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A toy model of Einstein gravity with a Gauss-Bonnet classically ‘‘entropic’’ term mimicking a quantum

correction is considered. The static black hole solution due to Tomozawa is found and generalized with the

inclusion of nontrivial horizon topology, and its entropy is evaluated, deriving the first law by equations of

motion. As a result the Bekenstein-Hawking area law turns out to be corrected by a logarithmic area term.

A Misner-Sharp expression for the mass of a black hole is found. Within a Friedmann-Lemaı̂tre-

Robertson-Walker cosmological setting, the model is used in order to derive modified Friedmann

equations. Such new equations are shown to reproduce the first law with the same formal entropy and

quasilocal energy of the static case, but here within a Friedmann-Lemaı̂tre-Robertson-Walker space-time

interpreted as a dynamical cosmological black hole. A detailed analysis of cosmological solutions is

presented, and it is shown that the presence of the correction term provides regular solutions and interesting

phases of acceleration and deceleration, as well as, with negligible matter, exact de Sitter solutions.
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I. INTRODUCTION

In a recent paper [1], Tomozawa put forward an argu-
ment to deal with finite one-loop quantum corrections to
Einstein gravity, by reconsidering one of his old results.
The techniques referred to within his proposal are well
known and can be found in the celebrated textbook [2].
Here, we present a simplified approach motivated by alter-
native arguments, and in some sense, also inspired by the
entropic approach proposed in Refs. [3,4], where
Lagrangian surface terms are taken into account.

The paper is organized as follows. In Sec. II, we
will give a short review of the traditional semiclassical
approach to quantum corrections of Einstein’s gravity.
In Sec. III, the ‘‘entropic’’ approach is introduced and
the spherically symmetric static case is investigated.
In Sec. IV, the model is extended to the spherically sym-
metric dynamical Friedmann-Lemaı̂tre-Robertson-Walker
(FLRW) space-time and in Sec. V some explicit solutions
are presented. Conclusions are given in Sec. VI.

II. BRIEF REVIEW OF QUANTUM
CORRECTIONS TO GRAVITY

Before discussing the model which mimics the
Tomosawa proposal, we review the more traditional treat-
ment as proposed by Starobinsky in the seminal paper [5].
The argument is based on the so-called semiclassical grav-
ity approach, where the backreactions of quantum fields

are taken into account, in order to correct the classical
Einstein equation, namely,

Gij ¼ Rij � 1

2
gijR ¼ �hTiji; � ¼ 8�GN; (1)

gij, R, and Rij being, respectively, the metric, the scalar

curvature, and Ricci tensor; GN the Newton constant; and
hTiji the vacuum expectation value of the quantum energy

stress tensor, which in general is not explicitly known. As
usual, units of measure are chosen in such a way that the
speed of light is equal to 1.
By taking the trace of the equation above one has

R ¼ ��hTi
ii; (2)

in which the stress tensor trace appears. When one is
dealing with a conformally coupled quantum field, a quan-
tum conformal anomaly is present (see the review paper
[6]). In four dimensions it reads

hTi
ii ¼ �ð�W þ �Gþ ��RÞ: (3)

Here W is the ‘‘square’’ of Weyl tensor Cijrs and G the

Gauss-Bonnet topological invariant. They read

W ¼ CijrsCijrs; G ¼ RijklRijkl � 4RijRij þ R2: (4)

The coefficients �, �, and � depend on the number of
conformal fields present in the theory. In some conformal

field theories [7], one has � ¼ 0 and � ¼ � ¼ N2

64�2 , N

being a very large parameter.
One might try to solve the anomaly driven trace equation

(2) within the static spherically symmetric ansatz where
the metric has the form
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ds2 ¼ �aðrÞdt2 þ dr2

aðrÞ þ r2d�2
2: (5)

The account of conformal anomaly contribution to spheri-
cally symmetric space-time solutions (Schwarzschild de
Sitter black hole or wormholes) has been done in Ref. [8]
(see also Ref. [9] for the case of extended theories of
gravity). In such a case one has

R ¼ � 1

r2
d2

dr2
½r2ða� 1Þ�;

G ¼ 2

r2
d2

dr2
½a� 1�;

W ¼ r2

3

�
d2

dr2

�
a� 1

r

��
2
:

(6)

As a result, the quantum corrected Einstein trace equation
reduces to

d2

dr2
½r2ða�1Þþ2��ða�1Þ2�þ��

3

�
r2

d2

dr2

�
a�1

r

��
2 ¼ 0:

(7)

This is a second order nonlinear equation in the unknown
variable aðrÞ. Its exact solution appears to be difficult to
find. However, one can directly verify that there exists the
de Sitter solution

aðrÞ ¼ 1� r2

2��
; (8)

which corresponds to the famous solution found by
Starobinsky in FLRW coordinates.

On the other hand, putting � ¼ �� ¼ ��, one can find
perturbative solutions assuming � to be a small quantity,
that is,

aðrÞ ¼ a0ðrÞ þ �a1ðrÞ þ �2a2ðrÞ þ � � � : (9)

Starting from � ¼ 0 one finds the unperturbed solution

d2

dr2
½r2ða� 1Þ� ¼ 0 ) aðrÞ � a0ðrÞ ¼ 1� c1

r
� c2

r2
; (10)

c1, c2 being constants of integration. If we choose c1 ¼
2M and c2 ¼ 0, then such a solution may be interpreted as
the Schwarzschild solution generated by a body of mass
equal to M.

Now, by taking into account a first order perturbation
we get

aðrÞ � a0ðrÞ þ �a1ðrÞ ¼ 1� c1 þ �c3
r

� c2 þ �c4
r2

� 4�c21
r4

� 8�c1c2
r5

� 22�c22
5r6

;

(11)

c3, c4 being further constants of integration. In principle,
one may investigate this quantum corrected approximate
static solution, but this will not be done here.
In Ref. [10] (see also [11]), an attempt has been made to

solve the anomaly driven trace equation, but in the special
case of negligible �. In fact, for � ¼ 0 and � ¼ k� one
obtains

aðrÞ ¼ 1� r2

4�

2
41�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16�2

r4

�
1þ c1

�
þ c2r

�s 3
5; (12)

where c1, c2 are arbitrary constants. From the mathemati-
cal point of view this is a quite interesting result, because it
might provide quantum corrections to the Schwarzschild
solution, but unfortunately it is not physically relevant
since � and � are quantities of the same order. For this
reason such an approach does not seem completely ade-
quate to describe physical situations.

III. ENTROPIC CORRECTED STATIC
SPHERICALLY SYMMETRIC METRIC

Let us come back to Tomosawa proposal, reformulating
it within a classical Lagrangian approach and working first
in n dimensions, and then making an entropic dimensional
reduction to n ¼ 4, also in the spirit of other different
approaches (see, for example, [3,4,12]).
It is well known that in a four-dimensional manifold the

Gauss-Bonnet term does not contribute to the classical
equations of motion. At the quantum level, the situation
changes due to the regularization procedure, and this is the
key observation made in Ref. [1]. In order to mimic quan-
tum corrections due to a Gauss-Bonnet invariant or alter-
natively in order to activate such a term in the variational
principle, we will make use of the fact that the functional
variation of the classical action in arbitrary n dimensions
does not commute with the limit n ! 4.
Thus, let us consider the following classical action:

I ¼ 1

2�

Z
dnx

ffiffiffiffiffiffiffi�g
p �

R� 2�þ �G

ðn� 4Þ
�
; (13)

where� is the cosmological constant,G the Gauss-Bonnet
invariant in n dimensions and � an arbitrary parameter,
which will be assumed to be proportional to ��. We shall
derive the field equations and at the end of the calculation
we shall perform the n ! 4 limit.
We shall look for static spherically symmetric solutions

with arbitrary horizon topologies. The generic metric reads

ds2 ¼ �aðrÞb2ðrÞdt2 þ dr2

aðrÞ þ r2d�2
k; (14)

where a, b are arbitrary functions to be determined and
d�2

k is the metric of a maximally symmetric n� 2 dimen-

sional manifold, which will reduce to the metric d�2
k of a

two-dimensional maximally symmetric manifold in the
limit n ! 4, that is,
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d�2
k ! d�2

k ¼
d�2

1� k�2
þ �2d	2; for n ! 4:

Here, k ¼ 1, 0, �1, respectively, for spherical, toroidal,
and hyperbolic topology horizons.

Within this static ansatz, the Lagrangian becomes a
function of a½r�, b½r�, and their derivatives, that is,

I ¼ �
Z

drrn�1Lða; a0; a00; b; b0; b00Þ; (15)

where � is a constant factor due to the integration on all
variables except r.

Now, by means of the Weyl’s method discussed, for
example, in Ref. [13], one obtains the field equations,
which in the limit n ! 4 are regular and read

b0

rb

�
1þ 2�

k� a

r

�
¼ 0; (16)

1

r2b

d

dr

�
ðk� aÞr��r3

3
þ �ðk� aÞ2

r

�
¼ 0: (17)

These equations can be obtained by an effective classical
Lagrangian, which mimics quantum corrections, obtained
as the limit n ! 4 of the one in (15) (apart from total
derivatives).

Equation (16) has the trivial solution b ¼ Const, and we
can choose b ¼ 1without losing generality, while Eq. (17)
gives

aðrÞ ¼ kþ r2

2�

0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�

�
C

r3
þ�

3

�s 1
A; (18)

where C is a constant of integration. Equation (18) repre-
sents the topological generalization of the Tomozawa black
hole solution discussed in [1] in the presence of a non-
vanishing cosmological constant [14]. It is the analogue of
the black hole solution of Lovelock gravity in five dimen-
sions [15,16]. Furthermore, it is formally identical to the
black hole solution found in [17], as a particular limit of
Horava-Lifshits gravity considered in [18].

What about the meaning of integration constant C? A
possible approach consists in discussing the limit � ! 0 of
solution (18) as in [1]. The limit is finite only for the
solution in (18) with the minus sign in front of the square
root. In such a case the result is

aðrÞ ¼ k� C

r
��r2

3
: (19)

As a consequence one may conclude that C ¼ 2M, M
being the mass of a black hole.

Another approach consists in the investigation of the
Clausius relation dM ¼ THdSH, which relates mass, tem-
perature, and entropy associated with the given black hole
solution, as a direct consequence of field equations. As we

shall see, this approach has the merit to give information
about the entropy SH of the black hole solution.
First let us study under which conditions the solution

(18) represents a black hole. As is well known, one should
have a real positive solution of aðrHÞ ¼ 0, namely,

�k2 � CrH þ kr2H ��

3
r4H ¼ 0: (20)

The general solution of this quartic algebraic equation is
quite complicated and we will not write down its explicit
form. For our purposes it is sufficient to know that, depend-
ing on parameters, there exist real positive roots. For
example this is certainly true in an asymptotically flat
manifold, that is, for � ¼ 0 and k ¼ 1. In such a case
one gets

rH ¼ C

2

0
@1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

C2

s 1
A; (21)

which is positive for � < C2=4 and so it defines an event
horizon.
Associated with any event horizon there exists a

Hawking temperature given by

TH ¼ 
H

2�
; 
H ¼ a0H

2
) a0H ¼ 4�TH; (22)


H being the surface gravity related to the horizon at rH.
This result is robust and can be derived by several alter-
native methods [19–21].
Following [22] we evaluate the equation of motion (17)

at the horizon, where aH ¼ 0 and a0H ¼ 4�TH. We obtain

4�TH

�
rH þ 2k�

rH

�
¼ k��r2H � �k2

r2H
¼ dC

drH
; (23)

where the latter expression is a direct consequence of (20),
obtained by assuming � to be a given parameter and the
integration constant C ¼ CðrHÞ to depend only on the
horizon radius.
Now, introducing the horizon area AH ¼ Vkr

2
H, Vk being

the measure of the unit surface (for example V1 ¼ 4�) we
can write the latter equation in the ‘‘thermodynamical’’
form

d

�
C

2

�
¼ THd

�
�AH

Vk

þ 2�k� ln
AH

Vk

�
: (24)

It is quite natural to interpret this identity as the Clausius
relation THdSH ¼ dEH for the black hole solution with
entropy SH and quasilocal energy EH evaluated on the
horizon given, respectively, by

SH ¼ �AH

VkGN

þ 2�k� ln
AH

VkGN

; (25)

and by
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EH ¼ C

2GN

¼ 1

2GN

�
krH ��

3
r3H þ �k2

rH

�
: (26)

This result gives the energy of the black hole as a classical
Misner-Sharp mass plus a correction which depends on the
parameter �. Furthermore, with regard to the corrected
black hole entropy, the area law (SH ¼ �AH=VkGN) does
not hold, because a quantum logarithmic correction is
present. This is a well-known general result, and it has
been derived many times. It has been proposed in [10], and
it appears in the quantum field theory treatment of black
hole entropy with heat kernel techniques [23,24], loop
gravity [25], and other approaches (see the recent paper
[26] and the references therein).

It should be noted that for a toroidal black hole, present
when �< 0, the correction is absent, while for spherical
and hyperbolic black holes the corrections have opposite
sign.

The expressions (26) and (25) are depending on quanti-
ties like rH, AH, and �H which are scalars for a generic
spherically symmetric (dynamical) space-times. It also
follows that the Clausius relation should have this covari-
ance form. We will verify this fact in a dynamical spherical
symmetric space-time as the FLRW one.

IV. ENTROPIC CORRECTED FLRW SPACE-TIME

Anomaly driven FLRW models have already been
considered in the past [5,27–30]. Here we shall consider
the toy model described by the action (13), but in
n-dimensional, spatially flat FLRW space-time defined
by means of the metric

ds2 ¼ �e2�ðtÞdt2 þ aðtÞ2ðdx21 þ � � �dx2n�1Þ; (27)

where �ðtÞ, aðtÞ are arbitrary functions, which will play the
role of Lagrangian coordinates. The quantity �ðtÞ will be
set equal to zero at the end of calculations. With this choice
the parameter t will become the standard cosmological
time.

In the total action we must also include classical matter
described by a perfect fluid with density �ðtÞ and a pressure
p ¼ w�ðtÞ, 0 � w � 1

3 being a constant. Thus the total

classical action will read

I ¼ 1

2�

Z
dnx

ffiffiffiffiffiffiffi�g
p �

R� 2�� �G

ðn� 4Þ
�
þ Im; (28)

Im being the action of matter which assumes the form

Im ¼ � 1

2

Z
dnx

ffiffiffiffiffiffiffi�g
p

gij½ð�þ pÞuiuj þ ð�� pÞgij�: (29)

Making the variations with respect to �ðtÞ and aðtÞ in
arbitrary dimension n, then taking the limit n ! 4 and
finally putting �ðtÞ ¼ 0 we obtain the two equations

H2 ¼ ��

3
þ�

3
þ �H4; (30)

_H þ 3

2
H2 ¼ ��p

2
þ�

2
þ �H2

�
2 _H þ 3

2
H2

�
: (31)

As usual H ¼ _a=a is the Hubble parameter. An equation
similar to (30) has been obtained in a covariant renorma-
lizable model for gravity [31].
As a crucial consistent check, it is easy to show that the

latter equations give rise to a matter continuity law in
agreement with diffeomorphism invariance, that is,

_� ¼ �3Hð1þ wÞ�; (32)

and also to the generalized Raychaudhuri equation

€a ¼ _H þH2 ¼ ��ð1þ 3wÞ�
6

þ�

3
þ �H2ð2 _H þH2Þ:

(33)

In order to analyze the physical consequences, one may
indifferently use two among the three equations (30)–(32).
An equation formally identical to (30) has already been
obtained within AdS/CFT holographic correspondence in
[32,33], in brane cosmology [34], or assuming a Clausius
relation and a logarithmic correction to the area law in
[35].
The FLRW admits a dynamical trapping horizon

(Hubble horizon) in the sense of Hayward [36] located at
RH ¼ 1

H , with associated surface gravity and ‘‘dynamical

temperature’’ [37]

kH ¼ �
�
H þ _H

2H

�
; TH ¼ 
H

2�
¼ � 1

2�

�
H þ _H

2H

�
:

(34)

The identification of temperature with the surface gravity,
as it happens in the static case, is supported by a tunneling
computation via the Hamilton-Jacobi method (see, for
example, [37,38] and references therein).
Now we introduce the generalized Misner-Sharp energy

evaluated on the dynamical Hubble horizon, by means of
Eq. (26) obtained for the static case; then we get

EH ¼ 1

2GN

�
RH ��

3
R3
H � �

RH

�
; (35)

and similarly for the entropy,

SH ¼ AH

4GN

� 2�� ln
AH

4GN

; AH ¼ 4�R2
H ¼ 4�

H2
:

(36)

Such quantities satisfy the Clausius relation as a conse-
quence of field equations (30)–(33). In fact, one has

dEH ¼ THdSH
AH

4GN

� �

16�
Tð2ÞdVH; (37)

where VH ¼ 4�R3
H=3 is the volume of the Hubble sphere,

while Tð2Þ ¼ p� � ¼ ðw� 1Þ� is the reduced stress
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tensor trace, a scalar quantity in a dynamical symmetric
space-time [36]. As for the static case, the cosmological
constant is considered a given quantity.

V. EXPLICIT SOLUTIONS

Here we assume � � 0,� � 0 and analyze the behavior
of the solutions for all possible values of �. For simplicity
we also use units for which � ¼ 1.

First of all, in the absence of matter, namely, when
�ðtÞ ¼ 0, there exist de Sitter solutions for which _HdS ¼
0. In fact, Eqs. (30) and (31) have the trivial solutions

H2
dS¼

1

2�

0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4��

3

s 1
A; �>0; �>0;

4

3
���1;

(38)

H2
dS ¼

1

2j�j

0
@�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4j�j�

3

s 1
A; �> 0; � < 0:

(39)

In the limit j��j � 1 one has (for expanding universe,
H > 0)

8>>>><
>>>>:

H1 ’
ffiffiffi
�
3

q
; �> 0; � � 0;

H2 ’
ffiffiffi
1
�

q
: � � 0; � > 0;

H3 ’
ffiffiffi
�
3

q
; �> 0; � � 0:

(40)

Both the solutions with HðtÞ ¼ H1 ¼ H3 could describe
the current acceleration era independently on �, while the
solution withHðtÞ ¼ H2 could describe the inflationary era
independently on �. It has to be stressed that in the case
� > 0, the model effectively describes only one of the two

possible phases, because they correspond to distinct
solutions.
Now we go back to the general model with arbitrary

matter. We first observe that in some cases from the gen-
eralized Friedmann equation one gets constraints on the
possible values of H and � and, as a consequence, the
corresponding solution is not singular for any finite value
of t. In fact, solving (30) for H2, we obtain

H2 ¼ 1

2�

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�ð�þ�Þ

3

s �
; � > 0; (41)

H2 ¼ 1

2j�j
�
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4j�jð�þ�Þ

3

s �
; � < 0: (42)

If � > 0, from (41) we get the constraints

3

4�
� �þ� � 0 )

8<
:

1
2 � �H2 � 0;

1
2 � �H2 � 1;

� > 0: (43)

If � < 0 Eq. (42) does not give any constraint on H and �.
Since we would like to describe possible changes of

phase during the expansion, for example, the exit from
inflation or the beginning of actual acceleration, we search
for the stationary points of the quantity _aðtÞ. By solving the
system of equations (30) and (33) for _H we get

€a ¼ H2 � ð1þ wÞ
2ð1� 2�H2Þ�

¼ � 1

2ð1� 2�H2Þ ½ð1� 3wÞ�H4

þ ð1þ 3wÞH2 � ð1þ wÞ��; (44)

and so €aðtÞ vanishes when H2ðtÞ reaches the (positive)
values

H2
0 ¼

8>>>>>><
>>>>>>:

2
3�; � � 0; w ¼ 1

3 ;

1þ3w
2�ð1�3wÞ

�
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4��ð1þwÞð1�3wÞ

ð1þ3wÞ2
q �

; � > 0; w � 1=3;

1þ3w
2j�jð1�3wÞ

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4j�j�ð1þwÞð1�3wÞ

ð1þ3wÞ2
q �

; � < 0; w � 1=3:

(45)

This means that whenH2ðt0Þ ¼ H2
0 > 0 the system goes from a decelerated to an accelerated expansion (or vice versa), and

this happens only if H0 is in the permitted range of H. If H0 ¼ 0, then there is a singularity [aðt0Þ ¼ 1] or a bounce
[ _aðt0Þ ¼ 0, when t0 <1].

In the case � > 0we must take into account (43) and so, in order to have a possible change of phase, the free parameters
have to satisfy the following constraints (we consider that matter or radiation contributes):

�
�> 0; � > 0; 0; w ¼ 1

3

�
; H2

0 ¼
2

3
� )

� 0< 4
3�� � 1;

1 � 4
3�� � 2;

ð�> 0; � > 0; w ¼ 0Þ; H2
0 ¼

1

2�
ð�1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4��
p Þ )

� 0< 4
3�� � 1;

1 � 4
3�� � 8

3 :

(46)
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When � ¼ 0, the only stationary point of _aðtÞ corresponds
to H0 ¼ 0 and so the model with ð� ¼ 0; � > 0Þ can
describe only one phase of the expansion.

In the case � < 0, the algebraic equation (42) does not
give any restriction on the values of H2, but nevertheless,
as we shall see in the following, the parameters � and �
are not completely arbitrary. Moreover, from the third
equation in (45) we also see that in this case, even for
� ¼ 0 there is a nonvanishing stationary point at H2

0 ¼
ð1þ 3wÞ=j�jð1� 3wÞ with w � 1=3.

For the special case � ¼ 0 one can find exact solutions
for aðtÞ. In particular, the solutions of (30) and (31) with
� > 0 read

aðtÞ ¼ a0

�
sinh 2

�
1þ w

2

ffiffiffiffiffiffiffi
3�

p
t

�� 1
3ð1þwÞ

; (47)

HðtÞ ¼ coth

�
1þ w

2

ffiffiffiffiffiffiffi
3�

p
t

�
; (48)

�ðtÞ ¼ �sinh�2

�
1þ w

2

ffiffiffiffiffiffiffi
3�

p
t

�
; (49)

a0 being an arbitrary constant. As one can see, aðtÞ van-
ishes for a finite value of t (t ¼ 0 with the chosen initial
conditions) and as a consequence both HðtÞ and �ðtÞ are
divergent at that time.

As we have seen above, in the absence of matter HðtÞ ¼
�=3 and aðtÞ ¼ a0 exp ð

ffiffiffiffiffiffiffiffiffi
�=3

p
tÞ (de Sitter solution).

If � � 0we are not able to get explicit solutions for aðtÞ,
but nevertheless we can get implicit solutions for HðtÞ,
which permits us to understand the behavior of the system.

We start with the two cases ð� ¼ 0; � > 0Þ and
ð� ¼ 0; � < 0Þ. Apart from arbitrary integration constants,
we have

3ð1þwÞ
2

t¼ 1

H
þ

ffiffiffi
�

p
2

log

��������
1þ ffiffiffi

�
p

H

1� ffiffiffi
�

p
H

��������; �> 0; (50)

3ð1þ wÞ
2

t ¼ 1

H
�

ffiffiffiffiffiffi
j�j

q
arctan ð

ffiffiffiffiffiffi
j�j

q
HÞ; � < 0: (51)

It has to be noted that in order to have � > 0, in (50)
HðtÞ has to be restricted to the values �H2 � 1 in agree-
ment with (43). This means that aðtÞ does not vanish
and the density does not diverge. Equation (50) effectively
corresponds to two different solutions related to the
distinct algebraic equations in (41). The solution with
1=2 � �H2 � 0 has an asymptotic behavior of the kind
HðtÞ � 1=t ! 0, while the other with 1=2 � �H2 � 1
goes as HðtÞ � 1=

ffiffiffi
�

p ¼ Const, giving rise to a de Sitter
asymptotic behavior for aðtÞ, that is,

aðtÞ � a0e
t=

ffiffiffi
�

p
; �¼ 0; � > 0;

1

2
� �H2 � 1:

(52)

As we already said above, the model with such values of
the free parameters describes only one phase of the expan-
sion. It could be used in order to describe the inflationary
era as in Ref. [5], but it does not provide a natural exit from
that phase.
In the second case, Eq. (51),HðtÞ has no restrictions and

so there is a singularity for t ! 0 [aðtÞ ! 0 and �ðtÞ ! 1].
This model is not able to describe inflation, because it does
not have a rapidly expanding phase, but it could describe
current acceleration. In fact, putting for simplicity w ¼ 0
in (45), we obtain H2

0 ¼ 1=j�j and using (44) we see that
€aðtÞ is negative or positive according to whether HðtÞ is
smaller or greater than H0.
Finally we consider the two general cases with

ð�> 0; � > 0Þ and ð�> 0; � < 0Þ. Apart from arbitrary
integration constants, the implicit solutions for HðtÞ are
given by

3ð1þwÞ
2

t¼ 1

2
ffiffiffiffiffiffiffi
�þ

p log

��������
1þH=

ffiffiffiffiffiffiffi
�þ

p
1�H=

ffiffiffiffiffiffiffi
�þ

p
��������

þ 1

2
ffiffiffiffiffiffiffi
��

p log

��������
1þH=

ffiffiffiffiffiffiffi
��

p
1�H=

ffiffiffiffiffiffiffi
��

p
�������� �>0; �>0;

(53)

where

�� ¼ 1

2�

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4��

3

s �
; �� � 3

4
; (54)

and

3ð1þwÞ
2

t¼ 1

2
ffiffiffiffiffiffiffi
�þ

p log

��������
1þH=

ffiffiffiffiffiffiffi
�þ

p
1�H=

ffiffiffiffiffiffiffi
�þ

p
��������

� 1ffiffiffiffiffiffiffi
��

p arctan

�
Hffiffiffiffiffiffiffi
��

p
�
; �>0; �<0; (55)

where

�� ¼ 1

2j�j
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4j�j�
3

s
� 1

�
: (56)

Also in this case in order to have � � 0,HðtÞ in (53) has to
be restricted to the values �� � H2 � �þ and so aðtÞ does
not vanish for finite values of time. The equation describes
two distinct solutions, both of which give rise to a de Sitter
asymptotic behavior for aðtÞ of the kind

aðtÞ � a0e
ffiffiffiffiffi
�þ

p
t; lim

t!1HðtÞ ¼ ffiffiffiffiffiffiffi
�þ

p
; (57)

aðtÞ � a0e
ffiffiffiffiffi
��

p
t; lim

t!1HðtÞ ¼ ffiffiffiffiffiffiffi
��

p
: (58)
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Looking at (45) we see that in both the cases w ¼ 1=3 and
w ¼ 0 the stationary point is out of the permitted range and
so also this generalized solution can describe only one
phase of the expansion.

In the last case, Eq. (55), � is non-negative forH2 � ��
and so, in contrast with the analog case with � ¼ 0, there
is a solution for which aðtÞ is always finite for finite values
of time. From (55), in fact, we have

�� � H2ðtÞ � �þ; t0 � t � 1; (59)

�þ � H2ðtÞ � 1; 1 � t � t0: (60)

Both the latter solutions give rise to a de Sitter asymptotic
behavior for aðtÞ similar to the one in (57), but with �þ
replaced by �þ.

Depending on the parameters, the previous solutions can
describe decelerated and accelerated expansion phases.
First choosing w ¼ 1=3, from (45) we get

H2
0 ¼

2

3
� )

��� <H2
0 <�þ if j�j�< 9

4 ;

H2
0 >�þ if j�j�> 9

4 ;
(61)

while in the case w ¼ 0 we obtain

H2
0 ¼ H2� ¼ 1

2j�j ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4j�j�

q
Þ

)
��� <H2� <�þ if j�j�< 1

4 ;

H2� >�þ never:
(62)

Using the latter results, now we are able to study the
changes of phase of the system. For example, if w ¼ 1=3
from (44) it follows that €a is negative or positive according
to whether H2ðtÞ is higher or lower than H2

0 ¼ 2�=3. This
means that the system passes from a decelerated to an
accelerated phase if j�j�< 9=4, while it passes from an
accelerated to a decelerated phase if j�j�> 9=4. Of course
such last situation has to be rejected for physical reasons,
because both � and � have to be small quantities.

In the case of w ¼ 0, the acceleration is negative for
H� <HðtÞ<Hþ and positive otherwise and this means
that the model describes three phases, that is,

(1) accelerated expansion for �� <H2ðtÞ<H2�;
(2) decelerated expansion for H2� <H2ðtÞ<H2þ;
(3) accelerated expansion for H2þ <H2ðtÞ<�þ.

VI. CONCLUDING REMARKS

In this paper, a toy model of Einstein gravity with a
Gauss-Bonnet classically entropic term mimicking a

quantum correction has been investigated. The static
black hole solution due to Tomozawa has been recovered
and generalized with the inclusion of nontrivial horizon
topology, and its entropy has been evaluated, deriving the
first law from equations of motion. As a result the
Bekenstein-Hawking area law has acquired a corrected
logarithmic area term. A Misner-Sharp expression for the
mass of a black hole has been found. The same model has
been used in order to derive Friedmann equations with
corrected terms, which reproduce the first law with the
same formal entropy and energy of the static case, but
now related to a general FLRW space-time, interpreted
as a dynamical cosmological black hole, with a
‘‘temperature’’ associated with Hayward’s dynamical sur-
face gravity: this result is in agreement with one obtained
by the tunneling method applied to FLRW space-time in
Ref. [37]. A detailed analysis of all possible cosmological
solutions, including de Sitter and nonsingular solutions,
has been provided. These solutions describe several
phases; the more interesting one is present for � < 0
and �> 0. In this case, when ! ¼ 0, there is no singu-
larity at t ¼ 0, but an initial powerlike acceleration, fol-
lowed by a deceleration phase, and by a final exponential
acceleration.
As a consequence, this model may be a candidate to

describe inflation and the current dark energy epoch with a
natural exit and entrance in the various cosmological
phases. Of course, it should be emphasized that in this
qualitativework, we have focused only on the possibility of
the realization of a unified scenario: important issues of
inflationary cosmology, such as the reheating process and
the generation of the curvature perturbations with a power
spectrum consistent with the anisotropies of the cosmic
microwave background, and the consistence with the ob-
servational constraints coming from observations of our
Universe [39,40], are crucial in the choosing of boundary
conditions and numerical tests on the model, which is not
the aim of this work.
A generalization of this work may be done by using

s-wave approximation and reduction to effective second
theory as in Ref. [41]. It may also be interesting to general-
ize the results of this work for FðRÞ gravity (for a review,
see Refs. [42,43]), where a number of black hole solutions
exist, as in the recent review [44].
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