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The stellar magnetic field configuration and solutions of Maxwell equations in the external background

spacetime of a magnetized spherical stars in the Hořava-Lifshitz gravity and in modified fðRÞ gravity are

studied. The star is modeled as a sphere consisting of perfect highly magnetized fluid with infinite

conductivity and frozen-in magnetic field. With respect to solutions for magnetic fields found in the

Schwarzschild spacetime star in modified gravity theories, enhancing corrections are added to the exterior

magnetic field. The energy losses through magnetodipolar radiation of the rotating magnetized compact

star within alternative gravity theories is also considered. The question of whether these models can be

considered as an alternative theory for general relativity is also discussed through astrophysical

application of the obtained magnetodipolar energy loss formula. Finally we analyze the role of general

relativistic effect on the decay of a neutron star’s magnetic field in modified theories of gravity.
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I. INTRODUCTION

So-called fðRÞ gravity is a type of modified gravity
theory first proposed in 1970 by Buchdahl [1], where
fðRÞ is a generic function of the Ricci scalar R, which
comes into the game as a straightforward extension of
general relativity (GR). In fðRÞ gravity the further geomet-
rical degrees of freedom are considered instead of search-
ing for new material ingredients [2]. Recently, it became
an active field of research among alternative theories of
gravity. It has the potential, in principle, to explain the
accelerated expansion of the Universe without adding
unknown forms of matter as dark energy or dark matter.

Later, the interest in spherically symmetric solutions of
fðRÞ gravity is grown up. For example, in [3], vacuum
solutions of field equations have been found considering
relations among functions that define the spherical metric
or imposing a constant Ricci curvature scalar. The authors of
papers [3,4] have reconstructed the form of some fðRÞ mod-
els, discussing their physical relevance as well as static
spherically symmetric solutions, in the presence of perfect
fluidmatter, adopting themetric formalism.They have shown
that a given matter distribution is not capable of globally
determining the functional form of fðRÞ. Other authors have
discussed in detail the spherical symmetry of fðRÞ gravity
considering also the relations with the weak field limit.

Noether gauge symmetries of fðTÞ gravity minimally
coupled with a canonical scalar field, generalized first
and second laws of thermodynamics, and the statefinder
parameters in fðTÞ cosmology have been studied in [5].

A flat Friedmann-Robertson-Walker universe in the context
of the Palatini fðRÞ theory of gravity has been studied in [6].
The equivalence of the Einstein-Hilbert and the Einstein-
Palatini formulations of general relativity for an arbitrary
connection has been explored in [7].
Recently Hořava proposed a UV complete, nonrelativ-

istic and renormalizable theory of gravity [8,9]. Since
then, many authors have paid attention to this scenario to
apply it to the black hole (BH) physics [10–15], cosmology
[16–22], and observational tests [23]. Energy extraction
and particle acceleration [24], quantum interference
effects [25], and the motion of the test particle around
the BH [26] in Hořava-Lifshitz gravity have been also
recently studied.
In Ref. [23] the possibility of observationally testing

Hořava-Lifshitz gravity at the scale of the Solar System,
by considering the classical tests of general relativity
(perihelion precession of the planet Mercury, deflection
of light by the Sun, and the radar echo delay) for the
Kehagias-Sfetsos (KS) asymptotically flat black hole solu-
tion of Hořava-Lifshitz gravity has been considered.
Recently the authors of [27] have studied the particle
motion in the spacetime of a KS black hole. The stability
of the Einstein static universe by considering linear homo-
geneous perturbations in the context of an infrared (IR)
modification of Hořava-Lifshitz gravity has been studied
in [28]. Potentially observable properties of black holes
in the deformed Hořava-Lifshitz gravity with Minkowski
vacuum—the gravitational lensing and quasinormal
modes—have been studied in [11]. The authors of the
paper [29] derived the full set of equations of motion and
then obtained spherically symmetric solutions for the UV
completed theory of gravity proposed by Hořava.
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Black hole solutions and the full spectrum of spherically
symmetric solutions in the five-dimensional nonproject-
able Hořava-Lifshitz-type gravity theories have been re-
cently studied in [30]. Geodesic stability and the spectrum
of entropy or area for the black hole in Hořava-Lifshitz
gravity via quasinormal mode approaches are analyzed in
[31]. Particle geodesics around the Kehagias-Sfetsos black
hole in Hořava-Lifshitz gravity are also investigated by the
authors of [32]. Recently, observational constraints on
Hořava-Lifshitz gravity have been found from the cosmo-
logical data [33]. The authors of [15] have found all
spherical black hole solutions for two, four, and six deriva-
tive terms in the presence of a Cotton tensor.

It is well known that magnetic fields play an important
role in the life history of a majority of astrophysical objects,
especially of compact relativistic stars, which possess sur-
face magnetic fields of order of 1012 G. Magnetic fields of
magnetars [34,35] can reach up to 1015–1016 G, and in the
deep interior of compact stars the magnetic field strength
may be estimated up to 1018 G. The magnetic field strength
of compact stars is one of the main quantities determining
their observability, for example, as pulsars through magne-
todipolar radiation. Therefore it is extremely important to
study the effect of the different phenomena on the evolution
and behavior of stellar exterior magnetic fields.

In the general relativity approach the study of the
magnetic field structure outside magnetized compact
gravitational objects has been initiated by the pioneering
work of Ginzburg and Ozernoy [36] and further extended
by a number of authors [37–45], while in some papers
[46–50] the work has been completed by considering the
magnetic fields’ interior relativistic star for the different
models of stellar matter. A general relativity treatment for
the structure of external and internal stellar magnetic fields
including numerical results has shown that the magnetic
field is amplified by the monopolar part of the gravitational
field depending on the compactness of the relativistic star.
Nongeodesic corrections to orbital and epicyclic frequen-
cies and the quasicircular motion of charged test particles
in the field of magnetized slowly rotating neutron stars
have been studied in [51,52].

To the best of our knowledge, the magnetic field configu-
ration in compact stars in fðRÞ and Hořava-Lifshitz gravity
has not yet been studied. Since the magnetic field deter-
mines the reach observational phenomenology of compact
stars we plan to study here static spherically symmetric
highly magnetized relativistic stars in both fðRÞ and
Hořava-Lifshitz gravity theories. The magnetic field struc-
turewill be assumed to be dipolar and axisymmetric and the
effect of the gravitational field of the star on the magnetic
field structure is consideredwithout feedback, amounting to
the astrophysical evidence that the magnetic field energy is
not strong enough to affect the spacetime geometry.

In this paper we describe our model assumptions,
present the Maxwell equations for magnetic field and

initial conditions for the models under consideration, and
obtain analytical and numerical results for the stellar
magnetic field. In Sec. II we provide a description of
spherical compact objects in fðRÞ gravity and Maxwell
equations for magnetic field in the spacetime of these
objects. We integrate external Maxwell equations from
asymptotical infinity to the surface of the star and find
numerical solutions for the magnetic field outside the star
in fðRÞ gravity. In Sec. III we reiterate the processes in
Sec. II but in Hořava gravity. As astrophysical application
of the obtained results, we look for the modification of the
luminosity of electromagnetic magnetodipolar radiation
from the rotating star in modified theories of gravity in
Sec. IV. In Sec. V we discuss numerical solutions of
induction equations in the curved spacetime, and an
assessment of the relativistic factors influencing the field
decay in both modified theories of gravity is discussed. We
use a system of units in which c ¼ G ¼ 1, a spacelike
signature ð�;þ;þ;þÞ and a spherical coordinate system
ðt; r; �; ’Þ. Greek indices are taken to run from 0 to 3. We
will indicate vectors with bold symbols (e.g., B).

II. MAGNETIC FIELD OF THE STAR
WITHIN THE fðRÞ GRAVITY

fðRÞ or ‘‘modified’’ gravity consists of infrared
modifications of GR that become important only at low
curvatures, late in the matter era. The Einstein-Hilbert
action SEH ¼ 1

2�

R
d4x

ffiffiffiffiffiffiffi�g
p

Rþ Smatter is modified to

S ¼ 1

2�

Z
d4x

ffiffiffiffiffiffiffi�g
p

fðRÞ þ Smatter; (1)

where Smatter ¼ R
d4x

ffiffiffiffiffiffiffi�g
p

Lmðg��;c Þ is a matter action

with Lagranjian density Lm describing any matter fields
c appearing in the theory, R is the Ricci curvature of
the metric tensor g�� with metric determinant g, � �
8�Gc�4,G is Newton’s constant, and fðRÞ is the nonlinear
function of the argument [53,54].
Spherically symmetric solutions can be achieved

starting from a pointlike fðRÞ Lagrangian [55]. Such a
Lagrangian can be obtained by imposing the spherical
symmetry directly in the action (1). As a consequence,
the infinite number of degrees of freedom of the original
field theory will be reduced to a finite number. The tech-
nique is based on the choice of a suitable Lagrange multi-
plier, defined by assuming the Ricci scalar argument of the
function fðRÞ in spherical symmetry.
Starting from the above considerations, in a coordinate

system (ct, r, �, �), the spacetime metric for a static
spherical relativistic star in fðRÞ gravity can be expressed
as [56]

ds2¼�AðrÞdt2þDðrÞdr2þHðrÞðd�2þsin2�d’2Þ; (2)

and then the pointlike fðRÞ Lagrangian is

L� ¼ L1=2 (3)
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with

L ¼ q0tL̂ q0

¼ ½ð2þHRÞf0 � fH�
H

½2H2f00A0R0

þ 2HH0ðf0A0 þ 2Af00R0Þ þ Af0H02�; (4)

where q ¼ ðA;D;H; RÞ and q0 ¼ ðA0; D0; H0; R0Þ are the

generalized positions and velocities associated with L.
According to the Noether Theorem, the existence of a

symmetry for dynamics described by the Lagrangian (4)
implies the existence of a conserved quantity. The Lie
differentiation of Eq. (4) yields

LXL ¼ � � rqLþ �0 � rq0L

¼ q0t½� � rqL̂þ 2ðrq�ÞtL̂�q0; (5)

which vanishes if the functions � satisfy the following
system:

� � rqL̂þ 2ðrq�ÞtL̂ ¼ 0 ! �i

@L̂km

@qi
þ 2

@�i

@qk
L̂im ¼ 0:

(6)

Solving the system (6) means finding functions �i, which
identify the Noether vector. However, the system (6)
implicitly depends on the form of fðRÞ and then, by solving
it, one obtains the forms of the function fðRÞ, which are
compatible with spherical symmetry. On the other hand, by
choosing the form fðRÞ, (6) can be solved explicitly. As an
example, one finds that the system (6) is satisfied if one
chooses

fðRÞ ¼ f0R
s;

� ¼ ð�1; �2; �3Þ ¼ ðð3� 2sÞkA;�kH; kRÞ;
(7)

with s a real number, k an integration constant, and f0 a
dimensional coupling constant. This means that, for any
fðRÞ ¼ Rs, there exists, at least, a Noether symmetry and a
related constant of motion �0,

�0 ¼ � � rq0L

¼ 2skHR2s�3½2sþ ðs� 1ÞHR�½ðs� 2ÞRA0

� ð2s2 � 3sþ 1ÞAR0�: (8)

A physical interpretation of �0 is possible in GR, which
means for fðRÞ ¼ R and s ¼ 1, the above procedure has to
be applied to the Lagrangian of GR. We obtain the solution
�GR ¼ ð�kA; kHÞ. The functions A and H give the
Schwarzschild solution, and then the constant of motion
acquires the standard form �0 ¼ 2GM=c2, whereM is the
total mass of the star. General black hole solutions of the
field equations regulating the function RðrÞ give, for
example, a solution corresponding to

s ¼ 5=4; H ¼ r2; R ¼ 5r�2; (9)

obtaining the spherically symmetric spacetime

ds2 ¼ ð�þ �rÞdt2 � 1

2

�r

�þ �r
dr2 � r2d�; (10)

where � is a combination of �0 and k, and � ¼ k1. The
value of s for this solution is ruled out by Solar System
experiments [57–59].
Now we will look for stationary solutions of the

Maxwell equations in the spacetime given by (10), i.e.,
for solutions in which we assume that the magnetic
moment of the magnetic star does not vary in time as a
result of the infinite conductivity of the stellar medium.
Because of discontinuities in the fields across the surface of
the sphere, we will refer to as exterior solutions those valid
in the range R� < r � 1.
Assuming the magnetic field to be dipolar, we look for

separable solutions of Maxwell equations in the form

Br̂ðr; �Þ ¼ FðrÞ cos�; (11)

B�̂ðr; �Þ ¼ GðrÞ sin �; (12)

B�̂ðr; �Þ ¼ 0; (13)

where the unknown radial functions FðrÞ and GðrÞ will
account for the relativistic corrections due to a gravita-
tional field in the modified gravity. Since the exterior of the
star is a vacuum, we can impose zero electric current

density Jr̂ ¼ J�̂ ¼ J�̂ ¼ 0 in Maxwell equations and ob-
tain Maxwell equations for the radial part of the magnetic
field as [60]

ðr2FÞ;rþ2rG
ffiffiffiffi
D

p ¼0; ðrG ffiffiffiffi
A

p Þ;rþF
ffiffiffiffiffiffiffiffi
AD

p ¼0: (14)

The magnetic field depends only on r and � coordinates
due to axial symmetry and stationarity. The dipolar
approximation is a simple one for the interior field; how-
ever, it is consistent with the requirement that the field
configuration should match at the boundary with the
external dipolar field. Since the interior magnetic field
has the dipolar configuration, the continuity of normal
and tangential components of the magnetic field at the
stellar surface has to be required.
The exterior solution for the magnetic field is simplified

by the knowledge of explicit analytic expressions for the
metric functions A andD. Maxwell equations for the radial
part of the magnetic field (14) can be obtained as a second-
order ordinary differential equation for the unknown radial
function F:

d

dr

�
ð�þ �rÞ

ffiffiffiffiffiffi
2

�r

s
d

dr
ðr2FÞ

�
� ffiffiffiffiffiffiffiffiffi

2�r
p

F ¼ 0: (15)

The analytical solution of Eq. (15) exists for the
Schwarzschild star with the total mass M [36–50], in
particular after defining metric functions N2 ¼ A ¼
D�1 ¼ ð1� 2M=rÞ exterior to the star. The analytical
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general relativity solution of a dipolar magnetic field in a
vacuum expressed through the Legendre functions of the
second kind [61] shows that the dipolar magnetic field is
amplified by a factor

FGRðrÞ
FNewtðrÞ ¼ � 3R3

8M3

�
lnN2 þ 2M

r

�
1þM

r

��
(16)

compared to the flat spacetime solution. Here FNewt ¼
2�=r3 is the value of magnetic field at the pole in the
Newtonian limit.

We integrate Eq. (15) using the Runge-Kutta fourth
order method, with standard techniques befitting
second-order ODE (e.g., Press [62]) in the program
MATHEMATICA. The ODE equation is solved as an
initial value problem. For initial values we have chosen
BðrÞ ¼ 0, B0ðrÞ ¼ �� at r ¼ 1, taking into account the
value of the magnetic star at the surface of the star in the
Newtonian limit, where � is a small positive number. In
the limit of r ! 1, the solution is taken to be Newtonian
and does not give any contribution to the magnetic field.
For the models in the present study we choose the follow-
ing parameters: R� ¼ 10 km and the polar surface field
strength Bð �r ¼ r=R� ¼ 1Þ ¼ 1012 G.

In Fig. 1 the radial dependence of the magnetic field of
the neutron star in general relativity versus in the fðRÞ
gravity theory is shown. The dashed line corresponds to the
dependence of the magnetic field within the framework of
general relativity. The solid lines correspond to the radial
dependence of the magnetic field of the neutron star in
fðRÞ gravity for the different values of parameters� and�,
which are responsible for the modified terms in the theory
of gravity. The mass of the star is taken as M ¼ 1:4M�,
where M� is the solar mass and the radius of the star is
R� ¼ 10 km. Here we consider the equatorial plane, i.e.,
� ¼ �=2, _� ¼ 0, and assume � ¼ 1 and � ¼ 2. One can
see from the dependence that the magnetic field near the
compact objects is bigger in the modified gravity theory
than one in GR.

III. MAGNETIC FIELD OF THE STAR WITHIN
THE HO �RAVA-LIFSHITZ GRAVITY

The four-dimensional metric of the spherical-symmetric
spacetime written in the ADM formalism [11,63] has the
following form:

ds2 ¼ �N2c2dt2 þ gijðdxi þ NidtÞðdxj þ NjdtÞ; (17)

where N, Ni are the metric functions to be defined.
The IR-modified Hořava action is given by

S ¼
Z

dtdx3
ffiffiffiffiffiffiffi�g

p
N

�
2

�2
ðKijK

ij � 	gK
2Þ � �2

2
4
g

CijC
ij

þ �2�

2
2
g

�ijkRilrjR
l
k �

�2�2

8
RijR

ij þ �2�2

8ð3	g � 1Þ

�
�
4	g � 1

4
R2 ��WRþ 3�2

�
þ �2�2!

8ð3	g � 1ÞR
�
;

(18)

where �, 	g, 
g,�,!, and�W are constant parameters, the

Cotton tensor is defined as

Cij ¼ �iklrk

�
Rj

l �
1

4
R�j

l

�
; (19)

Rijkl is the three-dimensional curvature tensor, and the

extrinsic curvature Kij is defined as

Kij ¼ 1

2N
ð _gij �riNj �rjNiÞ; (20)

where the dot denotes a derivative with respect to t.
Imposing the case 	g ¼ 1, which reduces to the action in

the IR limit, one can obtain the Kehagias and Sfetsos (KS)
asymptotically flat solution [64] for the spacetime metric
outside the gravitating spherical symmetric object in
Hořava gravity as

ds2 ¼ �N2c2dt2 þ N�2dr2 þ r2d�2 þ r2sin 2�d’2;

N2 ¼ fKSðrÞ ¼ 1þ!r2 �!r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M

!r3

s
; (21)

where ! is the KS parameter and the constant �W ¼ 0 is
chosen.
Here we will also look for stationary solutions of

the Maxwell equations in spacetime (21), as we did in
Sec. II. Assuming the magnetic field to be dipolar, we
look for separable solutions of Maxwell equations in the
forms (11)–(13).
Maxwell equations for the radial part of the magnetic

field can be obtained as a second-order ordinary differen-
tial equation for the unknown radial function F:

d

dr

�
fKSðrÞ ddr ðr

2FÞ
�
� 2F ¼ 0: (22)

The numerical solution of Eq. (22) is presented in Fig. 2. In
Fig. 2 the radial dependence of the magnetic field of the
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FIG. 1 (color online). The radial dependence of the magnetic
field of the neutron star in general relativity versus in fðRÞ
gravity theory.
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neutron star for the cases of general relativity and Hořava
gravity theory is shown. The black line corresponds to the
dependence of the magnetic field within the framework of
general relativity (! 	 1). The mass of the star is taken as
M ¼ 1:4M�, the radius of the star is R� ¼ 10 km. The thin
colored lines correspond to the radial dependence of the
magnetic field of the neutron star in Hořava gravity for the
different values of ! parameter, which is responsible for
the modified terms in the KS solution in Hořava gravity.
Here we consider the equatorial plane, i.e., �¼�=2, _� ¼ 0.
One can see from Figs. 1 and 2 that in the presence of
modified terms in the action for the gravitational field, the
surface magnetic field increases by a factor 3–4. The
asymptotical values of the magnetic field tend to vanish.

IV. ASTROPHYSICAL CONSEQUENCES

Assume that the oblique magnetized star in these models
of gravity is rotating, and � is the inclination angle
between the axis of rotation and magnetic momentum
and observed as a pulsar through magnetic dipole radia-
tion. Then the luminosity of the relativistic star in the case
of a purely dipolar radiation, and the power radiated in the
form of dipolar electromagnetic radiation, is given by [44]

Lem ¼ �4
R�R

6� ~B2
0

6c3
sin2�; (23)

where subscript 0 denotes the value at the star surface
r ¼ R�.

When compared with the equivalent Newtonian expres-
sion for the rate of electromagnetic energy loss through
dipolar radiation [65],

ðLemÞNewt ¼ �4R6�B2
0

6c3
sin2�; (24)

it is easy to realize that the general relativity fðRÞ gravity
corrections emerging in expression (23) are partly due to
the magnetic field amplification ~B0 ¼ FR�B0 at the stellar

surface and partly to the increase in the effective rotational

angular velocity produced by the gravitational redshift as
� ¼ �R�

ffiffiffiffiffiffi
AR

p
.

The modified terms in the action in fðRÞ gravity and in
Hořava gravity have the effect of enhancing the rate of
energy loss through dipolar electromagnetic radiation by
an amount that can easily be estimated as

Lem

ðLemÞNewt ¼
�
FR�
AR�

�
2
; (25)

and whose dependence from the compactness parameter
M=R� is shown in Figs. 3 and 4 with a solid line. The
dashed line corresponds to the energy loss in the case of
GR. The solid line in Fig. 3 corresponds to the energy loss
dependence in the case of modified gravity theory. Here we
consider the equatorial plane, i.e., � ¼ �=2 _� ¼ 0, and
assume � ¼ 1 and � ¼ 2. The solid line in Fig. 4 corre-
sponds to the energy loss dependence in the case of Hořava
gravity. As is seen from the graph in Fig. 3, with an
increase in the compactness parameter of the star in fðRÞ
gravity, the energy loss is increasing exponentially.
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FIG. 2 (color online). The radial dependence of the magnetic
field of the neutron star in general relativity versus in Hořava
gravity theory.
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FIG. 3 (color online). The amplification of the energy loss of
the NS in fðRÞ gravity due to electromagnetic radiation.
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FIG. 4 (color online). The amplification of the energy loss of
the NS in the Hořava gravity model due to electromagnetic
radiation.
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This result helps to get constraints on fðRÞ gravity from
astrophysical observations on the EM radiation from NSs.
In Fig. 4 the modification of the energy loss of the NS due
to electromagnetic radiation is shown. One can see from
the graph that as the compactness parameter of the star
increases, the energy loss is lower than in GR.

Expressions (23) and (25) could be used to study the
rotational evolution of magnetized neutron stars with pre-
dominant dipolar magnetic field anchored in the crust
as objects converting their rotational kinetic energy into
electromagnetic radiation.

V. EVOLUTION OF MAGNETIC FIELD
OF NEUTRON STARS IN MODIFIED

THEORIES OF GRAVITY

From the classical electrodynamics [66], it is known that
the diffusion of the magnetic field in a plasma of finite
conductivity leads to a spreading of inhomogeneities,
while dissipation is due to the Ohmic decay of the currents
producing the field. A magnetic field Bðt;xÞ in a plasma of
uniform conductivity  evolves, in flat spacetime, accord-
ing to the following diffusion equation [66]:

@Bðt;xÞ
@t

¼ c2

4�
r2Bðt;xÞ: (26)

It will decay or diffuse in a characteristic time scale
�Ohm ¼ 4�L2=c2, where L is a typical length scale of the
field structure. Depending upon the prevailing conditions,
the Ohmic decay time �Ohm can range from seconds, in the
case of a copper sphere of radius of a few centimeters, up to
�Ohm ¼ 1010 years or even much longer for astrophysical
settings [66].

It has been an intense effort by astrophysicists to under-
stand the factors governing the decay of the magnetic field
of neutron stars [67]. For the magnetic field of a nonrotat-
ing neutron star, it is natural to describe the field decay
relative to the class of observers that find themselves at rest
relative to the star, i.e., the class of Killing observers.

The spacetime geometry can be written in the form

ds2 ¼ gttðdxtÞ2 þ �ijdx
idxj; (27)

where xt ¼ ct, �ij are functions of the spatial coordinates

xi, (i ¼ 1, 2, 3) and � denotes the hypersurface orthogonal
timelike Killing vector field obeying ���

� ¼ gtt. The
geometry of the spacetime permits the introduction of
coordinates so that the spatial three element ds2ð3Þ of (27)
could be recast in the following form:

ds2ð3Þ ¼ h2rðdrÞ2 þ h2�ðd�Þ2 þ h2�ðd�Þ2; (28)

where the scale factors are hi ¼ hiðr; �;�Þ. For such
geometries, Maxwell’s equations and the current conser-
vation law r�J

� ¼ 0 can be rewritten in an equivalent
form, involving only the components ðEi; BiÞ of the
electric and magnetic fields, respectively. The charge

density c� ¼ �U�J
� and spatial current density Ji as

measured by the Killing observers can be written in the
following form:

r � E ¼ 4��; r � B ¼ 0; (29)

r� ð�BÞ ¼ 4�

c
�Jþ 1

c

@E

@t
; (30)

r� ð�EÞ ¼ � 1

c

@ ~B

@t
; (31)

r � Jþ J � rðln�Þ ¼ 0; (32)

where � ¼ ð�����Þ12 ¼ ffiffiffiffiffiffi
gtt

p
is the redshift factor, which

in the language of the 3þ 1 approach to spacetime is also
referred to as the lapse function [68]. Using Eqs. (29)–(32),
the generalized induction equation takes the following
form:

1

c

@B

@t
þr�

�
c

4�
r� ð�BÞ

�
¼ 0: (33)

We shall explore the content of the relativistic induction
equation (33) by applying it to study the evolution of
magnetic fields associated with neutron stars in modified
theories of gravity. To investigate the impact of the space-
time curvature upon the magnetic field decay in the modi-
fied gravity, we shall take over a simple neutron star model.
Accordingly, and to avoid hard numerical computations,
we shall ignore the rotation of the neutron star and thus
adopt as the background geometry a nonsingular, static,
and spherically symmetric one. It has been shown in
[42,50] that the neutron star rotation in general relativity
affects the decay of the magnetic field of neutron stars
through small dimensionless parameter != (where ! is
the frequency of dragging of inertial frames and negli-
gible). The evolution of the magnetic field decay is con-
siderably affected by the electrical conductivity , and in
order to emphasize the effects of spacetime curvature, we
shall take  to be spherically symmetric and shall ignore
any cooling effects that may influence its temporal evolu-
tion. For an axially symmetric field B, it is convenient to
decompose it into the so-called poloidal BðpÞ ¼ Brer þ
B�e� and toroidal parts BðtÞ ¼ B�e�. For simplicity, in the

present paper we shall examine the effects of the spacetime
curvature only on the evolution of a purely poloidal field.
Taking into account the poloidal and axisymmetric nature
of magnetic fieldB, one easily finds thatr � B ¼ 0 implies

h�1
r

r

@ðr2BrÞ
@r

þ 1

sin �

@ðB� sin �Þ
@�

¼ 0: (34)

We shall look for separable solutions of the above equa-
tions in the form (11) and (12), where
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GðrÞ ¼ h�1
r

2r

@ðr2FÞ
@r

: (35)

Using Eq. (35) for any poloidal axisymmetric field
with components ðBr; B�Þ, the induction equation (33) in
geometry [27] gets the following evolution equation:

4�

c

@F

@xo
¼ h�1

r

r2
@

@r

�
�

hr

@ðr2FÞ
@r

�
� 2�F

r2
: (36)

Here we consider the decay of a magnetic field in a
neutron star of constant density in modified gravity. The
time evolution of a chosen initial distribution on general
grounds Fðt ¼ 0; rÞ can be expanded in a series of the
following form [48]:

Fðt; xÞ ¼ �ane
�c2	nt=4�R

2
gnðxÞ; (37)

where the summation is extended over all eigenmodes
gnðxÞ of the corresponding (singular) Sturm-Liouville
eigenvalue problem arising from Eq. (36).

It follows now from Eq. (37) that if the eigenvalues are
positive and well spaced, then after t 	 tOhm=	1 where 	1

is the lowest eigenvalue of the above system, the evolution
of the distribution will channel into an exponentially de-
creasing phase with the dominant contribution in the sum
(37) coming from the ‘‘first’’ term. The evolution of Fðt; xÞ
channels into an exponentially decaying mode, which
means, according to (37), that the evolution of the initial
distribution is eventually described by the first nonvanish-
ing term in the series expansion (37) [48]. This behavior of
Fðt; xÞ allows us to determine only the lowest eigenvalue 	1

of (37) from numerical outputs. Besides the explicit
determination of 	1, our numerical treatment allows us to
construct the magnetic field as well. In Fig. 5, we plot as a
function of coordinate time t, the magnetic field as per-
ceived by a Killing observer located at the star’s pole for the
various values of the parameters of Hořava-Lifshitz theory
and fðRÞ gravity models considered in the previous sec-
tions. In Fig. 5 the horizontal axis represents (coordinate)

time in units of the Ohmic decay time �ohm � 4�R2=c2 in
flat spacetime and the vertical axis shows the value of
B=B0 ¼ Bðt; r ¼ R; � ¼ 0Þ=Bðt ¼ 0; r ¼ R; � ¼ 0Þ. All
models have the same areal radius (R ¼ 10 km) and a
constant uniform conductivity ( ¼ 1025 s�1), which are
typical for neutron star models. The initial field profile is
taken as the n ¼ 1 eigenmode for all cases. The graphs
show quite clearly the exponential decay of magnetic
field in the modified theories of gravity as in general
relativity.
In Fig. 5(a) the magnetic field decay of a neutron star in

the Hořava-Lifshitz gravity model is shown for the differ-
ent values of the KS parameter! in spacetime metric (21).
One can observe that in the Hořava-Lifshitz gravity model,
the magnetic field decay rate is faster than that in general
relativity. The contribution of IR modified Hořava-Lifshitz
gravity into the evolution of the stellar magnetic field is
becoming dominant in the interior part of the star i.e., with
the decrease of the radial coordinate. Since magnetic field
decay corresponds to physical processes in inner parts of
the star, the effects of Hořava-Lifshitz gravity become
more dominant in comparison to the general relativity
effects.
In Fig. 5(b) the magnetic field decay of the neutron star

in the fðRÞ gravity model is shown for the different values
of the parameter � in metric (10). One can observe that in
the fðRÞ gravity model, the magnetic field decay rate is
much faster than that in general relativity. fðRÞ gravity
model modification to the spacetime metric is becoming
very sufficient inside of the neutron star. This implies an
increase in the magnetic field decay rate in comparison to
general relativity.

VI. CONCLUSION

We have studied the magnetic field of isolated relativis-
tic compact star in both fðRÞ and HL theories of gravity,
assuming that their magnetic fields are confined to the
stellar crust. We have been working with modified

(a)
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FIG. 5 (color online). Dipolar magnetic field decay for a uniform density star in (a) Hořava-Lifshitz gravity and (b) fðRÞ gravity
model for the different values of the parameter ! and �. The lines in the case when ! 	 1 and labeled as GR correspond to the
general relativistic case.
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theories of gravity effects on the stellar magnetic field,
accompanied by proper boundary conditions. In other
words we generalized the general relativity approach in
the sense that we took into account the effect of additional
tension from the modified gravity on electromagnetic
fields.

First we have found the numerical solutions that take into
account the effect of fðRÞ gravity tension and also KS
parameter ! in HL gravity tension on the structure of the
magnetic field outside the star. In Fig. 1 one can find out that
in the presence of modified terms in the action for the
gravitational field, the surface magnetic field increases by a
factor of 3 to 4, depending on the compactness of the star.
The asymptotic values of the magnetic field tend to 0.
Comparing the behavior of the magnetic field when HL
gravity effects are included with the one in GR, one can
see enhancement of the magnetic field especially near the
surface of the relativistic star for the external field. This effect
grows stronger as the compactness parameter increases.

We have found that the effect of fðRÞ gravity and the
effect of KS parameter ! on magnetic fields of compact
stars can be very important, and the expression for the
magnetodipolar luminosity of a rotating magnetized star
in modified gravity gives enhancement up to two orders.

From the obtained results in Sec. IV, we are able to
conclude that the fðRÞ gravity model, at least the configu-
ration that we used in this context, is valid only for relativ-
istic stars with small compactness parameters. Since the
energy loss increases exponentially with the increased
compactness parameter, and there is no observation data
on such big electromagnetic energy loss of the neutron
stars, one may conclude that fðRÞ gravity of the Noether
approach does not support the existence of relativistic stars
with high compactness parameters in fðRÞ gravity.
Actually, the monopolar part of the gravitational field is

responsible for the amplification of the stellar magnetic
field. In fðRÞ gravity the monopolar part of the gravitational
field is essentially changed, which is the effective reason for
the high amplification of the stellar magnetic field. In the
Hořava model the main modification effects on the higher-
order terms of the gravitational field and the effect to
increase the magnetic field are not so strong compared to
those in fðRÞ gravity.
In [69] the authors have shown that the other model of

fðRÞ gravity, called the Palatini approach, cannot be con-
sidered as an alternative theory for describing physics of
compact stars. Here we have obtained a similar result for
the existence of magnetized compact stars with the high
compactness parameter in the Noether fðRÞ gravity model
based on the astrophysical observations of no exponential
spindown rate of the neutron stars [70]. In the last section
we have presented a limited framework, taking into
account the effects of spacetime curvature on the magnetic
field decay in modified theories of gravity like Hořava
gravity and fðRÞ gravity of the Noether approach. One
can see that magnetic field decay of a neutron star in
both models of modified theories of gravity is faster than
it is in Einstein’s theory of gravity.
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