hMrhMr

�

�2L�X�
0��

�
��0�1

2
�0hrr

��
: (35)

We have eliminated L� by using the background equation

(6). The full quadratic Lagrangian density can be obtained
by combining Eqs. (34) and (35):

�ð2ÞLtotal¼1

2
a3
�
@MhNP@

PhMN�@Mh@NhMN�1

2
@PhMN@

PhMNþ1

2
@Ph@Phþ3

a0

a
h@�h�r�3

a0

a
hrrh

0

þ2�2
5a

2L��ð��Þ2þ2�2
5a

�2LXXð�0Þ2
�
��0�1

2
�0hrr

�
2þ2�2

5LX½2hMr�0@M��þ�0h0���@M��@M���

�4�2
5L�X�

0��
�
��0�1

2
�0hrr

��
: (36)

Plugging Eq. (9) into the above equation, �ð2ÞLtotal

decouples into several building blocks; for example, the
vector and tensor sections are

�ð2ÞLvector ¼ 1

2
v̂�hð4Þv̂�; (37)

�ð2ÞLtensor ¼ 1

4
D̂��

�
hð4ÞD̂�� þ D̂00

�� � ða3
2Þ00
a

3
2

D̂��

�
; (38)

with

v̂� ¼ a
3
2v�; D̂�� ¼ a

3
2D��: (39)

For the tensor section, the normal mode satisfies the
same equation we obtained in Sec. III, so we will not repeat
the discussions here.

It is worth noting that for the vector section, we can
recover only Eq. (20). Some authors argued that Eq. (21)
might come from the following Lagrangian [11]:

a3@ð�C�Þ
�
3
a0

a
@ð�G�Þ þ @ð�G0

�Þ

�
: (40)

However, as shown in Eq. (37), we did not obtain such a
Lagrangian. So for the vector section, there is a discrepancy
between the equations obtained by using different methods.

A similar discrepancy was also found in cosmology in both
Einstein gravity and Hořava-Lifshitz gravity [39].
Therefore, from the point of view of action, we also

conclude that only the zero mode of the vector perturbation
survives, so our model is stable against vector perturba-
tions. However, from the quadratic action of vector pertur-
bation, we cannot tell whether the vector zero mode is
localizable. The reason for this discrepancy is still not clear
to us, so wewould like to make further investigation on this
issue. But in this paper, our main interest lies in the scalar
section.
The first building block of the scalar perturbation relates

to c ¼ F� 1
2B

0:

�ð2ÞLscalar-1 ¼ a3
�
3
a0

a
hrr � 3A0 � 2�2

5LX�
0��

�
hð4Þc ;

(41)

which leads to the following constraint:

3
a0

a
hrr � 3A0 � 2�2

5LX�
0�� ¼ 0: (42)

This is nothing but Eq. (24). Another part of the scalar
Lagrangian contains A, hrr, and ��:
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�ð2ÞLscalar-2 ¼ 1

2
a3
�
�3Ahð4ÞA� 3hrrh

ð4ÞAþ 2�2
5LX��hð4Þ��þ 6A0A0 � 3

a0

a
hrrðh0rr þ 4A0Þ þ 2�2

5a
2L��ð��Þ2

þ 4�2
5LXhrr�

0��0 þ 2�2
5LX�

0ðh0rr þ 4A0Þ��� 2�2
5LXð��0Þ2 � 4�2

5L�X�
0��

�
��0 � 1

2
�0hrr

�

þ 2�2
5a

�2LXXð�0Þ2
�
��0 � 1

2
�0hrr

�
2
�
: (43)

To diagonalize �ð2ÞLscalar-2, we firstly eliminate hrr by
using Eq. (42). Then, we introduce a gauge-invariant
variable which combines A and ��:

G � a3=2
ffiffiffiffiffiffiffi
LX

q �
2��� �0

H
A

�
: (44)

Here LX > 0 is required. Naively, after the elimination of
��, �ð2ÞLscalar-2 should be expressed in terms of A and G.
However, since we did not take any gauge, �ð2ÞLscalar-2 is
still gauge invariant. That means all terms that contain A
and its derivatives must be vanished, because these terms
cannot be gauge invariant (one can show that after a long
but straightforward calculation, all terms with A are indeed
vanished). Thus, we get a Lagrangian density with only G,
namely,

�ð2ÞSG ¼ 1

4
�2
5

Z
d4xdrfGhð4ÞG þ VðrÞG2

þ ð1þ 2fÞGG00g; (45)

with

VðrÞ ¼ � z00

z
�

�
z00

z
þ ðzfÞ00

zf

�
f: (46)

Here z is defined in Eq. (28), and

f ¼ LXXX

LX

: (47)

If 
 ¼ 1þ 2f > 0, we can use the coordinate r� defined
in Eq. (29) to rewrite the quadratic action as

�ð2ÞSG¼1

4
�2
5

Z
d4xdr�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2f

p fGhð4ÞGþUðr�ÞG2þG €Gg;
(48)

with

Uðr�Þ � Vðr�Þ þ 1

2

€f

1þ 2f
�

� _f

1þ 2f

�
2
: (49)

Thus, the scalar normal mode should be

Ĝ ¼ �5

2
ð1þ 2fÞ1=4G; (50)

and the corresponding action is

�ð2ÞSĜ ¼
Z

d4xdr�Ĝ
�
hð4ÞĜ þ €̂G �

€�

�
Ĝ
�
: (51)

Again, we defined � � 
1=4z. Obviously, for the standard
case 
 ¼ 1 and r� ¼ r, our result reduces to the one given
in Ref. [12].
Note that one can rewrite G in Eq. (44) in terms of

gauge-invariant variables:

G ¼ a3=2
ffiffiffiffiffiffiffi
LX

q �
2�� �0

H
�

�
: (52)

We see that G explicitly contains the matter perturbation
�. In contrast, neither � nor � can diagonalize the qua-
dratic action. So, it isG rather than� that should be served
as the normal mode in the quantization. This problem was
pointed out previously [12]. On the other hand, one can

also derive the same equation for Ĝ, namely, Eq. (54), by
simply combining the equations of� and� (see Ref. [11]
for details).

V. STABILITYAND LOCALIZATION OF THE
CANONICAL SCALAR ZERO MODE

From the bilinear action of Ĝ, we know that for LX > 0
and 1þ 2f > 0, the scalar normal mode satisfies a
Schrödinger-like equation

� €̂G þ
€�

�
Ĝ ¼ hð4ÞĜ: (53)

The massive modes of Ĝ are described by the following
equation:

AAyĜm ¼ m2
Ĝ
Ĝm; (54)

whereA andAy are defined in Eq. (33). According to the
supersymmetric quantum mechanics, we know that m2

Ĝ
is

non-negative, and consequently, any solution of models
with LX > 0 and 1þ 2f > 0 should be stable under the
scalar perturbation. Moreover, according to Eqs. (32) and

(54), we find that Ĝm and�m are superpartners, that means
their mass spectra are related [11].
The normalization condition for the canonical zero

mode Ĝ0 ¼ K�ðr�Þ is
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K2
Z

dr�j�j2 ¼ K2
Z

dr�ð1þ 2fÞ1=2ðzðr�ÞÞ2

¼ K2
Z

drLXa
3 �02

H 2

¼ 3
K2

�2
5

Z
dra3

H 2 �H 0

H 2
¼ 1: (55)

Comparing this condition to the one obtained in the stan-
dard case L ¼ X � V [11], we conclude that the modifi-
cation of the scalar Lagrangian does not affect the
localization of the scalar zero mode. This result does
make sense, because as we can see in the standard case,
the localization of the scalar zero mode is determined only
by the warp factor (or the geometry of space-time) rather
than the matter field [11]. Thus, as stated in Ref. [12], the
scalar zero mode is not localizable, because it is divergent
either at r ! 0 or at r ! 1.

The massive scalar spectrum would be different as
compared to the standard case, however. Thus, one expects
to see different modification to the four-dimensional
gravity. We will leave this problem to our future work.

VI. CONCLUSIONS

In this paper, we investigated the linear perturbation of a
class of thick K-branes. We derived the master equations
for linear perturbations from the point of view of both
dynamical equations and quadratic action. The canonical
normal mode of the scalar perturbation turns out to be a
combination of both the metric and field perturbations. The
localization of the scalar zero mode depends only on the
geometry of the space-time, rather than the explicit form of
the Lagrangian of the scalar field. Therefore, the scalar
perturbation is nonlocalizable in general. The massive
modes of the canonical scalar perturbation satisfy a

Schrödinger-like equation, provided LX > 0 and 
 ¼ 1þ

2X LXX

LX
> 0. Note that the first conditionLX > 0 is required

as the consequence of the null energy condition
TMNn

MnN � 0, for an arbitrary null vector nM such that
nMnM ¼ 0. The decomposition of the Schrödinger-like
equation indicates that there is no tachyon in the mass
spectrum. So thick K-brane solutions with LX > 0 and

 > 0 are generally stable under linear scalar perturbation.
Besides, the modification of the matter Lagrangian does

not affect the tensor and vector sections. So, after linear-
izing the Einstein equations, we get the same conclusions
as the standard case; namely, the vector perturbation has
only zero mode, while the tensor perturbation has both zero
and massive modes. In order to have a finite four-
dimensional Planck constant, the localization of the tensor
zero mode must be required; as a consequence, the vector
perturbation cannot be localized due to Eq. (21). However,
from the point of view of quadratic action, Eq. (21) is
absent due to some unknown reasons. A further investiga-
tion on this issue is necessary, but we would like to leave it
to the future work.
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