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Supersymmetry and string theory suggest the existence of light moduli. Their presence, or absence,

controls the realization of supersymmetry at low energies. If there are no such fields, or if all such fields

are fixed in a supersymmetric fashion, the conventional thermal production of lightest supersymmetric

particle dark matter is possible, as is an anomaly-mediated (‘‘mini-split’’) spectrum. On the other hand,

the axion solution to the strong CP problem is not operative, and slow roll inflation appears difficult to

implement. If there are light moduli, a mini-split spectrum is less generic, weakly interacting dark matter

appears atypical, and the supersymmetry scale is likely tens of TeV or higher.

DOI: 10.1103/PhysRevD.88.023533 PACS numbers: 98.80.Cq, 11.30.Pb, 04.65.+e

I. INTRODUCTION

Both the relatively large mass of the StandardModel–like
Higgs boson discovered at the LHC [1,2] and current
bounds on superpartners place tension on models of weak-
scale supersymmetry. It is possible to achieve a Higgs
mass of 125 GeV in nonminimal models while placing
superpartners just beyond the reach of current searches
and minimizing the usual measures of fine-tuning [3].
However, within the minimal model, a Standard Model–
like Higgs boson at 125 GeV is suggestive of SUSY-
breaking in the range of 10s of TeV or higher [4–9],
corresponding in the most naive estimate to parameter tun-
ing at a level of part-in-104 if the cutoff scale is high. Thus it
is worth considering the possibility that if supersymmetry
plays a role in nature, the scale of its breaking is higher than
expected from conventional ideas of naturalness.

Prior to the LHC exclusions and the Higgs discovery, at
least two arguments pointed to a SUSY-breaking scale
above (likely well above) 10 TeV. The first is the experi-
mental constraints on flavor-changing neutral currents and
CP violation. If phases and mixings are Oð1Þ, these pro-
cesses already probe SUSY scales in the range of hundreds
of TeV (see, for example, the recent study of [10]).
However, if phases and mixings are small, either acciden-
tally or due to some structure, the bounds are diluted.

The second argument arises from the cosmological mod-
uli problem [11,12]. Moduli (strictly speaking pseudomo-
duli) are ubiquitous in string compactifications. They are
characterized by the property that sufficiently far away in
the field space, the potential for these fields vanishes. In
theories of low-scale supersymmetry breaking, one expects
the masses of these fields to be of order of the gravitino
mass or larger. While on the one hand such fields might
seem problematic, on the other they might play a role in
understanding two pressing problems in particle physics
and cosmology: the strong CP problem and inflation.
Many string moduli respect discrete shift symmetries,
which have the potential to give rise to accidental, con-
tinuous Peccei-Quinn symmetries. Moreover, fields with

very flat potentials would seem desirable to account for
slow roll inflation. But quite generally, if present, moduli
have (other) profound consequences for cosmology.
Except under special circumstances, before these fields
settle into their ground state, for a long period they domi-
nate the energy density of the universe. If the moduli have
Planck-suppressed couplings, then unless they are quite
heavy, they decay long after nucleosynthesis, destroying
light elements and spoiling the success of this pillar of the
Big Bang theory. Moduli masses must be at least 10s of
TeV and probably larger if their lifetimes are to be suffi-
ciently short. In this case, however, lightest supersymmet-
ric particle (LSP) dark matter is not produced thermally.
The possibility that a stable LSP might be nonthermally
produced via moduli decays has been widely discussed
(see, for example, [13,14]).
Therefore several considerations point to a surprisingly

high scale of supersymmetry breaking. Adopting this
‘‘heavy SUSY’’ viewpoint raises the following questions:
(1) Even if supersymmetry is broken at a high scale,

might some states remain parametrically lighter and
be directly visible at the LHC? Are the heavy states
indirectly visible in experiments searching for elec-
tric dipole moments or rare decays?

(2) Once one has admitted some degree of fine-tuning,
how much fine-tuning might there be? Are there any
upper bounds on the supersymmetry breaking scale,
following (for example) from cosmological consid-
erations or coupling unification?

One interesting suggestion as to how LHC-observable
phenomena might emerge from supersymmetry breaking
at a very high scale has been dubbed ‘‘mini-split super-
symmetry’’ [5,6,15]. In these models, gauginos are signifi-
cantly lighter than other superpartners, typically with a
winolike LSP. It is possible in such cases that the gauginos
may be seen at the LHC, even though the scale of the other
superpartners is much higher. More generally, the follow-
ing arguments for a split structure have been advanced:
(1) Because of symmetries, the gaugino/sfermion mass

hierarchy is generic (it is probably not meaningful to
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say this is ‘‘natural,’’ as the structure requires
significant fine-tuning).

(2) The split spectrum is compatible with unification,
perhaps even more compatible than more ‘‘natural’’
models.

(3) The lightest gaugino yields a dark matter candidate.
These features are present in models of anomaly-mediated
SUSY-breaking [16–20], as well as in attempts to build
string models based on G2 manifolds [7] and on variations
of the KKLT scenario [21].

In this paper, we point out that the existence of moduli,
and their nature, is a controlling issue in the realization of
supersymmetry: the breaking scale of supersymmetry,
possible hierarchies of supersymmetric particles, and the
nature of and production of dark matter are governed by the
presence or absence of moduli. In this framework, our
main focus will be gravity mediation, though we will
make some comments on gauge mediation (see also [22]).

Our principle observation is that one can enumerate
three possibilities for moduli in supersymmetric theories,
each with distinct consequences for low-energy physics:

(1) No moduli: In this case, dark matter can be
produced thermally. Split supersymmetry is a likely
outcome, but there is no compelling setting either
for inflation or the resolution of the strong CP
problem. A variant is the possibility that all moduli
are charged under an unbroken (or nearly unbroken)
symmetry [23].

(2) Supersymmetric moduli (only): Here (all of)
the moduli � have jF�j � m3=2Mp. Thermal pro-

duction of dark matter requires extremely heavy
moduli; nonthermal production in moduli decays
requires a slightly lower scale. A split spectrum is
likely, but the anomaly-mediated contributions are
not necessarily dominant. Again, there is no attrac-
tive setting for the Peccei-Quinn solution of the
strong CP problem, but supersymmetric moduli
are candidate inflatons.

(3) Nonsupersymmetric moduli: an anomaly-mediated
spectrum appears nongeneric. If a stable LSP is kine-
matically accessible, it is overproduced. The dark
matter, then, needs to be something other than
weakly interacting massive particles (WIMPs),
such as axions. For fixed axion decay constant fa,
there is an upper limit on the modulus mass.

The first two possibilities do not violate any obvious
principle of theories of gravity, but string theory examples
of these phenomena are hard to come by. The third scenario
requires moduli masses in the 100 TeV range, and was
initially viewed with skepticism because of the resulting
fine-tuning. But given the lack of compelling examples of
the first two solutions, the possibility of heavy nonsuper-
symmetric moduli and correspondingly high scale of su-
persymmetry breaking has always demanded serious
attention. This paper will elaborate these points.

In Secs. II, III, and IV we discuss the cases of no moduli,
supersymmetric moduli, and nonsupersymmetric moduli.
In Sec. V we discuss constraints on moduli if dark matter is
composed of axions and in particular upper bounds on the
moduli masses, and in Sec. VI we discuss briefly the case
of scalar fields with stronger-than-Planck-strength interac-
tions [21,23,24]. In Sec. VII we conclude, summarizing
how the moduli scenarios we have outlined control the
nature and phenomenology of low-energy supersymmetry.

II. ABSENCE OF MODULI

The moduli observed in string models might be artifacts
of theorists’ efforts to construct weak coupling quantum
gravity theories. It is possible that nature may exhibit low-
energy supersymmetry without moduli. Supersymmetry
may be broken in a sector of the theory without gauge
singlet fields with large F components. This is typical of
many models of dynamical supersymmetry breaking
such as the ISS models with metastable supersym-
metry breaking and models with stable dynamical super-
symmetry breaking. In these models one would expect
the leading contribution to gaugino masses to arise
through anomaly mediation, leading to a split spectrum.
References [5,25,26] have stressed that certain threshold
effects can lead to a spectrum which is not strictly
anomaly mediated. In the next section, we will see another
way in which a more ‘‘compressed’’ spectrum might
readily arise.
In a theory without moduli, if the universe was already in

thermal equilibrium at very high energies, a viable thermal
relic abundance of a winolike LSP may be produced. As
noted in [14,27], the wino mass in this case tends to be large
(2.7–3 TeV), and, with a strictly anomaly-mediated spec-
trum, all of the gauginos are far beyond the reach of the LHC.
While in some respects very simple, the no-modulus

scenario has unappealing features. First, as we have noted,
moduli would seem likely candidates for axions, and this
possibility is unavailable. As we will describe in Sec. VI, a
more complicated (and perhaps less plausible) structure is
necessary to implement the Peccei-Quinn solution of the
strongCP problem in such theories. Second, from the point
of view of slow roll inflation, the absence of moduli is
troubling. One could certainly imagine that the role of the
inflation is played by a field with a potential which is flat in
some suitable region of field space, but moduli appear
ready-made to satisfy the conditions for slow roll inflation.

III. SUPERSYMMETRIC MODULI

By a supersymmetric modulus, we mean a modulus with
a mass parametrically larger thanm3=2. Because the mass is

supersymmetry preserving, it should arise from a mass
term in the superpotential, while in order that the field be
considered a modulus, its higher order couplings must be
small. We can parametrize the superpotential as
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W� ¼ m�M
2
pwð�=MpÞ: (1)

Perhaps the most well-known model containing supersym-
metric moduli is the KKLT scenario, for which the super-
potential has this form, as we will review shortly. First let
us consider a simple toy model. We can define the origin
for � so thatW contains no linear term in �. To determine
the typical size of h�i and hF�i, we need to include

supersymmetry-breaking dynamics. Suppose W has the
form of Eq. (1), and an additional piece responsible for
supersymmetry breaking,

W ¼ W� þW0 þ fX: (2)

We suppose that the Kähler potential is such that X is
stabilized at the origin. Then including a general Kähler
potential for �,

K ¼ ðk�1 �þ c:c:Þ þ�y�þ ðk�3 �y��þ c:c:Þ: (3)

At the minimum,

� ’ k�1
m3=2

m�

Mp; (4)

and the F component of � is of order

F� ’ k�1
m3=2

m�

m3=2Mp: (5)

In such models, � can couple to W2
� with Oð1Þ coefficient

and maintain the minimal anomaly-mediated spectrum as
long as m� is at least two or three orders of magnitude

larger than m3=2.

A. KKLT

The scenario popularized by KKLT provides a model for
supersymmetric moduli of the type we have described. It
also illustrates possible additional problems with such
cosmologies. The model is described by an effective
Lagrangian for a field, �, with superpotential

W ¼ e�b� þW0; (6)

with small W0. The Kähler potential is

K ¼ � ln ð�þ �yÞ: (7)

The model has a supersymmetric minimum with

� � 1

b
log ðW0=bÞ: (8)

At the minimum, � is large. Supersymmetry must be
broken by some other dynamics. It is often argued that
there can be explicit breaking by D branes, but it is not
clear that this is consistent. A simple possibility is that
there are some other light degrees of freedom which spon-
taneously break supersymmetry [21,28,29]. For example,
introduce a field X with superpotential

WX ¼ fX (9)

and a Kähler potential

KX ¼ aX þ c:c:þ XyX þ � � � (10)

where the higher-order terms are chosen so that X ¼ 0 at
the minimum of the potential (this is a definition of the zero
of X). Then we can relate m� to m3=2:

m2
� ¼ �2m2

3=2: (11)

Supersymmetry breaking induces a shift in � of order

��� 1

�
(12)

and a corresponding shift in F�. F� is suppressed relative

to m3=2Mp. In particular,

eKjF�j2g��y �m2
3=2M

2
p

�
m3=2

m�

�
2
: (13)

If we suppose that m3=2 � 10 TeV, and that �� 4�
�gut

,

then the reheating temperature (assuming � is the only
modulus) is greater than 5 GeV, in a range such that one
can produce a suitable dark matter density. Of course, it is
critical that � is the only light modulus; other moduli
[30,31] breaking supersymmetry lead to cosmological
difficulties. The X field above is such a modulus and would
need to be replaced by sector which dynamically breaks
SUSY without moduli. As in the no-modulus case, this
could be a theory with stable, dynamical supersymmetry
breaking, or a theory with metastable breaking, such
as ISS.1

We might expect a �W2
� coupling. The nonzero F� will

then contribute to gaugino masses. This contribution is
of order

m� � m3=2

�
: (14)

The anomaly-mediated contributions then only dominate
if � is sufficiently large (or equivalently the modulus is
quite heavy compared to m3=2).

There are other cosmological issues associated with
such moduli, particularly the problem of overshoot [32]
and related destabilization issues. Various solutions to this
problem have been proposed. Specifically in the frame-
work of KKLT models, ‘‘racetrack’’ type superpotentials
[33–35] may naturally lead to heavy moduli which avoid
these difficulties. They are also argued to lead to anomaly-
mediated gaugino masses [21,36]. Other solutions have
been discussed, for example, in [37]; as our focus is
on somewhat different issues, we will not assess these
scenarios further here.

1One of the scenarios discussed in [21] is a realization of this
latter possibility.
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One can contemplate variants of the scenario where the
would-be modulus acquires mass comparable to the Planck
mass [28].2 This would be a realization of the no-moduli
scenario (in the absence of a pseudomodulus, i.e. replacing
X by a model of dynamical supersymmetry breaking
without moduli).

B. Consequences of supersymmetry for moduli decays

It is straightforward to show that the decay rates into the
scalar and fermionic components of a lighter multiplet are
related in specific ways by supersymmetry, up to correc-
tions proportional to the soft masses. In Appendix A we
discuss how this works at tree level for the dimension-five
operators mentioned previously. In Appendix B we outline
a more general argument from the unitary representations
of the SUSY algebra. Here, for brevity, we sketch an
argument from field theory for the case of decays to a
massless multiplet. Consider first a simple Wess-Zumino
model with a heavy field, �, and a massless field, �. For
the superpotential, take

W ¼ 1

2
M�2 þ ����: (15)

Supersymmetry relates the Green’s functions:

hF�
�ðx1Þc �ðx2Þc �ðx3Þi��� ¼ 2h�ðx1Þ�@	�ðx2Þ@	�ðx3Þi:

(16)

This relation can be proven easily, for example, by
considering the superspace Green’s function:

h��ðx1; 
1Þ�ðx2; 
2Þ�ðx3; 
3Þi: (17)

The left hand side of Eq. (16) is the coefficient of �
21
2
3
in this Green’s function; translating by 
1 in superspace,
the coefficient of this term is the right-hand side of the
equation.

To extract the decay amplitudes, we can apply the LSZ
formalism. First we note the relations for the Green’s
functions, in momentum space,

hFyFi ¼ p2h�y�i: (18)

So we can relate the single particle matrix elements needed
for LSZ; those of � and F differ by a factor of m2, the
physical on-shell mass. There are two possible initial states
(which can be thought of as the scalar and its antiparticle)
and two possible final states in either the two boson or two
fermion channel. Combining the Ward identity for the
Green’s functions and the result for the single particle
matrix elements demonstrates the equality of the two

boson and two fermion matrix elements. The result is
readily verified at tree level.
Similarly, for a scalar coupled to W2

�, one can prove an
equality for the matrix elements (and hence the rates) for
the decays: � ! A	 þ A	 and � ! ��. When supersym-

metry is broken these equalities will fail, but, except for
tuned values of the parameters, we expect the rates to be
comparable.

C. Moduli decays and the reheat temperature

We can consider, then, the lifetime of the moduli
(first in the supersymetric case). The lifetimes depend on
the kinetic terms for the moduli and their couplings to other
fields and one can obtain quite different results with differ-
ent choices. Given that much of the motivation to consider
moduli comes from string theory, it seems appropriate to
consider kinetic terms familiar from various string models.
We take as a model the heterotic string compactified on a
Calabi-Yau manifold, and take the modulus to be the
so-called model-independent dilaton. Then the Kähler
potential and gauge coupling functions are [38]:

K ¼ �M2
p ln ðSþ SyÞ; f ¼ S: (19)

Here we have taken S to be dimensionless and indicated
explicit factors of Mp. In this case where the decay is

principally through the coupling SW2
�, the decay rates to

pairs of gauge bosons and gauginos are the same. At
leading order, summing over the gauge multiplets of the
MSSM, one obtains [39]

�ðS ! ggÞ þ �ðS ! ~g ~gÞ ¼ 3

4�

m3
S

M2
p

: (20)

This translates to a reheating temperature

TR ¼ 9:8�
�
g�ðTRÞ
10

��1=4
�

mS

105 GeV

�
3=2

MeV: (21)

For reference, we note that the minimum temperature
required to achieve successful nucleosynthesis is approxi-
mately 4 MeV [12].
An alternative model is provided by the ‘‘T modulus’’ of

simple Calabi-Yau compactifications of the heterotic string
[38]. Here:

K ¼ �3M2
p log

�
T þ T� � 1

3

��
i �i

M2
p

�
; f ¼ 0; (22)

where the �i denote the matter fields. Writing T ¼ T0 þ
�T, after rescaling the �T and �i kinetic terms to make
them canonical generates the couplings:

LT� ¼ 1ffiffiffi
3

p �T��
i �i: (23)

These are among the dimension-five operators listed in
[13]. The decay rates to fermion and boson pairs are the
same in the SUSY limit and are suppressed by m2

�=m
2
T .

2KKLT presumes that the superpotential for the modulus
contains a small constant, W0. It is conceivable that this constant
is large, and that the effective low-energy theory, after integrat-
ing out this modulus, has a small hWi, required for a small
cosmological constant. Under these circumstances, the modulus
could be quite heavy.
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When a soft mass of order m3=2 is present for the bosonic

components, there is a contribution that independent of
m�, but is still suppressed [13],

�ðT ! ��Þ � 1

4�

�
m3=2

mT

�
4 m3

T

M2
p

: (24)

Shortly, we will be interested in the nonsupersymmetric
case, and in particular the possibility that the decay chan-
nels to R-odd particles are not accessible. In that case, in
Eq. (21), 9.8 is replaced by 6.9.

D. Decays and the relic density

The most urgent question in moduli decays is the result-
ing relic density. There is the possibility of overproduction
of LSPs, if stable, and gravitinos. These lead to too-early
matter domination, inconsistent with the observed light
element abundances. We will focus principally in this
subsection on models with a conserved R-parity and a
stable LSP. We will remark at the end about the effects
of R-parity violation, postponing more detailed analysis to
a subsequent work.

We will first assume a conserved R-parity. In this case
LSPs are produced (possibly overproduced) in decays of
the modulus. It is also necessary to consider modulus
decays to gravitinos. While a 10–100 TeV gravitino is
relatively short-lived, its decay products include LSPs,
which may be problematic.

As demonstrated in the previous section, in the SUSY
limit, amplitudes for two-body decays to particles are
identical to those for two-body decays to their supersym-
metric partners. In particular, there are no helicity suppres-
sions of decays to fermions compared to decays to bosons,
as has been suggested in certain contexts.3 With heavy
supersymmetric moduli, all R-odd decays to partners of
Standard Model fields are kinematically allowed and occur
with rates approximately equal to the rates into their
R-even partners, since the light MSSM fields appear
supersymmetric to the moduli.

As a result, the number of LSPs produced per modulus
decay isOð1Þ. To keep the reheating temperature above the
temperature of nucleosynthesis requires moduli masses
above 30–100 TeV. In this range, the LSP density is an
Oð1Þ fraction of the total energy density at temperatures of
order a fewMeV, so matter domination occurs far too early.
The weak interactions freeze out at

TF � ðM�2
p G�4

F TRÞ17; (25)

which is about 1.8 MeV for TR � 5 MeV, compared with
freeze-out at 0.8 MeV in the ordinary radiation-dominated
universe. The neutron-to-proton ratio thus increases from

n=p � 1=6 at weak freeze-out to n=p � 1=2, increasing
the abundance of helium.
A simple solution to this problem is that the moduli are

heavier than 106 GeV, producing a reheating temperature
of order a few hundred MeVor higher. For supersymmetric
moduli, this large mass scale is not disturbing. If the dark
matter annihilates effectively, the reheating temperature
may be lower. In that sense an anomaly-mediated-type
spectrum may in fact seem favored, since �wino �m�2

~W
.

However, a related problem may still arise for super-
symmetric moduli, dubbed the ‘‘moduli-induced gravitino
problem’’ [40]. If moduli decays to gravitino pairs occur
with Oð1%Þ branching fraction, the decays of gravitinos
still typically overproduce dark matter, even if they avoid
BBN constraints. As pointed out in [41], exploiting the
Goldstino equivalence theorem allows analysis of this
problem by considering couplings of the modulus S to
Goldstinos. The branching fraction to gravitinos is con-
trolled by Kähler potential couplings of S to the Goldstino
superfield,4 SyZZþ c:c. This coupling might be sup-
pressed (see, for example, [43]); if not, the branching
ratio of the modulus to gravitinos is of order one. So
whether this is a problem depends on microscopic details
of the theory.
We note in passing that with supersymmetric moduli,

baryons might be produced coherently or in decays of the
modulus. If there are � baryons produced per modulus, the
baryon to photon ratio is

nB
n�

� �
T

m�

� �

�
T

Mp

�
1=3

: (26)

So, for example, for a 1 GeV reheating temperature,
we require � � 10�4. Alternatively, if � is fixed by the
microscopic theory, the mass of the modulus is determined.
So far, we have assumed a conserved R-parity. If

R-parity is violated, the role of the dark matter must be
played by some other field. Provided the R-parity violating
couplings are not too small, the lifetime of the would-be
LSP is much shorter than that of the moduli, so their
production is not a cosmological issue. For example, if
the principle source of R breaking is the coupling

WR ¼ ��t �b �s (27)

then, unless � < 10�10 or so, gaugino decays are
sufficiently rapid.

E. Summary

Supersymmetric moduli are a plausible outcome of
moduli-fixing. They are suggestive of a split spectrum for
superparticles, though anomaly-mediated contributions do
not necessarily dominate the gaugino spectrum. In such

3Both fermionic and bosonic decays from the �Q�Q operator
are proportional to small supersymmetric masses in the SUSY
limit; therefore the leading effect of this operator may be the
m4

3=2 contribution to the bosonic final states.

4Here we mean in the sense of nonlinear realizations of
supersymmetry, as in [42]; we are not assuming the gravitino
has a light supersymmetric particle.
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cases, avoiding overproduction of LSPs sets a lower bound
on the modulus mass. Avoiding overproduction of dark
matter through gravitinos places restrictions on the
microscopic details of SUSY-breaking.

IV. NONSUPERSYMMETRIC MODULI

The KKLT scenario, with supersymmetry broken in
a sector of the theory without flat directions, provides a
model for supersymmetric moduli fixing. But there are a
number of reasons to suspect that there should be moduli
which gain mass only through supersymmetry breaking
effects. The need for an axion to solve the strong CP
problem provides one motivation; in a supersymmetric
context, a nonsupersymmetric modulus seems to provide,
as we have said, an ideal axion candidate. A second mo-
tivation is provided by metastable dynamical supersymme-
try breaking, and especially the retrofitted models [44,45],
where such moduli are an integral part of supersymmetry
breaking. Inflation is also suggestive of relatively light
moduli. Successful inflation requires a mass small com-
pared to the Hubble constant during inflation. A nonsuper-
symmetric modulus automatically has mass of order the
Hubble constant, so only a modest coincidence is required.
Such a modulus also has only small self-interactions, so the
mass can readily remain small throughout and the potential
can be adequately flat.

A. F-terms

It is often assumed that there is only one modulus with
an F-term of order m3=2Mp. However, in a gravity-

mediated theory, all moduli with masses of order m3=2

will tend to have F components of this order, whether
or not they appear explicitly in the superpotential. In
supergravity, the F component of a modulus � is

F� ¼ g�1eK=2
�
@W

@�
þ @K

@�
W

�
: (28)

Here K is the Kähler potential and g is the inverse metric
on the field space.5 If � does not appear in the super-
potential, in the absence of symmetries, the second term is
of order m3=2Mp from the linear term in K.

Of course, it is possible by a redefinition of the fields to
simply define one field to have a nonvanishing auxiliary
component, while all others vanish. But the redefinition
will affect the couplings of these fields. For example, if
originally only one field couples toW2

�, then in general, all
will, including the linear combination with nonvanishing F
component. In this subsection, we will discuss in more
detail the scaling of the moduli Kähler potentials and their
implications for the spectrum.

In the retrofitted models, there is a modulus X coupled to
W2

� of some new gauge group. In the simplest case, this
hidden sector is a pure gauge theory, and X does not couple
directly to other light fields transforming under this group.
Gaugino condensation in this group gives rise to a super-
potential for X, and the X VEV is fixed by the Kähler
potential. X can be defined so that the first derivative of the
Kähler potential, K1, vanishes.
Given that X couples to the kinetic term of one gauge

group, it is likely to couple to the Standard Model gauge
groups as well. As is typical of moduli of string theory, if
we take the modulus to be dimensionless, its imaginary
part is periodic with a period we can take to be a multiple
of 2�. The gaugino masses then depend on the gauge
coupling, g2, and K2, the second derivative of the Kähler
potential at the minimum, as

m� � g2ffiffiffiffiffiffi
K2

p m3=2: (29)

The gaugino mass can be small ifK2 is large, or if the XW
2
�

coupling is for some reason suppressed.
It would seem that we are free to hypothesize whatever

form for the Kähler potential we wish, but string theory
provides some guidance. Typical Kähler potentials, as
exemplified by the dilaton of the heterotic string or Type
II theories, or the radial dilaton of each, behave like

K �� ln ðX þ XyÞ; (30)

where the corresponding field obeys the periodicity
property (with a suitable normalization)

X ! X þ 2�i: (31)

Because of the periodicity, X couples linearly to W2
�. If

there is a single field with such a coupling,

hXi ¼ g�2: (32)

Then K2 is small and the gaugino mass is of order the
gravitino mass.
With multiple fields, there are additional possibilities

allowing for hierarchies between gaugino and scalar
masses. For example, with two fields, X1 and X2, with
X1 � X2 � 1 and FX1

� FX2
, then

m� ¼ cm3=2

1

X1

� g2m3=2: (33)

An argument for moduli VEVs of this sort appears in [46].
What appears typical is that in the presence of nonsuper-
symmetric moduli, most soft SUSY-breaking masses will
be of order m3=2, without a large hierarchy.

B. Decays and the relic density

In order that nonsupersymmetric moduli decay before
nucleosynthesis (implying a reheat temperature greater than
about 10 MeV), they should decay through dimension-five
operators; if they decay through dimension-six, their masses

5This is schematic; in the presence of multiple fields, one
needs to consider diagonalization of g.
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need to be of order 107 TeV or more. Possible dimension-
five operators are listed in [13] and include the aforemen-
tioned coupling to W2

� as well as Kähler couplings to Q�Q
and HuHd.

If there is a conserved R-parity, and a modulus can
decay to the LSP, then the number of LSPs produced in a
single modulus decay (NLSP) is an important parameter
controlling the cosmology. We have already shown in
Sec. III. A that in the case of unbroken supersymmetry,
the decays to pairs of particles and their supersymmetric
partners occur at equal rates. For broken supersymmetry,
these relations are corrected, but we do not expect quali-
tatively significant changes, except for kinematic reasons
in particular regions of parameter space. Consequently, we
expectNLSP is typically�1. In this situation, an acceptable
cosmology only emerges for extremely heavy moduli.

When the temperature is around 10MeV, a large fraction
of the energy density is in LSPs. The relic density of a wino
LSP for can be estimated by integrating simple Boltzmann
equations [13]. In Fig. 1 we plot contours of the wino relic
density as a function of the wino mass and the reheating
temperature TR, obtained by numerically integrating the
Boltzmann equations. We fix NLSP ¼ 1 and take

�� � 1

2�

m3
�

M2
p

; (34)

as an estimate of the total width (compatible with our
earlier discussion).

It is clear that in this scenario the reheating temperature
should be over a few hundred MeV, corresponding to a
SUSY-breaking scale above 106 GeV, and the wino should
be extremely light compared to m3=2, so that pair annihi-

lation is more effective at reducing the density (a thermal
abundance of�h2 � 0:1 is not achieved until the reheating
temperature is of order several hundred GeV). We have

already argued that such a spectrum is atypical in the
presence of nonsupersymmetric moduli.
Similar results have been obtained recently in [14],

where it was also found that a Sommerfeld enhancement
can greatly increase the wino pair annihilation rate and
suppress the relic density to acceptable values for any
reheating temperature. However, this effect is only present
in a narrow window around m ~W � 2:4 TeV and is thus
highly nongeneric. The authors of this paper also stressed
the clear degeneracy in Eq. (34): if the width is increased by
decreasing the effective cutoff scale, the reheating tempera-
ture can be set high enough for any value of the modulus
mass. We will discuss the possibility of modulus couplings
stronger than expected with Planck suppression in Sec. VI.
To suppress the relic abundancewithout going to extreme

regions of parameter space, the most obvious possibility is
to make the moduli lighter than the LSP. An alternative
possibility is that there is no conserved R-parity and
no stable LSP. In either case, the universe might simply
‘‘reheat’’ to temperatures above nucleosynthesis, without
leaving stable (or cosmologically long-lived) relics.
Another possibility is that the gauginos are light and

modulus decays to these lighter states are somehow sup-
pressed. For example, it might be that all couplings of the
non-SUSY moduli to W2

� vanish or are highly suppressed
[by a large value of K2 in Eq. (29)]. Then the gauginos are
indeed parametrically lighter than other superparticles. It is
necessary that the moduli decay through other dimension-
five operators, such as �Q�Q and ��HuHd. If the
Higgsinos and sfermions are heavier than m�, the width

to gaugino final states will be suppressed; to keep the total
width of order Eq. (34), decays to the Higgs bosons must be
unsuppressed. The latter condition may be satisfied if
Higgsino masses of order m3=2 are obtained from an

order-one ��HuHd coupling. Such a scenario can perhaps
lead to an acceptable dark matter density, though the
Higgsinos and sfermions may have to be rather heavier
than the moduli. As we have remarked, this sort of spec-
trum seems surprising from the perspective of known string
models, but it is a logical possibility.
We note that it has recently been pointed out in [47] that

there is another cosmological problem with moduli that are
stabilized by SUSY-breaking dynamics. The axion compo-
nent of the modulus multiplet may remain very light and
generically the branching ratio of moduli into axion pairs
will be sizable. This scenario is constrained by the Planck
measurement of �Neff and the authors of [47] emphasize
that simply raisingm3=2 is insufficient to evade the bounds.

The constraints imposed on particular types of microscopic
models by this phenomenon will be described elsewhere.

C. Summary

The F-terms of nonsupersymmetric moduli are typically
of order m3=2Mp, which implies that the generic spectrum

is not split. If R-parity is conserved and gaugino masses are
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FIG. 1 (color online). �h2 for the case NLSP ¼ 1.
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comparable to those of other superparticles, viable cosmol-
ogy demands kinematic suppression of the decays of
moduli to the LSP. The simplest possibility is that any
modulus in the theory must be lighter than the LSP.
Alternatively, gauginos might be light, which requires
that moduli couplings toW2

� must vanish or be quite small.
If there is no branching ratio suppression, the reheat tem-
perature should be quite high in order to avoid overclosure,
corresponding to a high SUSY-breaking scale. Sufficient
branching ratio suppression can be achieved for lowerm3=2

if decays to sfermions and higgsinos are kinematically
forbidden and the coupling to W2

� is small (as it should
be to keep the gauginos light). As pointed out in [47],
decays of nonsupersymmetric moduli to axionlike objects
place significant constraints on the microscopic theory,
but suggest that the effective number of neutrinos at
nucleosynthesis may be larger than three.

V. AXIONS AS DARK MATTER, BARYOGENESIS,
AND UPPER BOUNDS ON m3=2

Except for models with extremely heavy moduli, or no
moduli at all, we have seen that it is challenging for the
LSP to be the dark matter. An alternative dark matter
candidate is the axion. In this section, we explore this
possibility, discovering that for a fixed axion decay con-
stant (or more precisely, 
0fa, where 
0 is the initial axion
‘‘misalignment angle’’), there is an upper bound on the
mass of the modulus. We will also consider in this section
the question of baryogenesis. Again, given the low reheat
temperature, there appear to be two possibilities: baryon
number violation in the moduli decays and Affleck-Dine
baryogenesis [48].

We have stressed that the ‘‘no modulus’’ or ‘‘all moduli
heavy’’ scenarios are unlikely settings for the axion solu-
tion to the strong CP problem, since if supersymmetry
survives to the multi-TeV scale, the would-be modulus
partner of the axion is missing. In such theories, one would
need to introduce a Peccei-Quinn symmetry along the lines
we will discuss in Sec. VI.

Therefore, we assume the existence of moduli with
masses of order m3=2, and an axion to solve the strong

CP problem. We first recall some features of axion cos-
mology in supersymmetric theories [49]. Necessarily in
such theories there is a modulus which can be thought of as
the partner of the axion. For simplicity, we will assume its
mass is of order m3=2. This field starts to oscillate when

H �m3=2. The axion starts to oscillate when ma � H.

Assuming that the moduli dominate the energy at this
time, we have that the axion energy density is of order
H2f2a. On the other hand, the modulus energy density is of
order H2M2

p. So axions constitute a fraction 
20f
2
a=M

2
p of

the energy density. This is the fraction when the moduli
decay (at, say, 10 MeV). In order that axions not dominate
the energy density before temperatures of order 1 eV,
we need


20f
2
a

M2
p

< 10�7

�
10 MeV

Tr

�
(35)

or


0fa < 1014:5 GeV

�
10 MeV

Tr

�
1=2

: (36)

If we suppose fa is given, we have an upper bound on the
reheat temperature, and correspondingly an upper bound
on the mass m�. In particular, for 
0fa ¼ 1014:5,

m� & 100 TeV: (37)

Another upper limit arises from baryogenesis. Consider
first the possibility that baryons are produced in the decays
of the � particle; assume that there are � baryons per
decay (independent of the mass of �). In that case, the
baryon-to-photon ratio is of order

nB
n�

¼ �
Tr

m�

’ �

�
90

�2g�

�
1=4

�
m�

2�Mp

�
1=2

: (38)

Alternatively, suppose that the baryons are produced by
AD baryogenesis. We can again parameterize this process
in terms of the number of baryons per modulus, �, and we
can again write the baryon-to-photon ratio as in Eq. (38).
We can understand the parameter � more microscopically
in such a framework by assuming that the baryon number is
generated along a flat direction described by a pseudomo-
dulus �. We suppose that this field has a mass of order
m3=2, and that the flat direction is raised by the appearance

in the superpotential of an operator,

WB ¼ 1

Mn
p

�nþ3: (39)

We also suppose that in the early universe, there is a term in
the� potential,�H2j�j2. As a result, whenH � m3=2, the

� field begins to oscillate. Its amplitude is of order

�nþ1 � Mn
pm3=2: (40)

Correspondingly, assuming thatWB is baryon-number vio-
lating and possesses phase �, the baryon number density is

nB � m3=2ðm3=2M
n
pÞ 2

nþ1 tan ð�Þ: (41)

The number density of moduli at this time is of order
m3=2M

2
p (including all moduli, so that H is of order

m3=2), so

nB
n�

�
�
m3=2

Mp

� 2
nþ1

tan ð�Þ: (42)

VI. MORE STRONGLY INTERACTING MODULI:
AXIONS WITHOUT MODULI

In string theories, it is often true that at points (or on
subspaces more generally) of the moduli space, there are
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light particles. At these points, the moduli interactions with
themselves may be stronger than expected if they were
simply described by Planck scale local operators. The
modulus lifetime can be much shorter and reheating tem-
peratures higher. Indeed, as these are typically points of
enhanced symmetry, it is possible that the universe simply
finds itself at such a point as inflation ends, and there is no
moduli problem at all [23]. From the point of view of
cosmology, this is similar to the ‘‘no modulus’’ case we
have discussed.

More generally, one can wonder about our use of the
Planck scale, as opposed to, say, a scale suppressed by
powers of g2. As we have just seen, if there is just one
modulus, with a logarithmic Kähler potential, everything
scales with Mp. With more moduli, different scalings are

possible, as we saw in our discussion of gaugino masses in
the previous section. Even with a single field, if one
permits more general Kähler potential, there are other
possibilities. Still, we view our estimates of lifetimes and
masses as representing a ‘‘typical’’ behavior away from
possible enhanced symmetry points.

To illustrate possible behaviors, suppose that at the en-
hanced symmetry point, the theory exhibits a linearly real-
ized symmetry, under which the modulus (and other fields
of the theory) transform by a phase. The modulus, X, might
couple to messenger fields, as in gauge mediation, and other
fields, so as to lead to a small breaking of the symmetry.
The low energy theory would contain operators suppressed
by powers of 1=hXi, rather than 1=Mp [21,23,24].

We can also contemplate axions which are not parts of
moduli fields, according to our definition, but rather light
fields with comparatively flat potentials, perhaps due to a
discrete symmetry. These might resolve the strong CP
problem in theories without moduli or with only super-
symmetric moduli, but they must satisfy certain stringent
requirements. These fields could also play a role in the
transmission of supersymmetry breaking. Consider a
model [49] with a field � coupling to a pair of vectorlike
messenger fields and another gauge singlet S0,

W 	 W0 þ� �QQþ 1

Mn
p

�nþ2S0; (43)

for some integer n. We can assume the model respects a
discrete symmetry that accounts for this structure and
forbids a linear term in the Kähler potential. If � obtains
a negative mass from SUSY-breaking��m2

3=2, the global

symmetry is spontaneously broken, generating a VEV

h�i � ðm3=2M
n
pÞ 1

nþ1. The F-term is then of order F� �
m3=2h�i and produces gauge-mediated contributions to

the soft masses in the visible sector when the Q, �Q multip-
lets are integrated out. At 1-loop, there is a �W2

� coupling
of order ð16�2h�iÞ�1. This leads to gauge-mediated
gaugino masses loop-suppressed relative to m3=2, as in

the anomaly-mediated contribution. The two-loop gauge-
mediated scalar masses are of order the squared gaugino

masses, and suppressed relative to supergravity contribu-
tions. Consequently it is possible for the visible spectrum
to remain hierarchical, again bearing similarity to the ‘‘no
modulus’’ case.
This model has an approximate Uð1Þ global symmetry

which can play the role of the Peccei-Quinn symmetry. It is
crucial that this be a very good symmetry; as is well
known, this requires that the underlying discrete symmetry
be quite large (e.g., Z12). In models without generic
Planck-suppressed moduli, such a structure is necessary
to implement the Peccei-Quinn mechanism. The cosmo-
logical moduli problem is avoided, and the structure of the
visible soft masses is model dependent.

VII. CONCLUSIONS

While the arguments for TeV scale supersymmetry have
long seemed compelling, for some time there have been
other reasons to contemplate the possibility that if super-
symmetry plays a role in low-energy physics, the scale of
supersymmetry breaking might be 10s of TeV or higher.
The question of cosmological moduli has been among the
most troubling of these. In this paper, we have seen that the
presence or absence of moduli is a controlling considera-
tion for supersymmetry phenomenology. If there are no
moduli, a spectrum with gaugino masses smaller by a loop
factor than scalar masses seems likely, and WIMP dark
matter is produced by conventional thermal processes. On
the other hand, the Peccei-Quinn solution to the strong CP
problem is not easily embedded into a UV framework. In
this case, needless to say, moduli cannot provide an expla-
nation for an unexpectedly high scale of supersymmetry
breaking. In such a picture, the LHC might find evidence
for supersymmetry along the lines discussed in Ref. [5].
If there are only supersymmetric moduli, a split spec-

trum is again likely, but anomaly mediated contributions
to gaugino masses only dominate for extremely heavy
moduli. If WIMPs are the dark matter, they must be
produced in moduli decays or afterwards. Either requires
a high-mass scale. Again, the Peccei-Quinn solution to the
strong CP problem cannot be provided by moduli, and the
moduli do not provide an explanation of any particular
scale of supersymmetry breaking. Avoiding overproduc-
tion of gravitinos places significant (but plausible)
constraints on the microscopic theory.
Finally, in the case of nonsupersymmetric moduli, a

hierarchical or split spectrum is not generic. If the theory
contains a stable LSP, it is typically overproduced unless
the LSP is heavier than the moduli. This, in turn, implies
that the dark matter is likely to be in some form other than
WIMPs. Assuming axion dark matter, for a fixed axion
decay constant, there is an upper bound on the modulus
mass and correspondingly on the scale of supersymmetry
breaking. Such scenarios point to a supersymmetry break-
ing scale that is high compared to the TeV scale, but not
arbitrarily high.
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This latter picture suggests that the LHC, at least at
14 TeV, will not discover evidence for supersymmetry,
and that direct and indirect detection experiments will
not find evidence for dark matter. On the other hand,
the next generation of charged lepton flavor violation
experiments will permit a new probe of SUSY scales as
high as Oð150Þ TeV [10,50]. Such experiments might
point to a particular energy scale. Eventually, a very
high-energy hadron collider may be able to probe mass
thresholds above 10 TeV directly and perhaps permit
the study of supersymmetry breaking at the high scales
contemplated here.
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APPENDIX A: SUPERSYMMETRIC AND
NONSUPERSYMMETRIC DECAYAMPLITUDES I

In Sec. III A (also Appendix B), we showed that in a
supersymmetric theory, the decay rates for moduli decays
to pairs of particles are identical to those to their super-
symmetric partners. In this section, we illustrate in detail
how this works, in a way which indicates that the branching
ratios are comparable for nonsupersymmetric moduli. We
reanalyze each of the specific dimension-five couplings
listed in [13].

Consider first the decay rate into the gauge multiplet.
The coupling

� A

4Mp

�W2
� (A1)

generates couplings to gauge bosons and gauginos. These
include:

A

Mp

�
�1

4
�F2

	
 þ 1

4
F ~Fþ i���	D	�

� þ 1

4
F���þ c:c:

�
:

(A2)

In [13], it was noted that the derivative coupling in
Eq. (A2) to gauginos is suppressed if the gaugino mass is
small. This can be understood by a helicity argument, or by
using the gaugino equation of motion. But the term involv-
ing the auxiliary field was not considered, and it leads to a
non-negligible coupling of the modulus to the gauginos,
even if the expectation value of the auxiliary field vanishes,
as discussed in [39]. This is in fact what happens in the
supersymmetric case. Considering, first, global supersym-
metry; for a massive field, F� ¼ m��, and one has a

Yukawa coupling of the modulus to gauginos, with
strength m�=Mp. In the supergravity case, with approxi-

mate supersymmetry, the same is readily shown to hold.

If supersymmetry is broken in supergravity, even if � does
not appear in the superpotential, writing � ¼ �0 þ ��,
where �0 is the � expectation value, one has

F� ¼
�
@2W

@2�
þ @2K

@2�
W þ � � �

�
��K2: (A3)

For light moduli, the second term is typically of orderm3=2.

This yields the coupling

A

Mp

eK=2WK2K
�1
2 ����þ c:c: (A4)

Scaling �� so it has canonical kinetic term, and using the
relation between m3=2 and W, this coupling is then

A

Mp

m3=2

g2ffiffiffiffiffiffi
K2

p ����þ c:c: (A5)

There is no parametric suppression of the branching ratio
for light gauginos; of course, once the mass is close to the
modulus mass, there will be phase space suppression.
A similar phenomenon occurs with the other dimension-

five operators (again as expected from the supersymmetric
case). Consider next the operator

B

Mp

��HUHD þ c:c: (A6)

In [13], it is stated that this operator does not lead to decay
to Higgsinos. But again this neglects the coupling to the
auxiliary component of �,

B

Mp

F�
�c HU

c HD
: (A7)

Again, in the supersymmetric case, F� ¼ m��. In the

nonsupersymmetric case, F� includes a term K2W��.

This leads to a coupling, after rescalings (assuming
canonical kinetic terms for the Higgs fields)

K�1=2
2 ��c HU

c HD
: (A8)

If all of the Higgs scalars are lighter than the modulus, then
the decay to these fields has the same parametric form. But
even if only the lighter Higgs channel is available, one
obtains a similar result, from the coupling:

B

Mp

F�
�ðFHU

HD þ FHD
HUÞ þ c:c: (A9)

So again, there is no parametric suppression of the decays
to Higgsinos relative to Higgs scalars.
Finally, there are operators of the type:

C

Mp

�QQ�: (A10)

The authors of [13] note that the decays to light sfermions
are suppressed. After an integration by parts there is a
component operator of the form
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C

Mp

�Qð@2Q�Þ þ � � � ; (A11)

which gives an amplitude proportional to m2
Q. The contri-

bution to the rate is suppressed in the case of supersym-
metric moduli. Including also the various auxiliary fields,

C

Mp

ðF�F
�
QQþ FQF

�
Q�þ � � �Þ: (A12)

If Q is massless, the decay amplitudes to either fermion or
bose pairs again vanish to leading order. If Q is massive
and supersymmetric, then the couplings F�QF�

Q and

�FQF
�
Q contribute to the decay amplitudes, as do the

second derivative terms, leading to the expected equality
of decay rates. In fact in this case the leading term in the
amplitudes is proportional to mQ, so the rate is suppressed

only by two powers instead of four; however, generally the
supersymmetric masses are extremely small compared to
m�. If supersymmetry is broken and the moduli are

nonsupersymmetric, both the F-terms (F� � K2W��,

FQ � QW) and the derivative terms give unsuppressed

contributions to the decay rates into bosons governed
by ðmQ=m�Þ4.

To summarize, this class of operators generally leads to
suppressed decays to ordinary fermions. However, in
general, the decays to sfermions are unsuppressed if
m� � m3=2, so the operator is certainly problematic with

regard to overclosure.

APPENDIX B: SUPERSYMMETRIC DECAY
AMPLITUDES II

In this appendix we sketch for illustration a more primi-
tive method to find relations unbroken supersymmetry
implies between various decay rates and cross sections.
We consider a simple example, the two-body decay of a
heavy singlet scalar�1 into two lighter charged scalars ~q �~q
or fermions q �q. The argument is fundamentally equivalent
to the Ward identity-LSZ approach given previously,6 but
does not use field theory.

Consider the sum of the squared matrix elements,

Z
d�

X
i

jMj2i ¼
Z

d�
X
i

��������i
hq �qj1

2
���Qy

�Q
y
�e

�iHtj�1i
��������

2

:

(B1)

Here Q is the Weyl spinor of SUSY generators, �1 is the
lowest state (annihilated by both Q�) in a chiral multiplet
of mass M, and q, �q are the spin-1=2 states of two addi-
tional CPT-conjugate chiral multiplets of mass m<M=2.
The states jq �qii are the two-fermion states

jq �qi1
jq"ðpÞij �q#ð�pÞi; jq �qi2
jq#ðpÞij �q"ð�pÞi; (B2)

and the integration is over solid angle for the outgoing
momenta p. Acting on the right, the SUSY generators raise

j�1i to j�2i, the highest state (annihilated by both Qy
�) in

the M multiplet,

jMj2i ¼ 4M2jihq �qje�iHtj�2ij2: (B3)

Inserting a factor of ðCPTÞ2,
Z

d�
X
i

jihq �qje�iHtðCPTÞðCPTÞj�2ij2

¼
Z

d�
X
i

jihq �qje�iHtj�1ij2; (B4)

because CPT flips the sign of p in the two-fermion states
and maps �2 to �1.
To act on the left with the Q, we first decompose the

generators into

Q� ¼ Qð1Þ
� þQð2Þ

� ð�1ÞFð1Þ
; (B5)

where the superscripts denote the one-particle subspaces

on which the generators act, and Fð1Þ is the fermion number
operator on the first-particle space. The SUSY generators
must be moved past the Lorentz generators that boost the
fermion momenta to p and �p,

jq"ðpÞij �q#ð�pÞi ¼ Uð1Þ
p Uð2Þy

p jq"ð0Þij �q#ð0Þi; (B6)

where the axis of spin quantization is assumed for sim-
plicity to lie parallel to p for each p. Us and Qs acting on
different particle subspaces commute. In terms of spinor
components,Us andQs acting on the same subspaces obey

UpQ
y ¼ ð�1

2
QyÞUp ¼ AQy

1

A�1Qy
2

0
@

1
AUp;

Uy
pQy ¼ ð��1

1
2

QyÞUy
p ¼ A�1Qy

1

AQy
2

0
@

1
AUy

p;

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1� �Þ

q
; � ¼ E=m ¼ M=2m;

� ¼ p=E:

(B7)

After some algebra, we obtain

Z
d�

X
i

jMj2i ¼ 4m2ðA4 þA�4Þ
Z

d�jh~q1 �~q1je�iHtj�1ij2;

(B8)

where ~q1, �~q1 are the lowest scalar states in themmultiplets
and carry momentum p and �p. Equating (B4) and (B8)
and reducing the prefactor, we find

6We note that both arguments are subject to the usual limita-
tion that an unstable state cannot be made asymptotic, so
manipulations that treat them as such are only valid in the spirit
of the optical theorem and up to corrections of order �=M.
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1

2
ð1þ �2Þ

Z
d�jh~q1 �~q1je�iHtj�1ij2

¼
Z

d�
X
i

jihq �qje�iHtj�1ij2; (B9)

which relates the partial widths of the �1 particle into
scalar and fermionic final states. Note that the kinematic
factor goes to 1 in the massless limit. Other relations can be
derived similarly.
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