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The critical behavior of Myers-Perry black holes with equal angular momenta in even dimensions are

studied. We include the corrections beyond the semiclassical approximation on Hawking temperature in

the grand canonical ensemble. Having done so, we find that the critical behavior and critical exponents of

Myers-Perry black holes correspond to those of a Van der Waals liquid-gas where this analogy holds in

any dimension. Also, using Ehrenfest’s equations, we calculate the order of the phase transition in the

semiclassical approximation for the canonical ensemble and beyond the semiclassical approximation for

the grand canonical ensemble near the critical point. Finally, the Ruppeiner curvature formula is used to

investigate the thermodynamic geometry of Myers-Perry black holes.
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I. INTRODUCTION

The Hawking temperature of a black hole is proportional
to its surface gravity. Also, a black hole’s entropy is
proportional to its horizon area. This is known as the
celebrated Bekenstein-Hawking area law, SBH ¼ A

4 .

There are several different methods for calculating the
corrections to the semiclassical Bekenstein-Hawking en-
tropy. These are based on statistical mechanical arguments,
field theory methods, quantum geometry, the Cardy for-
mula, the generalized uncertainty principle, etc. (The cor-
responding literature is rather extensive; for a partial
selection, see Refs. [1–8].)

One of the black hole solutions in higher dimensions
which has attracted a lot of attention is the Myers-Perry
black hole [9–13], whose uncharged rotating version is a
direct generalization of the Kerr black hole solution in
general relativity. The classification of black hole species
in higher dimensions was studied by Rodriguez [14]. Also,
the corrections beyond the semiclassical approximation
can lead to a corrected Hawking temperature and entropy
for Myers-Perry (MP) black holes.

The lack of a statistical description for black hole sys-
tems has encouraged researchers to consider thermody-
namic geometry [15–20], Ehrenfest’s equations [21–23],
and, recently, the analogy of a black hole with a Van der
Waals system [24–26]. An important part in the theory of
phase transitions is the exploration of the thermodynamic
behavior of a system near its critical point using critical
exponents. These critical exponents are supposed to be
universal and are independent of the details of the interac-
tion. In other words, different physical systems may share

the same critical exponents [27–30]. In this way, we may
find the possibility of searching for the nature of phase
transitions and critical exponents in the grand canonical
ensemble (for which the angular velocity,�, is taken to be
fixed) and in the canonical ensemble (for which the angular
momentum, J, is also taken to be fixed). We consider the
corrected temperature of MP black holes beyond the semi-
classical approximation in the grand canonical ensemble
and study the analogy of this system with a liquid-gas
system. We also find that the critical exponents correspond
to a Van derWaals system in the grand canonical ensemble.
For both the canonical and grand canonical ensembles we
search for the satisfication of Ehrenfest’s equations at the
critical point [31–33].
The outline of this paper is as follows. In Sec. II, we

consider the semiclassical thermodynamic quantities and
critical behavior of MP black holes in even dimensions
with n nonzero equal spins J in the grand canonical and
canonical ensembles. In Sec. III, corrections to the semi-
classical Hawking temperature and entropy are investi-
gated in the grand canonical ensemble and the analogous
behavior of this system to a Van derWaals gas is studied. In
Sec. IV, Ehrenfest’s equations for these black hole systems
are developed in both ensembles and the order of the phase
transition near the critical points is analyzed. In Sec. V, the
critical exponents near the critical point are calculated in
the grand canonical ensemble. Section VI is devoted to the
study of the thermodynamic geometry of MP black holes
and it is found that the scalar curvature diverges exactly at
the point where the heat capacity is divergent.

II. SEMICLASSICAL THERMODYNAMICS OF
MYERS-PERRY BLACK HOLES

A summary of the thermodynamic quantities of MP
black holes in even dimensions with n ¼ d�2

2 nonzero
*b.mirza@cc.iut.ac.ir
†z.sherkat@ph.iut.ac.ir

PHYSICAL REVIEW D 88, 024005 (2013)

1550-7998=2013=88(2)=024005(8) 024005-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.88.024005


equal spins J is presented below. More details and a
complete solution can be found in Ref. [11]. The
multiple-spin Kerr black hole’s metric in Boyer-Lindquist
coordinates for an even d is given by [12,13]

ds2 ¼ �dt2 þ r2d�2 þ ðr2 þ a2i Þðd�2
i þ�2

i d�
2
i Þ

þ mr

�F
ðdt� ai�

2
i d�iÞ2 þ �F

��mr
dr2; (1)

where �2
i þ �2 ¼ 1 and m ¼ 16�GM

ðd�2Þ�ðd�2Þ
. The functions �

and F are defined as

� ¼ Yðd�1Þ=2

i¼1

ðr2 þ a2i Þ; (2)

F ¼ 1� a2i �
2
i

r2 þ a2i
: (3)

The metric is slightly modified for an odd d. The event
horizon in the Boyer-Lindquist coordinates for an even d is
defined by

�ðrþÞ �mrþ ¼ 0: (4)

Moreover, the area of the event horizon for an even d can
be expressed as follows:

A ¼ �ðd�2Þ
Y
i

ðr2þ þ a2i Þ: (5)

The Bekenstein-Hawking entropy for the MP black
holes with an even d is given by

S ¼ Y
i

ðr2þ þ a2i Þ; (6)

where kB ¼ 1
� and G ¼ �ðd�2Þ

4� . Briefly put, the mass and

Hawking temperature of the black hole are

M ¼ d� 2

4
Sðd�3

d�2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4J2

S2

s
(7)

and

T ¼ ðd� 3Þ
4S

1
d�2

1� 4J2

ðd�3ÞS2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4J2

S2

q : (8)

The angular velocity is defined as

� ¼
�
@M

@J

�
S
¼ ðd� 2ÞSd�3

d�2Jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4J2

S2

q
S2

: (9)

Thus, the heat capacity for MP black holes in d dimensions
with n ¼ d�2

2 nonzero equal spins in the canonical

(constant J) ensemble is defined by

CJðJ;SÞ¼T

�
dS

dT

�
J

¼ ð4J2þS2Þððd�3ÞS2�4J2Þðd�2ÞS
16ðd�1ÞJ4þ4ð6þðd�4ÞdÞJ2S2�ðd�3ÞS4 :

(10)

Now, we can see that the heat capacity for the canonical
ensemble in Eq. (10) is divergent at the critical entropy,
which is given by

Sc ¼ Jffiffiffiffiffiffiffiffiffiffiffiffi
d� 3

p
�
2ð�4dþ 6þ d2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32d2 � 64d� 8d3 þ 48þ d4

p
Þ
�1
2: (11)

The discontinuity in the plot of the heat capacity indicates
that a kind of phase transition occurs at this point (Fig. 1).
Also, the Hawking temperature has positive values at this
critical point, S ¼ Sc (Fig. 2). In order to find the nature of
this phase transition, it is necessary to consider Ehrenfest’s
equations near the critical point. This phase transition will
be dealt with in greater detail below.
The heat capacity in the grand canonical ensemble (con-

stant �) is defined as
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FIG. 1 (color online). Specific heat CJ with respect to S for
d ¼ 6 [red (solid) line], d ¼ 8 [blue (dashed) line], d ¼ 10
[black (dashed-dotted) line], and J ¼ 0:1.
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FIG. 2 (color online). Semiclassical Hawking temperature, T,
with respect to S for d ¼ 6 [red (solid) line], d ¼ 8 [blue
(dashed) line], d ¼ 10 [black (dashed-dotted) line] and J ¼ 0:1.
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C�ð�; SÞ ¼ T

�
dS

dT

�
�

¼ �S

�d3 þ 7d2 � 16dþ 12þ 4d�2S
2

d�2 � 16�2S
2

d�2

� ð8S 2
d�2d2�2 � d4 þ 9d3 � 30d2 � 36S

2
d�2d�2 þ 44dþ 40S

2
d�2�2 � 24� 16S

4
d�2�4Þ: (12)

Based on Eqs. (8), (9), and (12), we can plot the tem-
perature and heat capacity with respect to S in the grand
canonical ensemble (Figs. 3 and 4). We find that T is equal
to zero at a special point whose value depends on the
dimensions d and angular velocity � (for d ¼ 8, S ¼
0:000421875). Since the Hawking temperature, T, has
positive values before these specific points and the heat
capacity is negative over the entire region, the black hole
system is unstable throughout. The heat capacity is con-
tinuous for all values of d and�; therefore, the existence of
a phase transition is ruled out.

III. ANALYSIS OF PHASE TRANSITION BEYOND
THE SEMICLASSICAL APPROXIMATION

In the previous section, we showed that the heat capacity
in the grand canonical ensemble (fixed�) is not divergent.

Recently, a phase transition has been investigated for the
corrected thermodynamics of a Kerr black hole (d ¼ 4)
beyond the semiclassical approximation in Ref. [23]. In
this section, we would like to explore these calculations for
arbitrary dimensions, in this case for MP black holes. We
also study the analogy between this system and a liquid-gas
system.
We consider the corrections beyond the semiclassical

approximation to the Bekenstein-Hawking entropy of
black holes and the Hawking temperature, which can be
obtained by using a variety of approaches based on statis-
tical mechanical arguments, field theory methods, quantum
geometry, the Cardy formula, the generalized uncertainty
principle, etc. A review of these methods may be found in
Refs. [1–8]. The first-order correction to the entropy can be
expressed by

~S ¼ Sþ �1

4

ðd� 2Þ log S: (13)

The first term is the semiclassical entropy S ¼ 4Mrþ
ℏðd�2Þ for

MP black holes and the second term is the first-order
quantum correction. Also, �1 is a dimensionless constant
and smaller than 1. To identify the coefficients of the
leading corrections such as �1, we can use the trace
anomaly or other standard methods.
Hawking in Ref. [5] calculated one-loop corrections to

the radiation process, associated with a trace anomaly, and
showed that the backreaction has an interesting effect on
the Hawking radiation and temperature. Considering the
results of the renormalization group approach [6] and the
generalized uncertainty principle [7,8] suggests that in
the simplest cases the first-order correction term to the
Hawking temperature is proportional to the inverse of the
area (see also Ref. [1]). The above-mentioned theories
suggest the following first-order correction to the
Hawking temperature, which is also consistent with the
first law of thermodynamics:

~T ¼ T

�
1� �1

4

ðd� 2ÞS
�
: (14)

It should be noted that a similar first-order quantum cor-
rection was also calculated in Ref. [34]; however, their
assumptions have no theoretical justification and were
criticized in Ref. [35].
Equations (8), (9), (13), and (14) can now be used to

calculate the corrected temperature and specific heat up to
the first-order correction as a function of entropy and
angular velocity for these types of black holes,
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FIG. 3 (color online). Semiclassical Hawking temperature, T,
with respect to S for d ¼ 8 [blue (dashed) line], d ¼ 10 [black
(dashed-dotted) line], and � ¼ 10.
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FIG. 4 (color online). Specific heat C� with respect to S for
d ¼ 8 [blue (dashed) line], d ¼ 10 [black (dashed-dotted) line]
and � ¼ 10.
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~TðS;�Þ ¼
�
1� �1

4

ðd� 2ÞS
�

�
ðd� 3Þ

�
1� 4S2�2

ðd�3Þð�4S2�2þS
2ðd�3Þ
d�2 ðd�2Þ2Þ

�

4S
1

d�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4S2�2

�4S2�2þS
2ðd�3Þ
d�2 ðd�2Þ2

r ; (15)

and

~C�ðS;�Þ ¼ ~T

�
d~S

d ~T

�
�

¼ ððd� 2Þ2S2 � 16�2
1Þ

�
ððd� 3Þðd� 2Þ3

� 4ðd� 2Þð2d� 5ÞS 2
d�2�2 þ 16S

4
d�2�4Þ;

(16)

where

� ¼ ðd� 2Þðð3� dÞðd� 2Þ3Sþ 4ðd� 4Þðd� 2ÞS d
d�2�2

þ 4ððd� 3Þðd� 2Þ2ðd� 1Þ � 8ðd� 3Þðd� 1ÞS 2
d�2�2

þ 16S
4

d�2�4Þ�1Þ � 2�2 þ 16S
4

d�2�4: (17)

Although the corrected specific heat ~C� is divergent at two
specific points Sð1;2Þ for a given dimension, as d indicated

in Eq. (17), the corrected Hawking temperature in Eq. (15)
does not have a real value at the larger point S2. This means
that the larger divergent point S2 is nonphysical (Figs. 5
and 6). Based on Eqs. (9) and (14)), the angular velocity�
can be depicted with respect to the angular momentum J as
a ‘‘P-V diagram’’ at ~T ¼ ~Tc, ~T > ~Tc, and ~T < ~Tc for the
given dimensions d (Fig. 7). An inflection point can be
observed at ~T < ~Tc; this behavior is similar to that of a Van
der Waals system. The critical point is obtained from

ð@�@J Þc ¼ 0 and ð@2�
@J2

Þc ¼ 0. Thus, by using the equation of

state in higher dimensions d (� as a function of ~T, d, and

J) and also ð@�@J Þc ¼ 0 and ð@2�
@J2

Þc ¼ 0, we can obtain the

values of �c, Sc, and ~Tc at the critical point when the
discriminant of Eq. (17) vanishes, in other words, when
two divergent points meet at one critical point (Fig. 8).
Stability is determined by the third derivative of � with

respect to J. The inequality ð@3�
@J3

Þc < 0 [27] shows the
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FIG. 6 (color online). Corrected specific heat ~C� with respect
to S for �<�c, �1 ¼ 0:2 and d ¼ 8 [blue (dashed) line],
d ¼ 10 [black (dashed-dotted) line].
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FIG. 5 (color online). Corrected Hawking temperature ~T with
respect to S for �<�c, �1 ¼ 0:2, and d ¼ 8 [blue (dashed)
line], d ¼ 10 [black (dashed-dotted) line].
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FIG. 7 (color online). The angular velocity � with respect to
the angular momentum J at ~T ¼ ~Tc [blue (dashed) line], ~T > ~Tc

[black (dashed-dotted) line], and ~T < ~Tc [red (solid) line] for
d ¼ 6 and �1 ¼ 0:2.
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FIG. 8 (color online). Corrected specific heat ~C� with respect
to S for �1 ¼ 0:2, � ¼ �c and d ¼ 6 [red (solid) line], d ¼ 8
[blue (dashed) line], and d ¼ 10 [black (dashed-dotted) line].
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stability at the critical point. The results are summarized in
Table I.

The critical values of �c, Sc, and ~Tc depend on the
coefficient �1. This coefficient is not exactly known but is

smaller than one. However, for d ¼ 4, and for PcVc

Tc
¼ 3

8

which is universal and exactly the same as a Van der Waals
fluid, the value for this coefficient will be �d¼4

1 ¼ 1
24

ffiffi
3

p .

Alternatively, its value for a given dmay be determined by

considering the relation PcVc

Tc
¼ 2d�5

4d�8 [25]; thus, �d¼6
1 ¼

7ð5�5
1
3Þ

1200 ¼ 0:01919 and �d¼8
1 ¼ 0:01820. It is shown below

that we may obtain the ratification of both of Ehrenfest’s
equations and the critical exponents at the critical point in
the canonical and grand canonical ensemble.

IV. EHRENFEST’S EQUATIONS AT
THE CRITICAL POINT

In this section, we study the satisfication of Ehrenfest’s
equations at the critical point in the grand canonical and the
canonical ensemble for the black hole system [23,31,32].
Ehrenfest’s equations for MP black holes in the grand
canonical ensemble can be expressed as

�
�
@�

@ ~T

�
~S
¼

~C�2
� ~C�1

~TJð~�2 � ~�1Þ
; (18)

�
�
@�

@ ~T

�
J
¼ ~�2 � ~�1

� ~T2
� � ~T1

; (19)

where

~� ¼ 1

J

�
@J

@ ~T

�
�
; (20)

� ~T ¼ 1

J

�
@J

@�

�
~T
: (21)

A discontinuity in the plots of ~� and � ~T is also necessary
for a phase transition to take place. By using the chain rule
of partial differentiation and the definitions of � and ~T in
Eqs. (9) and (15), respectively, we can plot ~� and � ~T with
respect to S. The results show that ~� and � ~T are divergent
exactly at the critical point.

In what follows we present the calculations to identify
the validity of Ehrenfest’s equations and the order of the
phase transition for MP black holes in the grand canonical

ensemble. Consider ~C� ¼ fðSÞ
gðSÞ , J ~� ¼ hðSÞ

gðSÞ , and J� ~T ¼ kðSÞ
gðSÞ

such that for the function gðScÞ ¼ 0 near the critical point,
we have

~C�2
� ~C�1

¼ fðS2Þ
gðS2Þ �

fðS1Þ
gðS1Þ ¼ fðScÞ

�
1

gðSc2Þ
� 1

gðSc1Þ
�
;

(22)

where ~C�jSi ¼ ~C�i
, and S2 ¼ Sc þ " and S1 ¼ Sc � ".

Thus, the rhs of both Ehrenfest’s equations are given by

~C�2
� ~C�1

~TJð~�2 � ~�1Þ
¼ fðScÞ

~TchðScÞ
; (23)

Jð~�2 � ~�1Þ
Jð� ~T2

� � ~T1
Þ ¼ hðScÞ

kðScÞ : (24)

Both sides of the first Ehrenfest’s equation are calculated
for any values of d and �1 at the critical point in the grand
canonical ensemble,

rhs ¼ lhs ¼
�
1þ 4�1

ðd� 2ÞSc
�
S

1
d�2
c ððd� 2Þ2 � 4�2

cS
2

d�2
c Þ32:
(25)

It is also observed that both sides of the second Ehrenfest’s
equations are equal. Ehrenfest’s equations for theMP black
holes in the canonical ensemble are given by

�
�
@J

@T

�
S
¼ CJ2 � CJ1

T�ð�2 � �1Þ ; (26)

�
�
@J

@T

�
�
¼ � �2 � �1

�T2
� �T1

; (27)

where

� ¼ � 1

�

�
@�

@T

�
J
; (28)

�T ¼ 1

�

�
@�

@J

�
T
: (29)

In this ensemble we can see that � and �T are divergent
exactly at the point where the specific heat is divergent (at
Sc) and also that the first and second Ehrenfest’s equations
are satisfied at the critical point. So, a second-order
phase transition is taking place in the grand canonical
and canonical ensembles.

V. GIBBS FREE ENERGY

In this section, we consider the behavior of the corrected
Gibbs free energy and the corrected specific heat as a
function of temperature for different values of � in the
grand canonical ensemble. The corrected Gibbs free en-
ergy for MP black holes can be described by Eqs. (9), (13),
and (14), and the following relation:

~Gðd;�; ~SÞ ¼ M� ~T ~S��J: (30)

TABLE I. Summary of results for the values of�c, Sc, ~Tc, and
ð@3�
@J3

Þc for �1 ¼ 0:2.

d �c Sc ~Tc ð@3�
@J3

Þc
6 3.03198 0.1696 0.2371850 �25865:89
8 4.23272 0.11445 0.258412 �7383:72
10 5.36657 0.0863001 0.277826 �61407:8
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The corrected specific heat in the grand canonical en-
semble, however, is determined by Eq. (16). Now we can
plot the corrected Gibbs free energy and the corrected
specific heat with respect to ~T at � ¼ �c, �>�c, and

�<�c (Figs. 9 and 10). Consider the ~G� ~T plot; there
are two wings at �<�c, which are joined at the special
point ~T1 (Fig. 9). The corrected heat capacity is divergent
and changes from negative values (unstable phase) to
positive ones (stable phase) at ~T1; the black hole system
also exists just at ~T < ~T1. Since the corrected Gibbs free
energy for the upper wing does not have its minimum
value, the upper wing behaves like a metastable state. It

is also observed that the black holes experience a second-
order phase transition at ~T1 which is not in a metastable
state, as shown in Fig. 9. Clearly, the critical exponents are
completely different from a Van der Waals system at this

point. In other words, at this critical point we get @2�
@J2

� 0

and this behavior leads to different values for the critical
exponents. Thus, what have been left out are the critical
exponents of this second-order phase transition.
For� ¼ �c, the corrected Gibbs free energy is positive

for any value of ~T and the corrected specific heat is
divergent at ~T ¼ ~Tc. For �>�c, the corrected specific
heat is negative for all values of ~T and is not divergent at
any special point (Fig. 10). These calculations can be
expanded for d � 4 dimensions, the results being thus
independent of dimensions.

VI. CRITICAL EXPONENTS

In this section, we calculate the critical exponents of MP
black holes near the critical point in the grand canonical
ensemble. It was shown in the previous section that not
only do the black holes in the grand canonical ensemble
behave similarly to a van der Waals system at the critical
point, but also that the corrected Gibbs free energy has
positive values throughout. If we consider the entropy near

the critical point Sc, where ~C� is divergent, we get [28,29]

S ¼ Scð1þ�Þ; (31)

where j � j� 1. Since the corrected temperature is a func-
tion of the semiclassical entropy, we have

�T ¼ ~Tcð1þ �Þ: (32)

Here j � j� 1. The critical exponent � is associated with

the singular behavior of the corrected specific heat ~CJ.

Since ~CJ does not diverge at this critical point Sc (where
~C� is divergent), we find that the critical exponent � ¼ 0.
By expanding �ðS; ~TÞ and JðS;�Þ near the critical point,
we get the following two equations:

�ðS; ~TÞ ¼ �c þ
��

@�

@S

��
~T¼ ~Tc;S¼Sc

ðS� ScÞ

þ 1

2

��
@2�

@S2

��
~T¼ ~Tc;S¼Sc

ðS� ScÞ2

þ 1

6

��
@3�

@S3

��
~T¼ ~Tc;S¼Sc

ðS� ScÞ3

þ
��

@�

@ ~T

��
~T¼ ~Tc;S¼Sc

ð ~T � ~TcÞ

þ
��

@2�

@S@ ~T

��
~T¼ ~Tc;S¼Sc

ð ~T � ~TcÞðS� ScÞ (33)

and
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FIG. 10 (color online). The corrected heat capacity with re-
spect to the corrected temperature �1 ¼ 0:2 and �<�c [red
(solid) line], � ¼ �c [blue (dashed) line], and �>�c [black
(dashed-dotted) line].
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FIG. 9 (color online). The corrected Gibbs free energy with
respect to the corrected temperature for �1 ¼ 0:2 and �<�c

[red (solid) line], � ¼ �c [blue (dashed) line], and �>�c

[black (dashed-dotted) line].
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JðS;�Þ ¼ Jc þ
��

@J

@S

��
�¼�c;S¼Sc

ðS� ScÞ

þ higher order terms: (34)

Since ð@�@J Þc ¼ 0 and ð@2�
@J2

Þc ¼ 0 at the critical point, we can

use the chain rule of partial differentiation at this point and
rewrite Eq. (33) in the following form:

�ðS; ~TÞ ¼ �c þ 1

6

��
@3�

@S3

��
~T¼ ~Tc;S¼Sc

ðS� ScÞ3

þ
��

@�

@ ~T

��
~T¼ ~Tc;S¼Sc

ð ~T � ~TcÞ

þ
��

@2�

@S@ ~T

��
~T¼ ~Tc;S¼Sc

ð ~T � ~TcÞðS� ScÞ: (35)

Differentiating �ðS; ~TÞ for a fixed ~T and using both
Eq. (34) and Maxwell’s equal-area law [24] yields the
critical exponent� ¼ 1

2 . Let us obtain the critical exponent

	 associated with ��1
~T

/ ð@�@J Þ ~T . JðS; ~TÞ is first expanded

near the the critical point,

JðS; ~TÞ ¼ Jc þ
��

@J

@S

��
~T¼ ~Tc;S¼Sc

ðS� ScÞ

þ
��

@�

@ ~T

��
~T¼ ~Tc;S¼Sc

ð ~T � ~TcÞ

þ higher order terms: (36)

Equations (35) and (36) are differentiated with respect to
entropy to obtain

�
@J

@�

�
~T
¼

� @J
@S
@�
@S

�
~T
¼ ½ð @2�

@S@ ~T
Þ� ~T¼ ~Tc;S¼Sc

ð ~T � ~TcÞ
½ð@J@SÞ� ~T¼ ~Tc;S¼Sc

: (37)

Hence, the critical exponent 	 ¼ 1. Also, by using
Eqs. (34) and (35) we obtain the critical exponent 
 defined
at ~T ¼ ~Tc in the following form:

�ðS; ~TÞ ��c / ðJ � JcÞ3 ) 
 ¼ 3: (38)

The results show that the calculated values of the critical
exponents of MP black holes with quantum corrections at
the critical point correspond to a Van der Waals system and
that they do not depend on the dimensionality of the
system.

VII. THERMODYNAMIC GEOMETRY OF
AN MP BLACK HOLE

The phase transitions of black holes may also be viewed
from the viewpoint of thermodynamic state space
(Ruppeiner) geometry [15]. Thus, the Ruppeiner metric
can be expressed as [16]

dS2 ¼ gRijdX
idXj; (39)

where gij ¼ � @2SðXkÞ
@Xi@Xj . Also, the Weinhold metric can be

defined as [17]

dS2W ¼ gWij dX
idXj: (40)

Here, gWij ¼ @2MðXkÞ
@Xi@Xj , and i, j ¼ 1, 2, X1 ¼ J and X2 ¼ S.

The relationship between the Ruppeiner metric and the
Weinhold metric is expressed by

dS2R ¼ 1

T
dS2W: (41)

Here, T is the temperature of the black hole system. The
Ruppeiner curvature of MP black holes with quantum
corrections is not flat at the critical point in the grand
canonical ensemble and is divergent at S ¼ Sc (Fig. 11).
So, the second-order phase transition of MP black holes at
the critical point can be investigated by using the
Ruppeiner curvature formula in the grand canonical
ensemble.
If we consider the entropy of black holes as a function of

the internal energy u ¼ M��J and� (angular velocity),
then, for a fixed value of J, we may obtain the Ruppeiner
metric and also the scalar curvature of geometry [18]. In
this way, the first law of thermodynamics can be written as
du ¼ TdS� Jd�. Since the thermodynamic metric intro-
duced in Ruppeiner’s theory is defined by the second
derivatives of mass divided by temperature, we may re-
place the mass inducing the metric by the function re-
garded as the internal energy and the extensive variables
in ordinary thermodynamic systems as follows:

gRij ¼
1

T

@2MðXkÞ
@Xi@Xj : (42)

Here, i, j ¼ 1, 2, X1 ¼ �, and X2 ¼ u. Using these, we
find that the Ruppeiner curvature scalar (R) is not flat but
diverges at the critical point where the heat capacity is
divergent in the canonical ensemble, indicating a second-
order phase transition.

FIG. 11 (color online). Ruppeiner curvature scalar (R) for
� ¼ �c, �1 ¼ 0:2, and d ¼ 8.
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VIII. CONCLUSION

In this paper, we considered the thermodynamics of MP
black holes in even dimensions with n ¼ d�2

2 nonzero equal

spins J. We showed that while a second-order phase tran-
sition in the canonical ensemble is taking place in the
semiclassical approximation, it is not possible to obtain a
critical behavior similar to that of a Van der Waals fluid. It
was also found that taking the corrections beyond the semi-
classical approximation in the grand canonical ensemble
gives rise to a critical behavior similar to a Van der Waals
fluid. In this way, we obtain the value of the leading coef-
ficient correction to be �d¼4

1 ¼ 1
24

ffiffi
3

p in order to find the

universal number PV
T ¼ 3

8 in d ¼ 4. Also, the coefficient

�1 can be calculated for a given d from the relation PcVc

Tc
¼

2d�5
4d�8 [25]. It is straightforward to obtain �d¼6

1 ¼ 7ð5�5
1
3Þ

1200 ¼
0:01919 and �d¼8

1 ¼ 0:01820. These properties motivated

us to check the validity of Ehrenfest’s equations and the
critical exponents. Our calculations showed that both
Ehrenfest’s equations are satisfied in the canonical and

grand canonical ensemble, indicating that a second-order
phase transition happens. We also found that the corrected
Gibbs free energy had positive values for any value of ~T for
� ¼ �c. We extended these calculations to the higher-
order correction terms. The results showed that the critical
behavior and the critical exponents of black holes behave
similar to a Van der Waals system. In another part of this
paper, we calculated the Ruppeiner curvature scalar (R) and
investigated its behavior at the critical point. It was shown
thatR diverges exactly at the critical point where the specific
heat and corrected specific heat are divergent in both the
canonical and the grand canonical ensembles, respectively.
This indicated that the Ruppeiner curvature formula could
be exploited to investigate the second-order phase transition
for MP black holes at the critical point.
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