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We investigate particular cosmological models, based either on tachyon fields or on perfect fluids, for

which soft future singularities arise in a natural way. Our main result is the description of a smooth

crossing of the soft singularity in models with an anti-Chaplygin gas or with a particular tachyon field in

the presence of dust. Such a crossing is made possible by certain transformations of matter properties.

Some of these cosmological evolutions involving tachyons are compatible with SNIa data. We compute

numerically their dynamics involving a first soft singularity crossing, a turning point and a second soft

singulatity crossing during recollapse, ending in a Big Crunch singularity.
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I. INTRODUCTION

In a recent paper [1] we have investigated the possibility
of soft singularity crossing in a model where a flat
Friedmann universe was filled with dust and anti-
Chaplygin gas. A soft singularity appears in an expanding
universe when the pressure of the anti-Chaplygin gas di-
verges, causing €a ! �1 (a is the scale factor and the dot
denotes the derivative with respect to cosmic time), while a
and _a remain finite. The energy density of the anti-
Chaplygin gas vanishes at the singularity while the energy
density of dust remains finite there, thus implying _a > 0.
The geodesic equations remain regular at the singularity
and, therefore, they can be continued through. This allows
the universe to cross the soft singularity. Then, a smooth
evolution of the universe would require further expansion.
However, in this case the energy density of the anti-
Chaplygin gas would become imaginary and hence ill
defined. This contradiction and the fact that the geodesics
can be continued through leads to a paradox. In [1] we have
solved this paradox by relaxing the smoothness condition,
leading to the redefinition of cosmological quantities as
distributions. With this redefinition, it turns out that the
universe can revert abruptly from expansion to contraction.

In the present work we study an alternative possibility
for the continuation of geodesics across the singularity,
requiring the continuity of the spacetime evolution at the
expense of certain transformations of matter properties.

The paper is organized as follows. In Sec. II we discuss the
sudden singularities that arise in a class of flat Friedmann
models such as those describing universes filledwith the anti-
Chaplygin gas without or with dust, or driven by a specific
tachyon field [2], again without and with dust. In Sec. III we
describe the crossing of a soft singularitywith accompanying
transformations of matter in the above-mentioned models.
Section IV presents numerical results of the evolution of

universes filled with a tachyon field and dust, compatible
with SNIa data. Concluding remarks are presented in Sec. V.
We choose units c ¼ 1 and 8�G=3 ¼ 1.

II. SUDDEN SINGULARITIES IN FLAT
FRIEDMANN UNIVERSES

The line element squared of a flat Friedmann universe
can be written as

ds2 ¼ dt2 � a2ðtÞX
�

ðdx�Þ2; (1)

where x� (� ¼ 1, 2, 3) are spatial Cartesian coordinates.
The evolution of the universe is governed by the
Raychaudhuri (second Friedmann) equation

_H ¼ � 3

2
ð�þ pÞ; (2)

and by the continuity equation for the fluid,

_�þ 3Hð�þ pÞ ¼ 0; (3)

where, as usual, � is the energy density, p is the pressure of
matter and H � _a=a is the Hubble parameter. The first
Friedmann equation is

H2 ¼ �: (4)

Sudden singularities are characterized by finite HS and
_HS ¼ �1 (finite _aS and €aS ¼ �1) at some finite scale
factor aS. Here, the subscript S denotes the respective
quantities evaluated at the singularity. These conditions
can be formulated in terms of energy density and pressure
of the fluid. The Friedmann (4) and Raychaudhuri (2)
equations show that the total energy density �S is non-
negative and finite while the pressure diverges pS ¼ 1.
It was shown in [1,3,4] that the geodesics can be con-

tinued across such sudden singularities as the geodesic
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equations are regular there. The singularity is weak (soft)
according to the definitions of both Tipler [5] and Królak
[6]. Although the tidal forces become infinite, the extended
objects are not necessarily crushed when reaching the
singularity.

A. Big brake

A special case of sudden singularity is the Big Brake
singularity, occurring when the energy density vanishes at
the singularity, �S ¼ 0 [2].

1. Anti-Chaplygin gas

One of the simplest models where the Big Brake singu-
larity arises is the anti-Chaplygin gas [2]. This is a perfect
fluid with the equation of state

p ¼ A

�
; (5)

where A > 0, as opposed to the Chaplygin gas [7,8] which
has the equation of state p ¼ �A=�. The equation of state
(5) arises, for example, in the theory of wiggly strings [9].

Applied to the anti-Chaplygin gas, the continuity equa-
tion (3) gives the following dependence of the energy
density on the scale factor:

�ACh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B

a6
� A

s
; (6)

where B is a positive constant, which determines the initial
condition. When the scale factor approaches the value

aS ¼
�
B

A

�1
6
; (7)

during the expansion of the universe, the energy density of
the anti-Chaplygin gas vanishes, and its pressure grows
to infinity. Accordingly, the deceleration also becomes
infinite.

As was shown in [1], after crossing of this singularity,
the universe starts contracting towards a Big Crunch.

2. The tachyon field with trigonometric potential and
transition to a Born-Infeld type pseudotachyon field

A Big Brake singularity was first found in a specific
tachyon model introduced in [2]. The Lagrangian density
of a tachyon field is [10]

L ¼ �VðTÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� gijð@iTÞð@jTÞ

q
; (8)

where VðTÞ is a potential. For a spatially homogeneous
field TðtÞ, the expression (8) becomes

L ¼ �VðTÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� gtt _T2

q
: (9)

This field corresponds to an ideal fluid with energy density

�T ¼ VðTÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� _T2

p (10)

and pressure

pT ¼ �VðTÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� _T2

p
: (11)

The Lagrangian density as well as �T and pT are well
defined for _T2 � 1. The field equation is

€T

1� _T2
þ 3H _T þ V;T

V
¼ 0: (12)

The following potential was studied in [2]:

VðTÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1þ kÞy2p
1� y2

; (13)

with

y ¼ cos

�
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1þ kÞ

p
T

�
; (14)

where �> 0 and �1< k < 1 are model parameters. The
case k > 0 is of particular interest, because it reveals two
unusual features: a self-transformation of the tachyon into
a pseudotachyon field and the appearance of a Big Brake
cosmological singularity. For k > 0, the potential (13) and
(14), is well defined in the range

� y� < y< y�; or T4 > T > T3; (15)

where

y� ¼ ð1þ kÞ�1=2; (16)

T3 ¼ 2

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1þ kÞp arccos ð1þ kÞ�1=2; (17)

T4 ¼ 2

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1þ kÞp arccos ½�� ð1þ kÞ�1=2�: (18)

Note that the dynamical system is invariant under the
simultaneous change

y ! �y; _T ! � _T: (19)

Since V � 0 the pressure is negative allowing for an
accelerated expansion of the universe. When they reach
the attractive critical point (y ¼ 0, _T ¼ 0), the trajectories
correspond to an exact de Sitter expansion of the universe.
The lines _T ¼ �1 (with the exception of the corner points
(� y�, _T ¼ �1)) in the ðT; _TÞ space correspond to a
standard Big Bang singularity (see Fig. 5 of [4], which
reproduces Fig. 4 in [2]).
However, some trajectories can reach the corner points

where the geometry is not singular. Hence, the trajectories
can be continued across these corner points, beyond which
j _Tj2 becomes larger than 1. The potential V and the kinetic
term in the Lagrangian density (8) become imaginary
across the corner points; however, their product remains
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real. Thus for _T2 > 1 the correct Lagrangian density
(describing a Born-Infeld type pseudotachyon field) is

L ¼ WðTÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gtt _T2 � 1

q
; (20)

where

WðTÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ kÞy2 � 1

p
1� y2

: (21)

This Lagrangian is well defined in the ranges

� 1< y<�y�; or Tmax > T > T4 (22)

and

y� < y< 1; or T3 > T > 0;

with

Tmax ¼ �=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1þ kÞ

p
: (23)

The energy density and pressure are now

�T ¼ WðTÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_T2 � 1

p ; (24)

pT ¼ WðTÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_T2 � 1

p
: (25)

Since the pressure is positive, the expansion of the universe
is slowing down. The field equation is

€T

1� _T2
þ 3H _T þW;T

W
¼ 0: (26)

The universe runs into a soft singularity somewhere in
the ranges y� < y < 1 as _T ! �1 or �1< y<�y� as
_T ! 1 [2]. From Eqs. (21)–(25), the potential W is finite
and �T ! 0, pT ! 1 at the soft singularity. Equivalently,
this means that HS ¼ 0, while _HS ¼ �1. It was shown in
[4] that the evolution of the universe can be continued
across the singularity, where the universe starts recollaps-
ing and eventually ends in a Big Crunch singularity.

B. Introducing a dust component

The dust is a perfect fluid with vanishing pressure,
whose energy density is

�m ¼ �m;0

a3
; (27)

where �m;0 is a positive constant, characterizing the quan-

tity of matter in the universe today (a0 ¼ 1). Therefore, if a
cosmological model with dust evolves into a sudden sin-
gularity the energy density of dustlike matter remains finite
ð�mÞS > 0. Then, the Hubble parameter does not vanish at
the singularity as in the case of the Big Brake. This makes
it more difficult and delicate to describe what happens after
reaching a soft singularity.

1. Anti-Chaplygin gas

A soft singularity arising in a two-fluid model containing
dust and anti-Chaplygin gas was investigated in [1]. The
Hubble parameter is positive at the singularity, requiring a
further expansion of the universe. Then a paradox arises: if
the universe continues to expand beyond the singularity,
the expression under the sign of the square root in Eq. (6)
becomes negative and the energy density of the anti-
Chaplygin gas becomes ill defined.
A mathematically consistent way out of this situation is

an abrupt replacement of the cosmological expansion by a
contraction at the price of introducing distributional cos-
mological quantities [1].
In the next section, we investigate an alternative possi-

bility requiring the smoothness in the evolution of the
Hubble parameter but allowing for a change in the equation
of state (5).

2. Born-Infeld type pseudotachyon field with
trigonometric potential

In the model suggested in [2], the Born-Infeld type
pseudotachyon field runs into a soft Big Brake singularity
at some point during the expansion of the universe. What
happens however in the presence of a dust component?
Does the universe still run into a soft singularity?
In order to answer this question, we rewrite Eq. (26) as

€T ¼ ð _T2 � 1Þ
�
3H _T þW;T

W

�
: (28)

In the left lower and in the right upper stripes (see Fig. 4
of [2]), where the trajectories describe the expansion of the
universe after the transformation of the tachyon into the
pseudotachyon field, the signs of €T, of _T and of the term
W;T=W coincide. A detailed analysis based on this fact was

carried out in [2] and led to the conclusion that the universe
encounters the singularity as T ! TS (TS > 0 or TS >
Tmax ), j _Tj ! 1. The presence of dust cannot alter this
because it increases the influence of the term 3H _T, and
hence, accelerates the encounter with the singularity.
Indeed, consider two trajectories, crossing one of the cor-
ners (i.e., undergoing the tachyon-pseudotachyon transi-
tion) under the same angle in phase space (cf. Fig. 4 in [2]),
one in the absence of dust, the other in the presence of dust.
For both trajectories the signs of €T and of _T in (28)
coincide and the increase that the value of H undergoes
when dust is present makes the growing of j _Tjmore abrupt.
On the other hand, the evolution of the tachyon field,
approaching the corner point is slowed down by the pres-
ence of dust, because, in this case (inside the rectangle of
the phase space) ( _T2 � 1) is negative and therefore €T and _T
have opposite signs. Summing up, we may say that the
presence of dust accelerates the evolution of the pseudo-
tachyon, whereas it slows down the evolution of tachyon.
What is important is that the presence of dust changes in

an essential way the time dependence of the pseudotachyon
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field close to the singularity. Indeed, as it was shown in [4],
in the absence of dust one has

T ¼ TBB �
�

4

3WðTBBÞ
�
1=3ðtBB � tÞ1=3; (29)

(see Eq. (29) in [4]). The upper (lower) sign corresponds to
the left lower (right upper) strip in Fig. 4 of [2], where
lim t!tBB

_T ¼ �1 (lim t!tBB
_T ¼ 1). In the presence of

dust one has, instead,

T ¼ TS �
ffiffiffiffiffiffiffiffiffi
2

3HS

s ffiffiffiffiffiffiffiffiffiffiffiffi
tS � t

p
; (30)

where HS is the nonvanishing value of the Hubble parame-
ter given by

HS ¼
ffiffiffiffiffiffiffiffiffi
�m;0

a3S

s
: (31)

Herewe have taken advantage of the fact that in Eq. (28) the
terms 1 andW;T=W can be neglected with respect to _T2 and

3H _T, respectively. It is easy to see that a smooth continu-
ation of expression (30) is impossible in contrast to the
situation without dust (29).

Thus, the presence of dust is responsible for the appear-
ance of similar paradoxes in both the anti-Chaplygin gas
and tachyon models.

III. CROSSING THE SOFT SINGULARITYAND
TRANSFORMATIONS OF MATTER

As mentioned earlier (see Introduction of the present
paper and the concluding remarks in [1]) the mathemati-
cally self-consistent scenario, based on the treatment of
physical quantities as generalized functions and on the
abrupt change of the expansion into a contraction, may
look counterintuitive from the physical point of view.
Indeed, such a behavior displays features which are analo-
gous to the phenomenon of the absolutely elastic bounce of
a hard ball from a rigid wall, as studied in classical me-
chanics. In the latter case, it is the velocity and the mo-
mentum of the ball which change their direction abruptly.
Hence, an infinite force acts from the wall onto the ball
during an infinitely small interval of time.

In reality, the absolutely elastic bounce is an idealization
of a process taking place in a finite, though small, time-
span, during which inelastic deformations of the ball and of
the wall occur. This implies a more complex and realistic
description of the dynamical process of interaction be-
tween the ball and the wall. Hence, we are naturally led
to assume that something similar should occur also in the
models of an anti-Chaplygin gas or a tachyon whenever
dust is present. We expect that the smoothing of the process
of the transition from an expanding to a contracting phase
should include some (temporary) geometrically implied
change of the equation of state of matter or of the form
of the Lagrangian. We know that such changes have been

considered in cosmology. For example, a tachyon-
pseudotachhyon transformation, driven by the continuity
of the cosmological evolution, took place in the tachyon
model [2] (see also subsection II B 2 of the present paper).
In a cosmological model with the phantom field with a
cusped potential [11], transformations between phantom
and standard scalar field were considered. Thus, it is quite
natural to assume that the process of crossing of the soft
singularity should imply similar transformations.
However, the situation is nowmore complicated. It is not

enough to require the continuity of the evolution of the
cosmological radius and of the Hubble parameter. It is also
necessary to make some hypotheses about changing the
equation of state of matter or the form of the Lagrangian.
We solve the problem as follows. Considering first the

anti-Chaplygin gas with dust, we require a minimal change
in the form of the dependence of the energy density and of
the pressure on the cosmological radius, upon crossing the
soft singularity. This will require replacement of the anti-
Chaplygin gas with a Chaplygin gas with negative energy
density.1 Next, we consider the cosmological model based
on a pseudotachyon field with constant potential and in the
presence of dust. It is known that the energy-momentum
tensor for such a pseudotachyon field coincides with that of
the anti-Chaplygin gas (relating the Chaplygin gas to the
tachyon field with constant potential was considered in
[13]). We derive how the pseudotachyon Lagrangian trans-
forms using its kinship with the anti-Chaplygin gas. In this
way, we arrive at a new type of Lagrangian, belonging to
the ‘‘Born-Infeld family.’’Finally, we extend this transfor-
mation to the case of the trigonometric potential.

A. Anti-Chaplygin gas

It follows from Eqs. (5) and (6) that the pressure of the
anti-Chaplygin gas

p ¼ Affiffiffiffiffiffiffiffiffiffiffiffiffiffi
B
a6
� A

q (32)

tends to þ1 when the universe approaches the soft singu-
larity, e.g. when the cosmological radius a ! aS [see
Eq. (7)]. Requiring the expansion to continue into the
region a > aS, while changing minimally the equation of
state, we assume

p ¼ Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j B
a6
� Aj

q ; (33)

or, in other words,

p ¼ Affiffiffiffiffiffiffiffiffiffiffiffiffiffi
A� B

a6

q ; for a > aS: (34)

1A Chaplygin gas with negative energy density has been
considered earlier [12] in a different context.
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Thus, the pressure passes through þ1 conserving its sign,
thus providing in such a way the continuity of the cosmo-
logical evolution. It is crucial that p does not change sign
in order to keep a decelerated expansion. The energy
density � evolves continuously, and so does its derivative
with respect to volume. Combining (34) with the energy
conservation law (3) we obtain

� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A� B

a6

s
; for a > aS; (35)

so that for a > aS the energy density and the pressure
satisfy the Chaplygin gas equation of state

p ¼ �A

�
: (36)

Therefore, at the singularity crossing, the anti-Chaplygin
gas transforms into a Chaplygin gas with negative energy
density. After crossing of the singularity the Friedmann
equation is

H2 ¼ �m;0

a3
� ffiffiffiffi

A
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
�
aS
a

�
6

s
; (37)

and it follows from Eq. (37) that after achieving the point
of maximal expansion a ¼ amax , where

amax ¼
�
�2
m;0

A
þ a6S

�
1=6

; (38)

the universe begins contracting. During this phase, as it
achieves again a ¼ aS, it stumbles once more upon a soft
singularity, whereupon the Chaplygin gas transforms itself
back into anti-Chaplygin with positive energy density and
the contraction continues until hitting the Big Crunch
singularity.

Whereas in [1] we envisaged an abrupt change from
expansion to contraction through the singularity, with a
jump in the Hubble parameter, we show here that a con-
tinuous transition to the collapsing phase is possible if the
equation of state of the anti-Chaplygin gas has some kind
of ‘‘phase transition’’ at the singularity.

B. Pseudotachyon field with a constant potential

For a pseudotachyon field with constant potential
WðTÞ ¼ W0, the energy density (24) and the pressure
(25) satisfy the anti-Chaplygin gas equation of state (5)
with

A ¼ W2
0 : (39)

Solving the equation of motion for the pseudotachyon field
(26) with WðTÞ ¼ W0, one finds

_T 2 ¼ 1

1�
�
a
aS

�
6

(40)

and we see that a soft singularity arises at a ¼ aS with
_T2 ! þ1.
The new Lagrangian, which gives the correct energy

density and pressure satisfying a Chaplygin gas equation
with negative energy density is

L ¼ W0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gtt _T2 þ 1

q
; a > aS; (41)

giving

p ¼ W0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_T2 þ 1

p
(42)

and

� ¼ � W0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_T2 þ 1

p : (43)

Lagrangian (41) characterizes a new type of Born-Infeld
field, which we may call ‘‘quasitachyon.’’
For an arbitrary potential the Lagrangian reads

L ¼ WðTÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gtt _T2 þ 1

q
a > aS (44)

with equation of motion

€T
_T2 þ 1

þ 3H _T �W;T

W
¼ 0 (45)

and energy density and pressure are, respectively,

� ¼ � WðTÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_T2 þ 1

p (46)

and

p ¼ WðTÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_T2 þ 1

p
: (47)

If WðTÞ ¼ W0, the solution of equation (45) is

_T 2 ¼ 1

ð aaSÞ6 � 1
; (48)

and the energy density evolves as

�T ¼ �W0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
aS
a

�
6

s
: (49)

The evolution of the universe coincides with that of a
universe with anti-Chaplygin gas and dust.
Thus, the transformation from anti-Chaplygin to

Chaplygin gas with negative energy density corresponds
to a transition from a pseudotachyon field with Lagrangian
(20) with constant potential WðTÞ ¼ W0 to a new Born-
Infeld-type quasitachyon field, with Lagrangian (41).

C. The tachyon model with
trigonometric potential and dust

In the vicinity of the soft singularity, it is the ‘‘friction’’
term 3H _T in the equation of motion (26), which dominates
over the potential term W;T=W. Hence, the dependence of
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WðTÞ on its argument is not essential and a pseudotachyon
field approaching this singularity behaves like one with a
constant potential. Thus, it is reasonable to assume that
upon crossing the soft singularity the pseudotachyon trans-
forms itself into a quasitachyon with Lagrangian (44) for
any potential WðTÞ.

We now study the dynamics of the model with trigono-
metric potential (13) and (14) in the presence of dust.

The behavior of the quasitachyon field close to the soft
singularity can be derived from Eq. (45) in the same way as
the corresponding behavior of the pseudotachyon field
derives from Eq. (28). In analogy with Eq. (30), we obtain
the quasitachyon behavior

T ¼ TS �
ffiffiffiffiffiffiffiffiffi
2

3HS

s ffiffiffiffiffiffiffiffiffiffiffiffi
t� tS

p
(50)

and the two formulas match with each other through the
singularity.

In order to analyze the dynamics of the field in the
presence of dust, it is convenient to concentrate ourselves
on the processes as they occur, say, in the left lower strip of
the phase diagram of the model, to facilitate comparison
with earlier studies of the tachyon model dynamics without
dust in [2,4]. The relative signs in the equations of motion
of the term with the second derivative €T and of the friction
term 3H _T are opposite for pseudotachyons and quasitachy-
ons. This means that after crossing the soft singularity the
time derivative _T grows while its absolute value decreases.
At the same time the value of T is decreasing while the
potential WðTÞ, given by (21) is growing.

Hence the absolute value of the negative contribution to
the energy density of the universe induced by the quasi-
tachyon grows while the energy density of the dust de-
creases due to the expansion of the universe. Thus, at some
moment the total energy density vanishes and the universe
reaches the point of maximal expansion, after which the
expansion is replaced by a contraction and the Hubble
variable changes sign. The change of sign of the friction
term 3H _T implies the value of _T to decrease and at some
finite moment of time the universe hits again the soft
singularity when _T ! �1. Upon crossing this singularity
the quasitachyon transforms back to pseudotachyon and
the relative signs of the terms with the second and first time
derivatives in the equation of motion change once again.
After this, the time derivative of the pseudotachyon field
begins to grow and the universe continues its contraction
until it hits the Big Crunch singularity.

It was shown in [4] that, for the case of the tachyon
model with trigonometric potential and without dust, the
encounter of the universe with the Big Crunch singularity

occurs at T ¼ 0 and _T ¼ �
ffiffiffiffiffiffiffi
1þk
k

q
. One can show that the

presence of dust does not change these values. Indeed,
consider the behavior of the pseudotachyon field when

T ! 0, _T ! �
ffiffiffiffiffiffiffi
1þk
k

q
. It follows from the expressions (24)

and (25) that the ratio between pressure and energy density
behaves as

p

�
¼ _T2 � 1 ! 1

k
; (51)

i.e. in the vicinity of the Big Crunch singularity the pseu-
dotachyon field behaves as a barotropic fluid with the
equation of state parameter 1

k > 1. This means that the

energy density of the pseudotachyon field grows as

�	 1

a3ð1þ1
kÞ

(52)

with a ! 0, namely much more rapidly than the dust
energy density. Thus, one can neglect the contribution of
dust in the regime of approach to the Big Crunch singu-
larity and the description of the evolution of the universe
to this point coincides with that of the pure tachyon
model [4].

D. Additional remarks concerning geometrically
induced transformations of matter properties

Before addressing the numerical study of the cosmologi-
cal evolutions in the tachyon model with trigonometrical
potential, we would like to dwell on some basic features of
the matter transformations introduced in this section.
Concerning the transformation from the anti-Chaplygin

gas with the equation of state (5) to the Chaplygin gas with
the equation of state (36), we would like to emphasize that
this is not an extension of the definition of the anti-
Chaplygin gas into the region, where it was not defined
before, but instead that it is a transition from one perfect
fluid into another one. This transition is the result of a
complicated interplay between the evolution of the space-
time described by the Friedmann equations and the evolu-
tion of perfect fluids, described by the continuity
equations. Indeed, in the description of this transition we
use not only the equations of state of fluids, but also the
explicit dependences of their energy densities and pressure
on the cosmological radius. Thus, in describing the passage
of the universe filled with the anti-Chaplygin gas and with
dust through the soft singularity, we put forward two
requirements: first, the cosmological evolution should be
as smooth as possible; second, the change of the character
of the dependence of the energy density and of the pressure
of the fluids should be minimal. These two requirements
imply the substitution of the formula (32) giving the pres-
sure of the anti-Chaplygin gas in the vicinity of the singu-
larity with the formula (33), yielding Eq. (34) for a > aS.
Such a substitution provides the conservation of the sign of
the pressure and the smoothness of the cosmological evo-
lution. After that the continuity equation (3) gives the
expression (35) for the energy density of the fluid and we
easily see that the anti-Chaplygin gas has been transformed
into a Chaplygin gas with a negative energy density.

ZOLTÁN KERESZTES et al. PHYSICAL REVIEW D 88, 023535 (2013)

023535-6



The situation with transformations of the tachyon field is
more complicated. First of all, let us note that there are two
different kinds of transformations, the transformation from
tachyon to pseudotachyon and the transformation from
pseudotachyon to quasitachyon. The first kind of trans-
formation was introduced in the paper [2] and it is the
transformation of the field with the Lagrangian (8) and the
potential (13) into the field with the Lagrangian (20) and
the potential (21). This transformation is not connected
with the crossing of the singularity. When the pressure of
the tachyon field vanishes, the potential and kinetic terms
in the Lagrangian (8) become ill defined. However, the
equations of motion of this field can be continued to the
part of the phase space of the corresponding dynamical
system, where the pressure is positive. The new Lagrangian
(20) and (21), well defined in this region, gives the equa-
tion of motion which coincides with the old equation of
motion given by the Lagrangian (8) and (13). Formally, we
can describe this transition by introducing the absolute
values into the expressions under the square root sign in
both the kinetic and potential terms of the Lagrangian (8).
However, we would like to stress that the main role in the
transformation from the tachyon to the pseudotachyon is
played by the equations of motion.

The justification of the transition from the pseudo-
tachyon field to the quasitachyon field with the Lagrangian
(44) is more subtle. This transformation is induced by the
crossing of the soft singularity in the presence of dust and
there is no way to use the continuity of the form of the
Lagrangian or the conservation of the form of the equations
of motion. We use instead the fact that the equation of state
of the pseudotachyon field with constant potential coin-
cides exactly with that of the anti-Chaplygin gas. Thus, to
provide a passage which is as smooth as possible of the
universe filled with the pseudotachyon field with constant
potential through the soft singularity we should find such a
Lagrangian of a Born-Infeld-type field which is equivalent
to the Chaplygin gas with a negative energy density.
Following this path we come to the quasitachyon field
with Lagrangian (41). The last step consists in the general-
ization of the Lagrangian (41) for the case of an arbitrary
potential (44). Such a generalization is justified by the fact,
that in the vicinity of the soft singularity, the change of the
potential term of the pseudotachyon field is much slower in
comparison with the kinetic term.

While the transition from the pseudotachyon to the
quasitachyon is more radical and intricated than the other
matter transformations considered here and in the preced-
ing papers, it still looks quite logical and probably the only
one which is possible.

The construction developed in the paper might be inter-
preted as gluing two charts of a Friedmannian universe
across the (spatially homogeneous) hypersurfaces of sin-
gularity. In the case of the fluid, its energy density is
positive in one chart and negative in the other chart, with

separate forms of equations of state in each chart. As a
homogeneous universe is an idealization, let us conclude
this subsection with a remark concerning the possible
generalization to inhomogeneous cosmologies. Here the
gluing can still be enforced along the hypersurface with
zero energy density of the exotic fluid. For the scalar field
the gluing hypersurface could be also defined as having
zero energy density, however its definition would be more
cumbersome, due to the different Lagrangians of the field
in the two charts.

IV. FUTURE EVOLUTION OF THE TACHYON
FIELD WITH TRIGONOMETRIC POTENTIAL

AND DUST: NUMERICAL RESULTS

The tachyon model with trigonometric potential was
tested in [14] by comparing it with SNIa data. In that paper
we found the range of values of the model parameter k and
tachyon field initial conditions fitting well the SNIa data.
Then we studied future evolutions starting from acceptable
initial conditions. While a subset of the corresponding
trajectories leads to a de Sitter expansion, a complementary
subset of trajectories leads to a Big Brake singularity. The
evolution after the Big Brake singularity crossing was
described in [4].
In subsection IVAwe investigate the compatibility with

SNIa data of this dark energy model in the presence of
dustlike matter. We use the Union2 SNIa data set [15]. We
show that the model fits the SNIa data well also in the
presence of dustlike matter.
In subsection IVB we investigate the future evolution

numerically for those trajectories which run into the soft
singularity at time tS1 . We give specifically the time inter-

vals measured from today for the following events: tdec
when the cosmic expansion becomes decelerated; t� cor-
responding to the tachyon-pseudotachyon transformation
(crossing the corner of the rectangle in the phase portrait of
the model); tS1 when the first soft singularity is reached;

tturn corresponding to the turning point when the universe
starts contracting; tS2 when the second soft singularity is

reached; and finally the time tBC of the Big Crunch.

A. Test with supernovae data

The tachyon field violates the strong energy condition
when _T2 < 1, as required by a dark energy candidate. For a
reasonable fit with supernova data we assume _T2 < 1. In
the regime where a varies monotonically with time it may
be convenient to replace the cosmological time with a
monotonic function of the scale factor as a new indepen-
dent variable. We choose the redshift 1þ z ¼ a0=a as
a new independent variable2 (here and henceforth the

2We note that since the Friedmann equation is a first integral it
can be used as a check of the accuracy of the numerical
integration.
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subscript 0 refers to the value of the respective quantities at
the present epoch).

The model depends on the parameters k and �. For
given values of these parameters the possible solutions
depend on the quantity of dust and on the initial conditions
y0, _T0 for the tachyon field. However, the Friedmann
equation implies the following constraint

_T 0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

�;0½1� ð1þ kÞy20�
ð1��m;0Þ2ð1� y20Þ2

vuut ; (53)

where (remembering our convention 8�G=3 ¼ 1)

��;0 ¼ �

H2
0

; �m;0 ¼ �m;0

H2
0

; (54)

showing that � is determined by the values of the other
parameters. In what follows we fix k ¼ 0:4 and vary �m;0

through the values f0:03; 0:09; 0:15; 0:21; 0:27; 0:33g. As in
paper [14] we avoid the double coverage of the parameter
space (the model has a symmetry given by Eq. (19)) by
replacing _T0 [14] with the new variable3:

x0 ¼ 1

1þ _T2
0

: (55)

The initial conditions x0 and y0 vary inside the rectangle
1
2 � x0 � 1, jy0j � 0:845. Finally, we introduce the lumi-

nosity distance dL whose evolution is given by

d

dz

�
dL

1þ z

�
¼ 1

H
: (56)
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FIG. 1 (color online). The fit of the luminosity distance vs redshift for the parameters k ¼ 0:4 and �m ¼ 0:03 (upper left), 0.09
(upper right), 0.15 (middle left), 0.21 (middle right), 0.27 (lower left), 0.33 (lower right), in the parameter plane ðy0; x0Þ in the range
jy0j � 0:845 where the potential V is well defined. The contours refer to the 68.3% (1�) and 95.4% (2�) confidence levels. The color
code for �2 is indicated on the vertical stripes. The clear tendency with increasing the dust component is that the parameter x0
approaches its maximally allowed value (representing _T0 ¼ 0). Higher values of �m render the fit with the supernovae outside the 1�
region.

3The parameter x0 is denoted by w0 in [14].
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Fitting to the supernovae data involves a �2-test, as
described in Refs. [14,16]. In Fig. 1 we show the �2 values
in the parameter plane of the initial conditions ðy0; x0Þ. The
contours correspond to the 1�, 2� confidence levels with
�2 ¼ 570:34 and �2 ¼ 612:33, respectively.

B. Future evolution

As in the preceding papers [4,14] we study numerically
the future evolution of the universe starting with initial
conditions compatible with SNIa data. However, our task
now is technically more complicated due to the presence of
dust. As a matter of fact, we shall have to consider five
different regimes, where different systems of dynamical
equations are used and we should provide four accurate
matching between these evolutions. First, the universe
starts its evolution at some point in the rectangle on the
phase space of Fig. 4 of [2]. Here the field T satisfies the
equation of motion (12) and the right-hand side of the first
Friedmann equation includes the contribution of dust (27)
and of the tachyon field (10). After the crossing of the
corner (at t�), the tachyon field transforms into a pseudo-
tachyon field with equation of motion (26) and energy
density (24). This is the second regime. The third regime
enters into action after the first crossing of the soft singu-
larity (at tS1), when the pseudotachyon transforms itself

into a quasitachyon with equation of motion (45) and
energy density (46). After the passing of the point of
maximal expansion of the universe (at tturn) we enter into
the fourth regime when the universe starts contracting.
After the second soft singularity crossing (at tS2) we have

the fifth regime, where the quasitachyon converts itself
again into a pseudotachyon. Finally, the universe ends in

a Big Crunch (at tBC). The corresponding times are shown
in Table I for�m;0 ¼ 0:03 and in Table II for�m;0 ¼ 0:27.
These times have been computed assuming for H0 the

value 70 km s�1 Mps�1. It is known that there is a certain
discrepancy between the value of the Hubble parameter
arising indirectly from the cosmic microwave background
and baryon acoustic oscillations [17], and the one more
directly obtained from local measurements of the relation
between redshifts and distances to sources [18] (for a
recent analysis of this problem see [19]). The former
gives HCMB

0 ¼ 67:89� 0:77 km s�1 Mps�1, while the lat-

ter gives Hlocal
0 ¼ 73:8� 2:4 km s�1 Mps�1. Nevertheless,

the precise value of H0 is not so important for our study,
hence, we have taken an intermediate value.
Now we can turn to the analysis of the Tables I and II. In

Table I different times measured from today are given for a
low amount of dust�m;0 ¼ 0:03 and in Table II for�m;0 ¼
0:27. So we see the effect of the addition of dust in a
systematic way. Three comments are in order here.
First, the time interval t� between today and the first

transition into the pseudotachyon varies considerably
within the set of trajectories compatiblewith the supernovae
data. Namely, it varies from 0.9 to 9.5 billion years for
�m;0 ¼ 0:03 and from 1 to 21 billion years �m;0 ¼ 0:27.
Second, the time intervals between t� and the Big Crunch
time tBC are practically constant (about 1.1 billion years for
the first case and about 1.2 billion years for the second case).
A similar property was found in the model without dust [4].
Third, the time interval between the two soft singularity
crossings tS2 � tS1 decreases strongly (from 810 thousand

years to 70 thousand years for the first case and from 0.03 to
0.0002 billion years for the second case) when the value of

TABLE I. Key times in the evolution of tachyon universes for k ¼ 0:4 and�m;0 ¼ 0:03 are given. The first two columns give initial
values x0, y0 in agreement with supernovae data at the 1� confidence level. Remaining columns starting from left give the successive
times (measured from the present time): tdec when the expansion becomes decelerated, the tachyonic transition time t�, the first soft
singularity crossing time tS1 , the turning point tturn, the second soft singularity crossing time tS2 and finally the Big Crunch time tBC.

Times are given in 109 yrs unit and calculated assuming H0 ¼ 70 km s�1 Mpc�1.

y0 x0 tdec t� tS1 tturn tS2 tBC

�0:80 0.725 0.60658 0.89098 1.71951 1.71980 1.72032 2.01708

�0:80 0.755 0.65334 0.90487 1.69670 1.69698 1.69747 1.99019

�0:75 0.875 2.24655 2.48989 3.29101 3.29119 3.29153 3.59233

�0:65 0.875 6.64484 6.87894 7.69232 7.69237 7.69247 8.00317

�0:60 0.845 9.29396 9.52553 10.34418 10.34420 10.34425 10.65883

TABLE II. Same as in Table I for �m;0 ¼ 0:27.

y0 x0 tdec t� tS1 tturn tS2 tBC

�0:80 0.770 0.65390 1.05684 1.90378 1.91751 1.93727 2.24682

�0:75 0.875 2.53938 2.90537 3.78730 3.79630 3.80968 4.13589

�0:75 0.950 3.11633 3.43361 4.28179 4.28892 4.29969 4.62210

�0:70 0.965 6.64092 6.92923 7.81031 7.81302 7.81738 8.15389

�0:65 0.995 21.07994 21.33077 22.22677 22.22681 22.22689 22.57314
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t� increases. This can be ascribed to the fact that the density
of dust, at the moment of the first soft singularity crossing
tS1 , for the universeswith high values of t� is greatly reduced
compared to those with small values of t�. Indeed, in the
absence of dust the two values tS1 and tS2 coincide and we

have a unique Big Brake singularity.
On Fig. 2 the evolutions are shown in the three-

dimensional coordinate space x, y, z for six different values
of�m;0. For the trajectories ending in a de Sitter space, the

final point has coordinates (1, 0,�1). For other trajectories

we present only the evolutions until the first soft singularity
crossing. Generally, the sets of initial conditions, compat-
ible with the supernovae data (the regions in the plane ðx; yÞ
at z ¼ 0) decrease as the quantity of dust increases and
vanish for �m;0 > 0:33. Also, as �m;0 increases, the num-

ber of trajectories going to a soft singularity is decreasing
compared to those ending in a de Sitter space.
This work is done with the spatially flat paradigm in

mind. However, as this model is constrained using SNIa
data, it is interesting to relax the assumption of flatness in
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FIG. 2 (color online). The future evolution of those universes, which are in a 68.3% confidence level fit with the supernova data. The
1� contours (black lines in the z ¼ 0 plane) are from Fig. 1 (the parameter plane ðy0; x0Þ is the z ¼ 0 plane here). The sequence of
figures and the values of �m;0 are the same as on Fig. 1. The point (1, 0, �1) is the de Sitter final state.
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this case and to consider also non-flat universes with a
spatial curvature allowed by observations. Indeed in a
spatially closed universe the curvature and matter terms
in the Friedmann equation could cancel each other at some
(negative) redshift zcurv

1þ zcurv ¼ j�k;0j
�m;0

: (57)

The quantity �k;0 is strongly constrained by observations,

�0:0065 � �k;0 � 0:0012 (95% C.L.) with central value

�k;0 ¼ �0:0027 [20]. Hence a slightly spatially closed

universe is favored.
Of course the tachyon, like any scalar field model and in

sharp contrast to the anti-Chaplygin gas, does not have a
barotropic equation of state. Therefore the amount of
expansion needed to reach the soft singularity depends
on the initial conditions. It is quite clear however that for
models studied here we will have jzS1 j< jzcurvj. Hence the
kind of problem considered in this paper, and the mecha-
nism suggested in order to cross the soft singularity, will
remain even in the presence of a tiny curvature. But we
conjecture that peculiar initial conditions do exist for
which this is no longer the case.

V. CONCLUDING REMARKS

Soft cosmological singularities known since the 1980s
[21] have been attracting growing attention during the
last few years [22]. In this paper we have continued the
investigation of particular cosmological models based on
tachyon fields or perfect fluids (introduced in paper [2]),
for which soft singularities arise in a natural way. The main
result of our investigation is the description of a smooth
crossing of soft singularities, arising in models with anti-
Chaplygin gas or of a particular tachyon field in the pres-
ence of dust. Such a crossing is accompanied by certain
transformations of matter properties, embodied in a change
either of equation of state or of Lagrangian.

The interesting feature of the tachyon model is that there
exist cosmological evolutions whose past is compatible
with the supernova data and whose future reveals ‘‘exotic
phase transitions,’’ which are described here in detail. We

have performed a detailed numerical analysis of these
evolutions.
All our studies, both theoretical and numerical, were

performed assuming a spatially-flat universe. Next inter-
esting step for the study of dark energy models possessing
soft future singularities is the inclusion of spatially closed
universes. Indeed, observations do allow for a tiny spatial
curvature, a positive curvature being slightly preferred.
While a tiny viable curvature will not change the situation
for most models studied in this paper, a larger number of
situations can arise in the presence of spatial curvature for
the tachyon models because of their rich dynamics. Indeed,
if the universe reaches the point of maximal expansion
before occurrence of the soft future singularity, the latter
will not occur at all. In the case of our tachyon model this
can happen for specific initial conditions. If for some
peculiar initial conditions the turning point and the soft
singularity coincide the latter retains its character of a Big
Brake singularity. (In another dark energy model, based on
a standard scalar field, such an interplay between turning
point and the encounter with a soft singularity was consid-
ered in [23]). For a comprehensive investigation of these
situations a more detailed study is required, both theoreti-
cal and numerical and this is left for future work [24]. In
contrast, the possible situations in the case of the anti-
Chaplygin gas are more straightforward.
Another interesting direction of development of the

present work is the consideration of cosmological pertur-
bations and their possible influence on the structure of
sudden singularities and on the conditions of their crossing.
To our knowledge no systematic study of this kind ap-
peared yet in the literature.
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