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The usual account for the origin of cosmic structure during inflation is not fully satisfactory, as it lacks a

physicalmechanism capable of generating the inhomogeneity and anisotropy of ourUniverse, from an exactly

homogeneous and isotropic initial stateassociatedwith the early inflationary regime.Theproposal in [A.Perez,

H. Sahlmann, and D. Sudarsky, Classical Quantum Gravity 23, 2317 (2006)] considers the spontaneous

dynamical collapse of the wave function as a possible answer to that problem. In this work, we review briefly

the difficulties facing the standard approach, aswell as the answers provided by the above proposal and explore

their relevance to the investigations concerning the characterization of the primordial spectrum and other

statistical aspects of the cosmicmicrowave background and large-scalematter distribution.Wewill see that the

new approach leads to novel ways of considering some of the relevant questions, and, in particular, to distinct

characterizations of the non-Gaussianities that might have left imprints on the available data.
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I. INTRODUCTION

At what point in the cosmic evolution do the actual
primordial inhomogeneities arise? In other words, when
does our Universe depart from the exceedingly high homo-
geneity and isotropy1 that is thought to result from the first
stages of inflation? This is a question that one might expect
should be addressed, at least, in principle, by any theory that
deals with the emergence of cosmic structure. Yet in the
standard inflationary account [1], which is nowadays re-
garded as a remarkable success, the context in which such
issues can be addressed seems to be simply absent [2]. That
is, within the orthodox accounts, one cannot identify the
physical process responsible for the generation of those
features in our Universe. In fact, according to the infla-
tionary paradigm, from a relatively wide initial set of pos-
sibilities marking the end of the mysterious quantum gravity
era, the accelerated inflationary burst leads to a homoge-
neous and isotropic (H&I) Universe where the quantum
fields are all characterized by the equally homogeneous
and isotropic vacuum states (usually taken specifically to
be the so-called Bunch-Davies vacuum). From these con-
ditions, it is usually argued, in a rather unclear2 although
strongly image-evoking manner, that the ‘‘quantum fluctua-
tions’’ present in such a quantum state morph into the seeds

of anisotropies and inhomogeneities that characterize our
late Universe. This issue is sometimes characterized as the
‘‘transition from the quantum regime to the classical re-
gime,’’ but we find this a bit misleading: most people would
agree that there exist no distinct and separated classical and
quantum regimes. The fundamental description ought to be
always quantum mechanical; the so-called classical regimes
are those in which certain quantities can be described to a
sufficient accuracy by their classical counterparts represent-
ing the corresponding quantum expectation values. The
paradigmatic example of this classical regime is provided
by the coherent states of a harmonic oscillator, which cor-
respond to minimal wave packets with expectation values of
position and momentum that follow the classical equations
of motion (Ehrenfest theorem). In any case, it seems clear
that from a situation corresponding to a H&I background,
and quantum fields characterized by a H&I state, one cannot
end up—in the absence of something else, which in other
circumstances would be identified as a measurement, but
which clearly cannot be invoked in the present setting3—in a
situation that is characterized, at any level, as containing
actual inhomogeneities and anisotropies. It is clear that, in
terms of the standard dynamics, such a transition cannot
be accounted for by anything that relies just on the
gravity/inflaton action,4 which is known to preserve such
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1The level of inhomogeneity that might still be present at any

point during inflation is expected to be of order e�N , where N is
the number of e-folds of inflation occurred up to that point.

2Acknowledgments that this is an unclear aspect of the stan-
dard approach can be seen, for instance, in the book Cosmology
by Weinberg [3], where the author explicitly states his view on
the subject.

3Observers and measuring apparatuses are only possible well
after the H&I has been broken, so those can hardly be part of the
cause of the breakdown.

4In fact, even the interaction with other fields, controlled by
the usual symmetry preserving dynamics, cannot account for the
emergence of inhomogeneities and anisotropies, since, accord-
ing to the inflationary paradigm, the state for all fields should
correspond to a homogenous and isotropic state such as the
Bunch-Davies vacuum.
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symmetries. Simply put, if the initial state is H&I and the
Schrödinger evolution is tied to a Hamiltonian that preserves
these symmetries, the resulting state cannot be anything but
a H&I state (see Appendix A). Nonetheless, various types of
arguments are often put forward in attempts to bypass the
above conclusion. Most cosmologists adopt a posture that
attributes to decoherence the role of explaining the emer-
gence of inhomogeneities and anisotropies from the H&I
state. This approach faces several problems:

(i) The decoherence program is based on partitioning
the degrees of freedom in two categories—The de-
grees of freedom of the environment and the degrees
of freedom of the system of interest. In the cosmo-
logical case however, in which one cannot evoke
observers or measurements, the way to do the sepa-
ration of the degrees of freedom is rather ad hoc.

(ii) In order to argue that the symmetry was broken,
one needs to assume that the world is suddenly
represented by one of the elements appearing in
the diagonal of the deciphering density matrix,
and it is not clear how to argue for that.

(iii) Sometimes people evoke the many worlds interpre-
tation of quantum theory in order to deal with the
previous point but seem to ignore that, in order to
do that, one needs to choose a privileged basis
associated with the world splittings, and that choice,
in practice, is tied to the notion of conscience, again
a notion that cannot be invoked in the context at
hand. Another popular posture is to rely on the
consistent histories approach, ignoring the problem-
atic issues afflicting that proposal. In particular, we
should note that the usage of the formalism requires
a choice of realm, a choice that in the current context
seems completely arbitrary. In fact, one can make
one such choice when one is led to the conclusion
that the Universe is, even today, perfectly homoge-
nous and isotropic (see Appendix D).

The extended discussion of the conceptual problems
inherent to quantum theory and those associated to its
application to the cosmological situation at hand have
been presented in previous works by some of us and by
others in Refs. [4–6]. The main message is that the problem
we face is tied with the so-called measurement problem of
quantum theory and that this problem becomes exacer-
bated in the present case, in which we are dealing with
cosmology, a field in which the standard ways to address
such problems are simply unavailable [7]. In this work, we
reproduce all those arguments in detail, mentioning them
only briefly, as the main objective of the present manu-
script is to focus in the statistical aspects that emerge in
this context (a slightly more detailed discussion of those is
offered in Appendix D for the benefit of the reader).

We will discuss a new way of looking at those issues,
based on what we consider to be a conceptually more
transparent picture that relies on a modified version of

the standard inflationary paradigm, which we have been
advocating in previous works [4,8–11]. The basis of that
proposal is to modify the standard inflationary paradigm
with the incision of a modified quantum mechanics that
involves the spontaneous collapse of the wave function.
We should note, however, that we cannot escape from

the related problems, even if we choose to adopt a very
‘‘pragmatic position’’: Assume, that one chooses to ignore
the shortcomings of the standard accounts [5] and accepts
that, say, decoherence addresses somehow the issue at hand
and that the mystery lies ‘‘only’’ in the question concerning
the precise mechanism that lies behind the fact that, from
the options exhibited in those analyses (i.e., the options
displayed in the diagonal reduced-density matrix; see
Appendix D), one single realization seems to be selected
[12] for our Universe. In adopting such a point of view, one
would be assuming that the initial symmetry has been lost
(at least for practical purposes) in association with that
particular ‘‘realization’’ or ‘‘actualization’’ (represented by
a particular element in the density matrix). Thus, it seems
clear that, for the sake of self-consistency, one should
consider, when studying aspects of the inhomogeneity
and anisotropies in the cosmic microwave background
(CMB) we observe, the state corresponding to such real-
ization or actualization, and not the complete vacuum state,
which describes the H&I state of affairs previous to the
actualization.5 In following such views, the discussion that
we are presenting in this paper would have to be taken to
represent the effective description corresponding to ‘‘our
perceived Universe’’ (in a context in which one puts
together something like the many worlds interpretation,
with the arguments based on decoherence). Although we
definitely do not adhere to such a view for the reasons
explained in Ref. [5], it is clear that when accepting a
description, such as the one presented above, one would
have to use the characteristics of the selected state in order
to estimate the details of the inhomogeneities and anisot-
ropies in the cosmic structure and its imprints in the CMB.
As we indicated, the purpose of this paper is to discuss

the manner in which the consideration of statistical aspects
of the CMB and the large-scale matter distributions should

5The reliance on a particular realization or actualization refers,
of course, to the fact that, according to the standard arguments,
the resulting density matrix, after becoming essentially diagonal
due to decoherence, would be taken to represent an ensemble of
universes, with our particular one corresponding to one of the
elements occurring in the diagonal of that matrix. That state
should then be considered as somehow ‘‘selected by nature’’ to
become realized (or to be the one we perceive). If one wanted to
consider the issue at a deeper level, one would have to face the
question of what such actualization represents at the theoretical
level and what is, if any, the physics that controls it.
Alternatively, one might take the view (often referred as the
many worlds interpretation) that these other universes are some-
how also realized, and thus they exist in realms completely
inaccessible to us. In that case, the actualization corresponds
to that Universe in which we happen to exist.
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be modified when taking into account the modifications
needed to explain the emergence of inhomogeneities and
anisotropies in terms of theories incorporating something
like the spontaneous collapse of the wave function. The
need to rely on a different approach to study things like
the non-Gaussianities in the CMB, arises, in part, due to the
vastly larger space of possibilities for exotic effects, which
opens in connection to the unknown dynamics of the
collapse processes. In other words, in the standard treat-
ments, the spectrumwould be determined by the inflationary
theory (number of fields, kinetic terms, and interacting
potentials), and the nature of the initial state, while in the
approach we have been advocating a novel source of statis-
tical anomalies, is provided by the details of the modifica-
tion of quantum theory by the dynamics of collapse.

One example of these novel possibilities is provided by
the study of the details of the mode by mode collapse
within the semiclassical treatment of the problem as de-
veloped in Ref. [13]. In that work, it was found the collapse

of a mode with comoving wave vector ~k0 must be tied with
the modification of the state of the field in the higher
harmonics of that mode. It was found, in particular, that

the effect would be stronger for mode 2 ~k0. This, in turn,
leads to the consideration of the possibility of strong
correlations in the collapse parameters of the two modes,
an effect that would produce a particular type of exotic
correlations—it is unclear if they should be called
non-Gaussianities as they involve modifications of the
two-point functions—something that would produce a
particular kind of signature in the CMB [14].

The organization of this manuscript is as follows: In
Sec. II, we offer a preliminary discussion of the posture we
advocate regarding the emergence of structure and its
implications for the statistical analysis of the CMB and
some aspects of the usual approach focusing on the aspects
we consider to be conceptually unclear. In Sec. III, we
review the standard picture for primordial non-
Gaussianities. In Sec. IV, we review the collapse models
description for the inflationary origin of the seeds of the
cosmic structure. In Sec. V, we focus on the statistical
aspects as seen from our perspective of the primordial
inhomogeneities, propose new characterizations of the
non-Gaussianities, and discuss new measures to be asso-
ciated with the bispectrum. Finally, in Sec. VI, we discuss
our findings. We use conventions in which the signature
of the space-time metric is ð�;þ;þ;þÞ and units where
c ¼ 1 but will keep the gravitational constant G and ℏ
appearing explicitly throughout the paper.

II. SOME PRELIMINARIES ON THE
EMERGENCE OF FEATURES OF THE CMB

AND STATISTICAL CONSIDERATIONS

Let us start this section by noting that, in the usual
accounts, it is hard to pinpoint where exactly the statistical
aspects enter at the theoretical level, how that is connected

to the kind of statistics one considers at the observational
level, and which kind of statistics one is dealing with. That
is, in the standard approach, our specific Universe is not
described in any sense (not even in terms of unknown yet
explicitly identified quantities), and the randomness that
one invokes, as characterizing the relation of theory and
observation, lies hidden in unspecified aspects associated
with the vagueness of the interpretations. In other words,
one cannot identify the random variables; one does not
know how many there are, and one cannot say how exactly
the various elements of the ensemble of Universes differ
from each other. One imagines an ensemble of universes
and assumes that their collective departure from H&I is
somehow characterized by the H&I vacuum state or the
state that results form the unitary evolution thereof (despite
such a state being homogeneous and isotropic). One then
considers that the ensemble is being described, while each
of the individual elements of the ensemble cannot be
described, or that its description is irrelevant.
Within such setting, one proceeds to make, either ex-

plicitly or implicitly, the assumption that statistics over
such an ensemble correspond to the statistics, over time,
over space, or over orientation, in our particular Universe.
In fact, one assumes that they are all equivalent. It should
be clear that such assumptions are, therefore, taken to say
something about the individual element of the ensemble,
and it is not completely clear what it is. If our Universe is
not described by the quantum state we use in our equations,
what can we say about it? In order to look for justification
and clarification of such identifications, we must turn to the
quantum theory from which one expects to extract the
predictions. The problem is that, while quantum theory
has a clear and workable interpretation (even if not com-
pletely satisfactory [15]) for dealing with laboratory ex-
periments (the Copenhagen interpretation), for which the
measuring devices and observers can be taken as clearly
identified, for the case of the cosmological problem at
hand, we are faced with a situation deprived of such
entities that normally provide an interpretation.
Thus, the issue we will be addressing cannot be turned

into one of ‘‘measurement,’’ while implicitly assuming that
such concept can be used in the delicate quantum mechani-
cal context examined in this paper. This is simply because
as we have already noted, cosmology needs to account for
the emergence of the conditions6 that make such things as
observers and apparatuses possible to start with.
In order to fully and satisfactorily address the problem at

hand, it seems we need to be able to point out ‘‘what
exactly is wrong with the argument leading to the conclu-
sion drawn above. In other words, where does nature

6Primordial inhomogeneities are supposed to evolve into gal-
axies and galaxy clusters, and within galaxies, stars and planets
are supposed to arise by gravitational collapse, and then life is
supposed to arise in the appropriate circumstances on some
planets, particularly on Earth.
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deviate from the theory leading to the erroneous conclusion
that our Universe is, even today, at the fundamental
quantum level, perfectly homogeneous and isotropic?’’ It
follows that such explanation must indicate where the
ordinary U evolution—with the symmetry preserving
Hamiltonian—breaks down.

We can easily see that none of the proposals to deal with
the issue, and which are based on the standard paradigms,
can single out any point where that breakdown might occur
or, much less, point to a physical reason for that departure
from standard quantum theory (we turn the interested
reader toward Appendix C, where we explore in more
detail these issues and justify more precisely our point of
view).

This has led us to take a view that ties this problem with
the ideas advocated by L. Diosi and R. Penrose, which
argue [16,17] that quantum theory should itself suffer
modifications as a result of its combination with the fun-
damental theory of space-time structure.7 Among the as-
pects of the theory that would be substantially affected
according to those views are those related to the reduction
postulate (or R process) and its contrast with the unitary
evolution (orU process) controlled by Schrödinger’s equa-
tion. In fact, the issue of dynamical quantum reduction has
received a lot of attention within the community working
in foundational aspects of quantum theory, and there are, in
the existing literature, several rather well-defined pro-
posals in this regard, such as those in Refs. [15,16,18–20].

The proposal behind our work is based on the hypothesis
that a dynamical collapse of the wave function lies behind
the breakdown of the initial homogeneity and isotropy. In
other words, a nonunitary ‘‘jump’’ in the quantum state of
the system plays a role in transforming the inflaton vacuum
into a quantum state that lacks the translational and rota-
tional symmetries of the former state.

It goes without saying that we cannot, at this stage, try or
hope to point out the precise physical origin of such
dynamical collapse.8 However, once one has accepted
that something of this sort is occurring, one can parame-
trize its basic characteristics and use the relevant observa-
tional data to infer something about the nature of the novel
physics that must lie behind such phenomena. This has
been the basic attitude behind the program started in

Ref. [4]. We should emphasize, that although most of our
work has centered on that rather simplistic collapse model
developed specifically for the cosmological problem at
hand, the discussion of most of this paper would apply
equally to more general models and, in particular, to
approaches based on exciting proposals like Ghirardi-
Rimini-Weber [18] and continuous spontaneous localiza-
tion [23]. In fact, some recent works are devoted to the
adaptation of the continuous spontaneous localization the-
ory for its application to the problem of the emergence of
inhomogeneities and anisotropies in cosmology [24,25].
Here, we want to focus on the impact of such ideas on

the statistical study of the CMB. We will discuss some
delicate interpretational aspects related to quantum theory,
its implicit usage in the standard approach to the study of
the CMB, and its characterization in terms of a spectra as
well as the accounts of the origin of cosmic structure. We
will briefly explore here, for the first time, some of the
basic differences associated with statistical considerations,
between those tied to the usual approach and those appro-
priate to our proposal.
In order to make things a bit more explicit, let us start by

reminding the reader that in the standard approaches, the
study of the statistical nature of the problem is based on the
study of the statistical n-point functions of the Newtonian

potential, �ðx1Þ . . . �ðxnÞ, with the overline denoting the
average over an ensemble of universes. Having no access
to such ensemble, one needs to face the issue of what
the relationship between those n-point functions and the
quantities we actually measure is. Moreover, one needs
to consider how these quantities are connected with the
quantum n-point functions. The usual approach [26,27]
relies on the identification

�ðx1Þ . . .�ðxnÞ ¼ h0j�̂ðx1Þ . . . �̂ðxnÞj0i; (1)

where h0j�̂ðx1Þ . . . �̂ðxnÞj0i is a standard quantum me-
chanical n-point function for the quantum field operators
(corresponding to the vacuum state at hand). That is, one is
making the identification of quantum and statistical n-point
functions. As we said, the latter are naturally associated
with an ensemble of universes, all of which, even if real,
are unaccessible to us. The usual line of argument contin-
ues by invoking ergodic arguments, to make a further
connection between ensemble averages and time averages,
with other vague arguments indicating one might replace
the latter with spatial averages and often turning, in prac-
tice, to orientation averages. On the other hand, at the
quantum level, the interpretation is, as we noted before,
even more problematic. In the standard laboratory situ-
ations, one has an apparatus designed to measure a certain
observable O, and quantum theory then indicates that, in
each individual measurement, one would obtain an eigen-
value of the corresponding operator. Furthermore, imme-
diately after the measurement, the individual system is
taken to be in the state corresponding to the resulting

7This is what is often thought of as quantum gravity. We did
not use that term because that often presupposes that one is
considering the relevant theory to be simply the adaptation of
general relativity to the standard quantum theory, while what one
has in mind, when following Diosi and Penrose’s ideas, is
something much more distant from known physics, involving,
as indicated, modifications of quantum theory itself.

8In particular, collapse theories are known to face, in principle,
serious difficulties with Lorentz and general covariance and
issues related to conservation laws. However, important advan-
ces have been made in addressing both classes of issues
(Refs. [21,22]), even if we cannot say we have at our disposal
anything resembling a completely satisfactory theory.
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eigenvalue (as immediate repetition of the same
measurement in such an individual system gives, with
probability 1, the exact same value). The sudden change
in the state of the system is known as the state function
reduction or wave function collapse and is thought as being
brought up by the measurement (in fact, the interpretation
is not fully satisfactory, but we have become used to the
fact that in laboratory situations it works). Moreover, the
quantum expectation value of the observable h�jOj�i in
the state j�i (the system’s state before the measurement)
should be equal to the average of the observed values of the
corresponding quantity, over a large enough ensemble of
identical systems. It is important to note here that such an
interpretational scheme works only as long as a clearly
identified measurement is involved, as one essential aspect
of the nature of the quantum world is that one cannot
consistently adopt a point of view advocating that the
measurement simply served to reveal a preexisting value
of such a quantity (see, for instance, Ref. [28]).

Let us illustrate these and other related issues by
considering the simplest place where one can appreciate
the problematic aspects of such identifications: the case of
the one-point function. Let us focus here on the standard
treatment that relies on the so-called Mukhanov-Sasaki
variables, defined by

u � a�

4�G _�0

; v � a

�
��þ

_�0

H
�

�
; (2)

where � is the metric perturbation known as the

Newtonian potential, _�0 is the derivative of the back-
ground inflaton with respect to conformal time �, �� is
the perturbation in the inflaton field, a is the scale factor,
and H � _a

a (related to the standard Hubble parameter H

through H ¼ aH). Einstein’s equations then lead to

�u ¼ zðvzÞ� and v ¼ 1
z ðzuÞ�, where z � a _�0

H
. Given the

equations of motion, the Newtonian potential can thus be
expressed in terms of the field vð ~x; �Þ and its momentum
conjugate �vð ~x; �Þ ¼ _vð ~x; �Þ. The expression for the
corresponding Fourier components is

� ~kð�Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4�G�

p
H

k2

�
�v ~kð�Þ �

_z

z
v ~kð�Þ

�
; (3)

where � is the so-called slow-roll parameter � �
1� _H =H 2.

We are interested in the temperature anisotropies of
the CMB observed today on the celestial two-sphere,
which are related to the inhomogeneities in the Newtonian
potential on the last scattering surface,

�T

T0

ð�; ’Þ ¼ 1

3
�ð�D; ~xDÞ: (4)

The data are described in terms of the coefficients �lm of
the multipolar series expansion

�T

T0

ð�; ’Þ ¼ X
lm

�lmYlmð�;’Þ;

�lm ¼
Z �T

T0

ð�;’ÞY�
lmð�; ’Þd�;

(5)

here, � and ’ are the coordinates on the celestial
two-sphere, with Ylmð�; ’Þ as the spherical harmonics.
The value for the quantities �lm are then given by

�lm ¼ 4�il

3

Z d3k

ð2�Þ3 jlðkRDÞY�
lmðk̂Þ�ðkÞ� ~kð�RÞ; (6)

with jlðkRDÞ as the spherical Bessel function of order l; �R

is the conformal time of reheating, which can be associated
with the end of the inflationary regime, and RD is the
comoving radius of the last scattering surface. We have
explicitly included the modifications associated with late-
time physics encoded in the transfer functions �ðkÞ.
Now, the problem is that, if we compute the expectation

value of the right-hand side (i.e., identifying h�̂i ¼ �) in
the vacuum state j0i, we obtain 0, while it is clear that for
any given l,m, the measured value of this quantity is not 0.9

That is, if we rely in this case on the one-point function and
the standard identification, we find a large conflict between
expectation and observation. We might even be tempted to
say that evidence of non-Gaussianity has already been
observed in each measurement of a particular �lm. This
is, of course, not what one wants. Advocates of the stan-
dard approach would indicate that h�lmi ¼ 0 is not to be
taken as ‘‘the prediction of the approach’’ regarding our
Universe and that this would only hold for an ensemble of
universes. The issue, of course, is what precise interpreta-
tional posture regarding the theory can be used to justify
this, while at the same time justifying the positions taken
vis-à-vis the other quantities that emerge from the theory
(such as the higher n-point functions). A theory that de-
pends on a case by case adaptation of an interpretational
rule is not a very satisfactory theory. However, this makes
clear that disentangling the various statistical aspects
(ensemble statistics; space and time statistics, including
orientation statistics; and, finally, the nature of the assumed
connection of quantum and statistical aspects) and making
explicit the assumptions underlying the identifications, as
well as the expected limitations, is paramount to avoid
confusion and to allow the judging of a theory on its true
merits.
As a matter of fact, it seems clear that anything that can

be considered as a satisfactory approach should enable
one to understand what exactly is wrong with the above

9We are ignoring the remote possibility that, just by coinci-
dence, and for some specific l and m, the quantity �lm would
vanish within the observational margin of error. As can be seen
in Sec. IV, according to our point of view, that would require a
remarkable cancelation between terms determined by a large
collection of random numbers.
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argument. First, let us note that, just as the Fourier
transform of a function is a weighted average (with weight

ei
~k� ~x), so are the spherical harmonic transforms of

functions. Thus, �lm is a weighted average over the last
scattering surface (cosmologists often refer to the average
over the sky) because it is an integral over the celestial
two-sphere of �T

T weighted with a given function, the Ylm.

The common argument in the literature, as we have noted,
indicates that averaging over the sky justifies the identifi-
cation of observations with quantum expectation values.

In other words, the argument indicates that the relevant
prediction (obtained in terms of quantum expectation val-
ues) concerns the ensemble averages, and these should be
equal to spatial averages and the latter to averages over the
sky. However, apparently, this should not hold for weighted
averages over the sky (otherwise, all the �lm’s would be 0).
If not, why not? There seems to be no clear answer.

Namely, if we take the theoretical estimate as

�th
lm ¼ 4�il

3

Z d3k

ð2�Þ3 jlðkRDÞY�
lmðk̂Þ�ðkÞh0j�̂ ~kð�RÞj0i ¼ 0

(7)

and compare it with the measured quantity �obs
lm , we would

find a large discrepancy. The answer, within the standard
accounts, would need to be that, for some reason, in order
to be allowed to make identifications, we should invoke a
further averaging: the average over orientations. Only then
would we have any confidence that our estimates are
reliable. Now, let us ask ourselves the question of why
this should be; it seems completely unclear. Anyhow, the
point is that we would be asked to compute

�l ¼ 1

2lþ 1

X
m

�lm; (8)

and we would then expect this quantity to be zero.
We need to confront the following issues:
(i) Why is that so? Why can this average be expected to

yield zero but not each individual �lm as in Eq. (7)?
(ii) Empirically, does this hold? In other words, is the

actual average of observed complex quantities in
Eq. (8), in fact, zero, or is it not?

Regarding the first question, it seems imperative to
choose a suitable interpretational framework in order to
be able to decide a priori what the appropriate identifica-
tions are and also to be able to evaluate whether or not we
have a good theoretical understanding. It appears that, in
the standard way of looking at the issue, there is really no
justification to expect anything but the vanishing of each
�lm. We must avoid getting confused with the notion that
quantum theory involves uncertain predictions. The point
is that the only part of quantum theory that involves such
indeterminism is the measurement process, and we do not
want to call upon that in this particular situation. It is
true that, even in ordinary laboratory situations, the

‘‘measurement problem’’ is quite unsettling. However, in
the case at hand, the problem is exacerbated because we
cannot even contemplate any physical observer or measur-
ing device existing prior to the emergence of the seeds of
structure. Thus, we cannot even rely on our old battle tool:
the Copenhagen interpretation, which explains the non-
vanishing of those quantities that predates both the growth
of galaxies and the existence of ‘‘observers and measuring
devices.’’
Regarding the second issue, we would like to comment

the work of Armendariz-Picon [29], which starts to address
(albeit in a rather limited way, because the analysis is done
for a very small number of values of l) that question. The
results of this work indicate that the�l are small (1 order of
magnitude smaller than the variance of the �lm, that is,ffiffiffiffiffi
Cl

p
), and that seems reassuring. But is this sufficient? Is

that what we should expect according to our theory? Why?
Should it not be zero up to the actual experimental errors10

in the observations? Evidently, these are just rhetorical
questions, raised only to show that it is easy to be confused
regarding the comparisons of theory and observations, if
one accepts, without questioning, the usual arguments
given by the standard approach. It seems evident that, in
order to have a clear answer to those questions, one needs
to have a precise and unambiguous characterization of
what exactly the mapping between the theory and the
measured quantities is. Actually, it seems one would
need to consider those comparisons as tests of whether
the identifications one is making are or are not appropriate
ones.
It is our view, as advocated in Refs. [4,5], that the

standard paradigm has no satisfactory answers to these
issues. We hope this brief discussion serves to illustrate
the problem we must face concerning the identification of
theoretical predictions and observations in the situation at
hand.
We end this section by reminding the reader that, if one

wants to consider the average value of any quantity, it is
imperative to specify over which set the average is defined.
There are just no ‘‘averages’’ as absolute concepts. In the
remainder of the manuscript, we will make an important
differentiation between averages over ensembles of uni-
verses, averages over a spacelike hypersurface, averages
over the last scattering surface, and averages over orienta-
tions. The question we want to address is how we are able

10Here, we should be careful in considering the sources of
error: As in any measurement, we have the systematic errors and
the statistical errors associated with uncontrolled disturbances,
but we should not confuse statistics over several determinations
of a specific �lm, say, with different experimental runs or with
different satellites, and the statistics for a fixed l over the
orientation number m. For a fixed value of l, the variability of
�lm with m should not, in our view, be taken as some statistical
error but as truly valuable data containing valuable information
about the physics behind the emergence of the seeds of cosmic
structure.
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to compare the theoretical estimates, based on quantum
expectation values for some quantities, with measured
values of related quantities. The approach we will be
primarily focusing on is the one pioneered in Ref. [4]
and which seems to have more potential for dealing uni-
vocally with such questions than the standard one.

III. THE STANDARD PICTURE FOR THE
PRIMORDIAL NON-GAUSSIANITIES

This section will briefly review the standard accounts on
the primordial non-Gaussianities following closely
Refs. [30–32]. There is absolutely no original work in
this section or any extensive discussion of our views
(just a few relevant comments); we simply present here
the usual treatment on the subject following what is
commonly found in the literature, in order to compare it
with our own approach, and discuss the main differences.
For more details and derivations, we refer the reader to the
comprehensive review by Komatsu [33], Bartolo et al.
[34], and the references cited therein.

Historically, non-Gaussianity, as a test of the accuracy of
perturbation theory, was first suggested by Allen et al. [35].
However, most of its importance to date relies on the
premise that it will play a leading role in furthering our
understanding of two fundamental aspects of cosmology
and astrophysics [36]:

(i) the physics of the very early Universe that created
the primordial seeds for large-scale structures,

(ii) the subsequent growth of structures via gravitational
instability and gas physics at later times.

Within the standard approach, by non-Gaussianity, one
refers to any small deviations in the observed fluctuations
from the random field of linear, Gaussian, curvature per-
turbations. The curvature perturbations, �, generate the
CMB anisotropy, �T=T. The linear perturbation theory
gives a linear relation between� and �T=T on large scales
(where the Sachs-Wolfe effect dominates) at the decou-
pling epoch, i.e., �T=T � ð1=3Þ�. It follows from the
relation, �T / �, that if � is Gaussian, then �T is
Gaussian, but what exactly does one mean by Gaussian
at the observational level?

One of the most important results of the inflationary
paradigm is that the CMB anisotropy arises due to
curvature perturbations, which, in turn, are produced
by quantum fluctuations. In the standard single-field
slow-roll scenario, these fluctuations are due to fluctua-
tions of the inflaton field itself, when it slowly rolls
down its potential Vð�Þ. Within this approach, the pri-
mordial perturbation is Gaussian; in other words, its
Fourier components are uncorrelated and have random
phases. When inflation ends, the inflaton � oscillates
about the minimum of its potential and decays, thereby
reheating the Universe.

In the inflationary paradigm, the perturbations of the
field �� and the perturbations of the curvature � are

treated as standard quantum fields,11 evolving in a classical
quasi-de Sitter background space-time. The quantity of
observational interest is called the power spectrum of the
curvature perturbation P�ðk; �Þ. The power spectrum is
obtained from

h0j�̂ð ~x; �Þ�̂ð ~y; �Þj0i; (9)

where j0i is called the Bunch-Davies vacuum and repre-
sents the initial state of the field v̂, which is the Mukhanov-
Sasaki field variable defined in Eq. (2) (for a discussion
about the symmetric properties of the Bunch-Davies
vacuum, see Appendix A).
It is precisely at this step where a subtle issue arises,

namely, that, in the standard picture, one is given various
and distinct arguments (e.g., decoherence, horizon cross-
ing, many worlds interpretation of quantum mechanics,
etc.) to accept the identification

h0j�̂ð ~x; �Þ�̂ð ~y; �Þj0i ¼ �ð ~x; �Þ�ð ~y; �Þ; (10)

where �ð ~x; �Þ now stands as a classical stochastic field
and the overline denotes the average over an ensemble of
universes. In other words, the value of the field � in each
point ð ~x; �Þ varies from each one of the members of the

ensemble of ‘‘universes,’’ with a variance �2. Therefore,
the power spectrum P�ðk; �Þ is defined in terms of the
Fourier components of �ð ~x; �Þ by

� ~kð�Þ� ~k0 ð�Þ � ð2�Þ3�ð ~kþ ~k0ÞP�ðk; �Þ: (11)

Consequently, the power spectrum is related to the two-
point function through

�ð ~x; �Þ�ð ~y; �Þ ¼
Z 1

0

dk

k
P�ðk; �Þ sin krkr

; (12)

with r � j ~x� ~yj, and we also used the definition
of the dimensionless power spectrum P�ðk;�Þ�
P�ðk;�Þk3=2�2. The variance �2 is given by

�2ð ~x; �Þ ¼
Z 1

0

dk

k
P�ðk; �Þ: (13)

The expression (13) diverges generically. In particular,
we know that the spectrum of the primordial curvature
perturbation is roughly P�ðk; �Þ / k�3. That is, P�ðk; �Þ
is nearly constant (i.e., independent of k); therefore,
Eq. (13) diverges in a logarithmic way for k ! 0 and
k ! 1. The way the standard pictures deal with this issue
[27] is to establish a kmax equal to the ‘‘horizon’’ and work
in a cubic box of physical size aL much larger than the
Hubble radius. Thus,

�2ð ~x; �Þ ’ P�ð�Þ
Z aH

L�1

dk

k
¼ P�ð�Þ ln aL

H�1
: (14)

That is, in order to avoid the divergence in �2, one is
forced to introduce some particular values of k as cutoffs

11In fact, they are both part of a unified field v.
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(for a detailed discussion related to this fact, see
Appendix B).

The question that arises now is how can we evaluate any
average over an ensemble of universes if we have obser-
vational access to just one—our own—Universe. The ob-
vious answer is that we cannot. Normally, one is presented
with ergodic arguments indicating that averages over time
should be equated with ensemble averages. However, er-
godicity relies on equilibrium, and the inflationary regime
is not one of equilibrium. Furthermore, ignoring that issue,
we would need to find an argument justifying the identi-
fication of time averages and spatial averages, presumably
to be carried over the hypersurface corresponding to the
time of decoupling. Then, we need to make sure our argu-
ment applies only to direct averages and not to weighted
averages, as we discussed in the introduction. And finally,
as we do not have access (at least using the CMB) to that
whole hypersurface, nor to any large open region within it,
but only to the portion of it that intersects our past light
cone (the two-sphere known as the last scattering surface),
we must find some argument indicating we can replace
such spatial averages with averages over orientations.

In the next subsection, we will show how our approach
deals with these questions. In the remainder of this section,
we will accept the validity of Eq. (10) and ignore those
issues.

If �ð ~x; �Þ is Gaussian,12 then the two-point correlation
function (9) specifies all the statistical properties of
�ð ~x; �Þ, for the two-point correlation function is the only
parameter in a Gaussian distribution. If it is not Gaussian,
then we need higher-order correlation functions to deter-
mine the statistical properties.

For instance, a nonvanishing three-point function13

�ð ~x; �Þ�ð ~y; �Þ�ð ~z; �Þ (16)

is an indicator of non-Gaussian features in the cosmologi-
cal perturbations. The Fourier transform of the three-point
function is called the bispectrum14 and is defined as

� ~k1
� ~k2

� ~k3
� ð2�Þ3�ð ~k1 þ ~k2 þ ~k3ÞB�ðk1; k2; k3Þ:

(17)

The importance of the bispectrum comes from the fact that
it represents the lowest-order statistics able to distinguish
non-Gaussian from Gaussian perturbations.

The delta function in Eq. (17) enforces the triangle
condition, that is, the constraint that the wave vectors in
Fourier space must close to form a closed triangle, i.e.,
~k1 þ ~k2 þ ~k3 ¼ 0. Different inflationary models predict a
maximal signal for different triangle configurations. The
standard approach of the study of the structure of the
bispectrum is usually done by plotting the magnitude of

B�ð ~k1; ~k2; ~k3Þðk2=k1Þ2ðk3=k1Þ2 (with j ~kij � ki) as a func-
tion of k2=k1 and k3=k1 for a given k1, with a condition that
k1 � k2 � k3 is satisfied. The usual classification of vari-
ous shapes of the triangles uses the following names:
squeezed (k1 ’ k2 � k3), elongated (k1 ¼ k2 þ k3),
folded (k1 ¼ 2k2 ¼ 2k3), isosceles (k2 ¼ k3), and equilat-
eral (k1 ¼ k2 ¼ k3). Within the cosmology community
[37–39], these shapes of non-Gaussianity are potentially
a powerful probe of the mechanism that creates the
primordial perturbations.
One of the first (and most popular) ways to parametrize

non-Gaussianity phenomenologically was via a small non-
linear correction to the linear Gaussian perturbation
[40,41],

�ð ~x; �Þ ¼ �Lð ~x; �Þ þ�NLð ~x; �Þ
� �Lð ~x; �Þ þ flocNL½�2

Lð ~x; �Þ ��2
Lð ~x; �Þ�; (18)

where �Lð ~x; �Þ denotes a linear Gaussian part of the

perturbation, and the variance �2
Lð ~x; �Þ is implemented

in the same sense as presented in Eq. (14). Henceforth,
flocNL is called the local nonlinear coupling parameter
and determines the ‘‘strength’’ of the primordial non-
Gaussianity. This parametrization of non-Gaussianity is
local in real space and, therefore, is called local non-
Gaussianity. In this local model, the contributions from
‘‘squeezed’’ triangles are dominant, that is, with, e.g.,
k3 	 k1, k2. Using Eqs. (18) and (17), the bispectrum of
local non-Gaussianity may be derived:

B�ð ~k1; ~k2; ~k3Þ ¼ 2flocNL½P�ð ~k1ÞP�ð ~k2Þ þ P�ð ~k2ÞP�ð ~k3Þ
þ P�ð ~k3ÞP�ð ~k1Þ�: (19)

In the standard picture, the non-Gaussianity produced by
many single-field slow-roll models is considered small and
likely unobservable. However, a relatively large, possibly
detectable, amount of non-Gaussianity can be expected
when any of the following conditions are violated
[34,36,42,43]:
(i) Single Field—There was only one quantum field

responsible for driving inflation.
(ii) Canonical Kinetic Energy—The kinetic energy of

the quantum field is such that the speed of propaga-
tion of fluctuations is equal to the speed of light.

(iii) Slow Roll—The evolution of the field was always
very slow compared to the Hubble time during
inflation.

12That is, there exists some physical mechanism for which the
quantum variable �̂ð ~x; �Þ becomes a classical stochastic field
�ð ~x; �Þ with Gaussian distribution.
13Just as in the case of the two-point correlation function, the
standard approach relies on the identification

h0j�̂ð ~x; �Þ�̂ð ~y; �Þ�̂ð~z; �Þj0i ¼ �ð ~x; �Þ�ð ~y; �Þ�ð~z; �Þ: (15)

14In the following, we will not write the explicit dependance of
the conformal time � unless it leads to possible confusion.
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(iv) Initial Vacuum State—The quantum field was in the
preferred ‘‘Bunch-Davies vacuum’’ state.

A. Non-Gaussianity in the CMB

In this subsection, we present the standard connection
between the primordial bispectrum at the end of inflation
and the observed bispectrum of CMB anisotropies.

1. Theoretical predictions for the CMB bispectrum
from inflation

As we mentioned in Sec. I, the temperature anisotropies
are represented using the �lm coefficients of a spherical
harmonic decomposition of the celestial sphere,

�T

T0

ð�; ’Þ ¼ X
lm

�lmYlmð�;’Þ; (20)

and the curvature perturbation� is imprinted on the CMB
multipoles �lm by a convolution involving the called trans-
fer functions �ðkÞ representing the linear perturbation
evolution, through Eq. (6):

�lm ¼ 4�il

3

Z d3k

ð2�Þ3 jlðkRDÞY�
lmðk̂Þ�ðkÞ� ~kð�RÞ:

The CMB bispectrum, also called the angular bispec-
trum, is defined as the three-point correlator of the �lm:

B
l1l2l3
m1m2m3

� �l1m1
�l2m2

�l3m3
: (21)

At this point, the standard picture leads us to another
subtle issue; that is, the overline in Eq. (21) denotes, in
principle, an average over an ensemble of universes. In
reality, we cannot measure the ensemble average of the
angular harmonic spectrum, as we have access to just one
realization, say, the collection of complex numbers:
f�l1m1

; �l2m2
; . . . ; �lnmn

g. In order to overcome this issue,

the standard approach relies on the ergodic assumption
[27]. The ergodicity of a system refers to that property of
a process by which the average value of a system’s char-
acteristic, measured over time, is the same as the average
value measured over an appropriately constructed en-
semble. If one accepts the common supposition that the
inflationary perturbation is indeed ergodic, then one ex-
pects the volume average of the fluctuations to behave like
the ensemble average: The universe may contain regions
where the fluctuation is atypical, but with high probability,
most regions contain fluctuations with a root-mean-square
amplitude close to 	 [44]. Therefore, the probability dis-
tribution on the ensemble, which is encoded in Eq. (21),
translates to a probability distribution on smoothed regions
of a determined size within our own Universe.
After the above analysis, we continue with the calcula-

tion relating the primordial bispectrum with the angular
bispectrum. By substituting Eq. (6) in Eq. (21), one obtains

B
l1l2l3
m1m2m3

¼
�
4�

3

�
3
il1þl2þl3

Z d3k1
ð2�Þ3

d3k2
ð2�Þ3

d3k3
ð2�Þ3 �ðk1Þ�ðk2Þ�ðk3Þ 
 jl1ðk1RDÞjl2ðk2RDÞjl3ðk3RDÞ� ~k1

� ~k2
� ~k3

Yl1m1
ðk̂1Þ


 Yl2m2
ðk̂2ÞYl3m3

ðk̂3Þ
¼
�
2

3�

�
3 Z

dk1dk2dk3ðk1k2k3Þ2B�ðk1; k2; k3Þ�ðk1Þ�ðk2Þ�ðk3Þ 
 jl1ðk1RDÞjl2ðk2RDÞjl3ðk3RDÞ



Z 1

0
dxx2jl1ðk1xÞjl2ðk2xÞjl3ðk3xÞ 


Z
d�x̂Yl1m1

ðx̂ÞYl2m2
ðx̂ÞYl3m3

ðx̂Þ; (22)

where in the last line, we have integrated over the angular parts of the three ki and used the exponential integral form for the
delta function that appears in the bispectrum definition (17). The last integral over the angular part of ~x is known as the
Gaunt integral, which can be expressed in terms of Wigner 3-j symbols as

Gm1m2m3

l1l2l3
�
Z

d�x̂Yl1m1
ðx̂ÞYl2m2

ðx̂ÞYl3m3
ðx̂Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4�

s
l1 l2 l3

0 0 0

 !
l1 l2 l3

m1 m2 m3

 !
: (23)

The fact that the bispectrum B
l1l2l3
m1m2m3

consists of the Gaunt
integral, Gm1m2m3

l1l2l3
, implies that the bispectrum satisfies the

triangle conditions and parity invariance: m1 þm2 þ
m3 ¼ 0, l1 þ l2 þ l3 ¼ even, and jli � ljj � lk � li þ lj
for all permutations of indices.

One, thus, can write

Bl1l2l3
m1m2m3

¼ Gm1m2m3

l1l2l3
bl1l2l3 ; (24)

where bl1l2l3 is an arbitrary real symmetric function of l1,

l2, and l3. This form, Eq. (24), is necessary and sufficient to

construct generic Bl1l2l3
m1m2m3

satisfying rotational invariance;
thus, in the literature, one encounters bl1l2l3 more frequently

than Bl1l2l3
m1m2m3

. The quantity bl1l2l3 is called the reduced

bispectrum, as it contains all the physical information in

B
l1l2l3
m1m2m3

. Since the reduced bispectrum does not contain the
Wigner 3-j symbol, which merely ensures the triangle con-
ditions and parity invariance, it is easier to calculate the
physical properties of the theoretical bispectrum.
In the standard picture, one assumes that, if there is a

nontrivial bispectrum, then it has arisen through a physical
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process that is statistically isotropic,15 so we can employ
the angle-averaged bispectrum Bl1l2l3 without loss of infor-

mation, that is [33,34],

Bl1l2l3 ¼
X
mi

l1 l2 l3

m1 m2 m3

 !
�l1m1

�l2m2
�l3m3

: (25)

We now can obtain a relation between the averaged bis-
pectrum, Bl1l2l3 , and the reduced bispectrum, bl1l1l2 , by

substituting Eq. (24) into Eq. (25),

Bl1l2l3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4�

s
l1 l2 l3

0 0 0

 !
bl1l2l3 ;

(26)

where the identity

X
all m

l1 l2 l3

m1 m2 m3

 !
Gm1m2m3

l1l2l3

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4�

s
l1 l2 l3

0 0 0

 !
(27)

was used. The reduced bispectrum obtained from Eq. (22)
then takes the much simpler form

bl1l2l3 ¼
�
2

3�

�
3 Z

dk1dk2dk3ðk1k2k3Þ2B�ðk1; k2; k3Þ�ðk1Þ

�ðk2Þ�ðk3Þ 
 jl1ðk1RDÞjl2ðk2RDÞjl3ðk3RDÞ


Z 1

0
dxx2jl1ðk1xÞjl2ðk2xÞjl3ðk3xÞ: (28)

This is the main equation for this section, since it ex-
plicitly relates the primordial bispectrum, predicted by the
standard inflationary theories, to the averaged bispectrum
[through Eq. (26)] obtained from the CMB angular bispec-
trum �l1m1

�l2m2
�l3m3

. This formula is entirely analogous to

the well-known relation linking the primordial power spec-
trum P�ðkÞ and the CMB angular power spectrum Cl, i.e.,

Cl ¼ 2

9�

Z
k2P�ðkÞ�2ðkÞj2l ðkRDÞdk: (29)

2. Measuring primordial non-Gaussianity from the CMB

As we mentioned before, in most inflationary models,
the parameter characterizing primordial non-Gaussianity is
fNL. Thus, the next task within the standard picture is to
estimate fNL from the CMB data set. That is, one chooses
the primordial model that one wants to test, characterizing
it through its bispectrum shape. One then proceeds to
estimate the corresponding amplitude fmodel

NL from the
data. If the final estimate is consistent with fmodel

NL ¼ 0,

one concludes that no significant detection of the given
shape is produced by the data, but one still determines
important constraints on the allowed range of fmodel

NL . Note
that, ideally, one would like to do more than just constrain
the overall amplitude and reconstruct the entire shape from
the data by measuring configurations of the bispectrum.
However, the expected primordial signal is too small to
allow the signal from a single bispectrum triangle to
emerge over the noise. For this reason, one studies the
cumulative signal from all the configurations that are
sensitive to fmodel

NL .
Given the above analysis, the standard picture then

makes use of estimation theory to extract an estimate for
fNL from the CMB data set. An unbiased bispectrum-based
minimum variance estimator for the nonlinearity parame-
ter can be written as [45,46]

f̂NL ¼ 1

N

X
limi

l1 l2 l3

m1 m2 m3

 !
Bth
l1l2l3

ðCl1Cl2Cl3Þobs

 ð�l1m1

�l2m2
�l3m3

Þobs; (30)

where Bth
l1l2l3

is the angle-averaged theoretical CMB bis-

pectrum for the model in consideration, with fthNL ¼ 1; Cl

is the observed angular spectrum; and �lm are the multi-
poles of the observed CMB temperature fluctuations. The
normalization N is calculated requiring the estimator to be
‘‘unbiased,’’ i.e., the averaged value is equal to the ‘‘true’’

value of the parameter, hf̂NLi ¼ fNL. If the bispectrum
Bl1l2l3 is calculated for fNL ¼ 1, then the normalization

takes the following form:

N ¼ X
li

ðBl1l2l3Þ2
Cl1Cl2Cl3

: (31)

The estimator for non-Gaussianity (30) is then simpli-
fied using Eqs. (28) and (26) to yield

f̂NL ¼ 1

N

X
limi

Z
d�x̂Yl1m1

ðx̂ÞYl2m2
ðx̂ÞYl3m3

ðx̂Þ



Z 1

0
x2dxjl1ðk1xÞjl2ðk2xÞjl3ðk3xÞðC�1

l1
C�1
l2
C�1
l3
Þobs



�
2

�

�
3 Z

dk1dk2dk3ðk1k2k3Þ2Bðk1; k2; k3Þ�ðk1Þ

�ðk2Þ�ðk3Þjl1ðk1RDÞjl2ðk2RDÞjl3ðk3RDÞ

 ð�l1m1

�l2m2
�l3m3

Þobs; (32)

where Bðk1; k2; k3Þ is the primordial bispectrum obtained
from the three-point function, as defined in Eq. (17). In this
manner, the sought constraints are obtained. The best
results, corresponding to the so-called, local, equilateral,
and orthogonal shape of non-Gaussianities using the
WMAP 7 year data [47], yield flocalNL ¼ 32� 21 (1	),

fequilNL ¼ 26� 140 (1	), and forthogNL ¼ �202� 104 (1	).

15Although, it would be interesting, and possibly a more
realistic approach to the problem, to proceed in the analysis
without this assumption.
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IV. THE COLLAPSE MODEL ACCOUNT FOR
THE INFLATIONARY ORIGIN OF

COSMIC STRUCTURE

Before proceeding, it seems worthwhile to briefly
explain the view we take regarding quantum physics
and Einstein’s gravity. The framework we adopt is
based on a description of the problem that allows, at
the same time, the quantum treatment of other fields
and a classical treatment of gravitation, that is, the
realm of semiclassical gravity, together with quantum
field theory in curved space-time. We will assume that
to be a valid approximation most of the time, with the
exception associated precisely with the dynamical
collapse, as we will explain below. Such a description
of gravitation in interaction with quantum fields is
characterized by the semiclassical Einstein equation:

R
��ð1=2Þg
�R¼8�GhT̂
�i, whereas the other fields,

including the inflaton, are treated in the standard quan-
tum field theory fashion. It seems clear that this ap-
proximated description would break down in association
with the quantum mechanical collapses or state jumps,
which we are considering to be part of the underlying
quantum theory containing gravitation. The reason for
this breakdown is simply that the left-hand side of the
equation above has zero divergence (r
G


� ¼ 0), while

the divergence of the right-hand side, r�hT̂
�i, will be
nonvanishing (even discontinuous) in connection with
the jumps of the quantum state (such a jump is how we
are describing here the self-induced collapse of the
wave function).

In this setting, we start from the assumption that, in
accordance with the standard inflationary accounts, and
as mentioned before, the state of the Universe before the
time at which the seeds of structure emerge is described by
the H&I Bunch-Davies vacuum state for the matter degrees
of freedom (DOF) and the corresponding H&I classical
Robertson-Walker space-time.

Then, we assume that, at a later stage, the quantum state
of the matter fields reaches a stage whereby the corre-
sponding state for the gravitational DOF is forbidden,
and a quantum collapse of the matter field wave function
is triggered by some unknown physical mechanism. In this
manner, the state resulting from the collapse of the quan-
tum state of the matter fields does not need to share the
symmetries of the initial state. After the collapse, the
gravitational DOF are assumed to be, once more, accu-
rately described by Einstein’s semiclassical equation.

However, as hT̂
�i for the new state does not need to

have the symmetries of the precollapse state, we are led
to a geometry that, generically, will no longer be homoge-
neous and isotropic.

The starting point of the specific analysis is the same as
the standard picture, i.e., the action of a scalar field coupled
to gravity:

S¼
Z
d4x

ffiffiffiffiffiffiffi�g
p �

1

16�G
R½g��1=2ra�rb�gab�Vð�Þ

�
;

(33)

where � stands for the inflaton and V stands for the
inflaton’s potential. One then splits both metric and scalar
fields into a spatially homogeneous part (‘‘background’’)
and an inhomogeneous part (‘‘fluctuation’’), i.e., g ¼ g0 þ
�g, � ¼ �0 þ ��.
The background is taken to be the spatially flat

Friedmann-Robertson universe with line element ds2 ¼
að�Þ2½�d�2 þ �ijdx

idxj� and the homogeneous scalar

field �0ð�Þ. The evolution equations for this background
are scalar field equations,

€�0 þ 2
_a

a
_�0 þ a2@�V½�� ¼ 0;

3
_a2

a2
¼ 4�Gð _�2

0 þ 2a2V½�0�Þ:
(34)

The scale factor corresponding to the inflationary regime,
written in terms of the conformal time, is: að�Þ ¼
�1=½H2

I ð1� �Þ�� with H2
I ’ ð8�=3ÞGV. The slow roll

parameter � � 1� _H =H 2 is considered to be very small
� 	 1 during the inflationary stage. The Hubble factor HI

is approximately constant, and the scalar �0 field is in the

slow roll regime, i.e., _�0 ¼ �ða3=3 _aÞV 0. According to the
standard inflationary scenario, this era is followed by a
reheating period in which the Universe is repopulated with
ordinary matter fields, a regime that then evolves toward a
standard hot big bang cosmology regime leading up to the
present cosmological time. The functional form of að�Þ
during these latter periods changes, but we will ignore
those details because most of the change in the value
of a occurs during the inflationary regime. We will set
a ¼ 1 at the ‘‘present cosmological time’’ and assume
that the inflationary regime ends at a value of
� ¼ �0, negative and very small in absolute terms (�0 ’
�10�22 Mpc).
Next, we turn to consider the perturbations. We shall

focus in this work on the scalar perturbations and ignore,
for simplicity, the tensor perturbations or gravitational
waves. Working in the so-called longitudinal gauge, the
perturbed metric is written as

ds2¼að�Þ2½�ð1þ2�Þd�2þð1�2�Þ�ijdx
idxj�; (35)

where � stands for the scalar perturbation usually known
as the Newtonian potential.
The perturbation of the scalar field is related to a per-

turbation of the energy-momentum tensor and reflected
into Einstein’s equations, which, at the lowest order, lead
to the following constraint equation for the Newtonian
potential:

r2� ¼ 4�G _�0� _� ¼ s� _�; (36)

where we introduced the abbreviation s � 4�G _�0.
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Now, we consider in some detail the quantum theory
of the field ��. It is convenient to work with the rescaled
field variable y ¼ a�� and its conjugate momentum
� ¼ _y� y _a=a. For simplicity, we set the problem in a
finite box of side L, which can be taken to 1 at the end
of all calculations. We decompose the field and momentum
operators as

ŷð�; ~xÞ ¼ 1

L3

X
~k

ei
~k� ~xŷ ~kð�Þ;

�̂ð�; ~xÞ ¼ 1

L3

X
~k

ei
~k� ~x�̂ ~kð�Þ;

(37)

where the sum is over the wave vectors ~k satisfying
kiL ¼ 2�ni for i ¼ 1, 2, 3, with ni integer, and where

ŷ ~kð�Þ � ykð�Þâ ~k þ y�kð�Þây� ~k
and �̂ ~kð�Þ � gkð�Þâ ~k þ

g�kð�Þây� ~k
with the usual choice of modes:

ykð�Þ ¼ 1ffiffiffiffiffi
2k

p
�
1� i

�k

�
exp ð�ik�Þ;

gkð�Þ ¼ �i

ffiffiffi
k

2

s
exp ð�ik�Þ;

(38)

which leads to what is known as the Bunch-Davies
vacuum.

Note that, according to the point of view we discussed at
the beginning of this section and having, at this point, the
quantum theory for the relevant matter fields, the effects of
the quantum fields on the geometrical variables are codi-
fied in the semiclassical Einstein equations. Thus, Eq. (36)
must be replaced by

r2� ¼ 4�G _�0� _� ¼ sh� _�i ¼ ðs=aÞh�̂i: (39)

At this point, one can clearly observe that, if the state of the
quantum field is in the vacuum state, the metric perturba-
tions vanish, and thus the space-time is homogeneous and
isotropic.

As already mentioned, our proposal is based on the
consideration of a self-induced collapse, which we take
to operate in close analogy with a ‘‘measurement’’
(but, evidently, with no external measuring apparatus or
observer involved). This leads us to want to work with
Hermitian operators, which, in ordinary quantum mechan-
ics, are the ones susceptible to direct measurement.
Therefore, we must separate both ŷ ~kð�Þ and �̂ ~kð�Þ into
their real and imaginary parts ŷ ~kð�Þ ¼ ŷ ~k

Rð�Þ þ iŷ ~k
Ið�Þ

and �̂ ~kð�Þ ¼ �̂ ~k
Rð�Þ þ i�̂ ~k

Ið�Þ so that the operators

ŷR;I~k
ð�Þ and �̂R;I

~k
ð�Þ are Hermitian operators.

So far, we have proceeded in a manner similar to the
standard one, except in that we are treating at the quantum
level only the scalar field and not the metric fluctuation. At
this point, it is worthwhile to emphasize that the vacuum

state defined by â ~k
R;Ij0i ¼ 0 is 100% translational and

rotationally invariant (see Appendix A).
For the next step, we must specify in more detail the

modeling of the collapse. Then, we must take into account
that, after the collapse has taken place, one should consider
the continuing evolution of the expectation values of the
field variables until the end of inflation and eventually up to
the hypersurface of decoupling. In fact, if we wanted to
actually compare our analysis directly with observations,
we would need evolve the perturbations both through the
reheating period and through the decoupling era. This,
however, is normally taken into account through the use
of appropriate transfer functions, and we will assume that
the same procedure could be implemented in the context
of the present analysis, but we will not consider it further in
the present manuscript.
We will further assume that the collapse is somehow

analogous to an imprecise measurement16 of the operators

ŷR;I~k
ð�Þ and �̂R;I

~k
ð�Þ. Now, we will specify the rules accord-

ing to which collapse happens. Again, at this point, our
criteria will be simplicity and naturalness. What we have to
describe is the state j�i after the collapse.
It seems natural to assume (taking the view that a

collapse effect on a state is analogous to some sort of
approximate measurement) that after the collapse, the
expectation values of the field and momentum operators
in each mode will be related to the uncertainties of the
precollapse state (recall that the expectation values in the
vacuum state are zero). In the vacuum state, ŷ ~k and �̂ ~k

individually are distributed according to Gaussian wave
functions centered at 0 with spread ð�ŷ ~kÞ20 and ð��̂ ~kÞ20,
respectively.
We might consider various possibilities for the detailed

form of this collapse. Thus, for their generic form, asso-
ciated with the ideas above, we write

hŷR;I~k ð�c
kÞi� ¼ �1x

R;I
~k;1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�ŷR;I~k Þ20

q
¼ �1x

R;I
~k;1
jykð�c

kÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏL3=2

q
;

(40)

h�̂ ~k
R;Ið�c

kÞi�¼�2x
R;I
~k;2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð��̂R;I

~k
Þ20

q
;¼�2x

R;I
~k;2
jgkð�c

kÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏL3=2

q
;

(41)

where xR;I~k;1
, xR;I~k;2

have been assumed, in our previous works,

to be selected randomly from within a Gaussian distribu-
tion centered at zero with spread one, and �c

~k
represents the

16An imprecise measurement of an observable is one in which
one does not end up with an exact eigenstate of that observable
but rather with a state that is only peaked around the eigenvalue.
Thus, we could consider measuring a certain particle’s position
and momentum so as to end up with a state that is a wave packet
with both position and momentum defined to a limited extent and
which, of course, does not entail a conflict with Heisenberg’s
uncertainty bound.
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time of collapse for each mode. Here, �1 and �2 are
parameters taking the values 0 or 1 that allow us to specify
the kind of collapse proposal we want to consider. (The
main ones we have considered in Refs. [4,8,9] are �1 ¼
�2 ¼ 1 for the symmetric collapse and �1 ¼ 0, �2 ¼ 1 for
the Newtonian collapse). At this point, we must emphasize
that our Universe corresponds to a single realization of
these random variables, and, thus, each of these quantities

xR;I~k;1
, xR;I~k;2

has a single specific value. The fact that we can

represent the specific details of the first inhomogeneities
and anisotropies, the seeds of cosmic structure, is some-
thing that has no counterpart on the standard treatments. It
is clear that one can now investigate how the different
specific proposals for the process of collapse could affect

the statistics of the xR;I~k;1
, xR;I~k;2

. One could now inquire about

both, the statistics of these quantities in some imaginary
ensemble of possible universes as well as the statistics of
such quantities for the particular Universe we inhabit.

Regarding the collapse models, it should be clear that
there are many other possibilities that we have not even
thought about and that might require drastically modified
formalisms. In fact, in a recent work [13], grounds were

found that suggest a correlation between the xR;I~k;1
, xR;I~k;2

of

any mode with those of their higher harmonics (something
reminiscent of the so-called parametric resonances found
in quantum optics in materials with nonlinear response
functions [48]). As we noted in Ref. [14] that particular
types of correlations, in turn, would lead to a very specific
signature, which might be looked for in the statistical
features of the CMB.

Returning to the specific models we have described
above, we need to compute the relevant expectation values
of the field operators in the post-collapse state j�i at the
relevant times. For each specific model, we do this by using
Eqs. (40) and (41) above and the evolution equations for
the expectation values (i.e., using Ehrenfest’s theorem).

Thus, one obtains hŷR;I~k ð�Þi and h�̂R;I
~k
ð�Þi for the state

that resulted from the collapse, for all later times. The

explicit expressions for the hŷR;I~k ð�Þi� and h�̂R;I
~k
ð�Þi� are

hŷR;I~k ð�Þi�¼
�
cosDk

k

�
1

k�
� 1

zk

�
þsinDk

k

�
1

k�zk
þ1

��


h�̂R;I
~k
ð�c

~k
Þi�þ

�
cosDk�sinDk

k�

�
hŷR;I~k ð�c

~k
Þi�;
(42)

h�̂R;I
~k
ð�Þi� ¼

�
cosDk þ sinDk

zk

�
h�̂R;I

~k
ð�c

~k
Þi�

� k sinDkhŷR;I~k ð�c
~k
Þi�; (43)

where Dk � k�� zk and zk � k�c
~k
. This calculation is

explicitly done in Refs. [4,11].

With this information at hand, we can now compute the
perturbations of the metric after the collapse of all the
modes.17

A. Connection to observations

Now, we must put together our semiclassical description
of the gravitational DOF and the quantum mechanics
description of the inflaton field. We recall that this entails
the semiclassical version of the perturbed Einstein equa-
tion that, in our case, leads to Eq. (39). The Fourier
components at the conformal time � are given by

� ~kð�Þ ¼ �
ffiffiffi
�

2

r
HIℏ
MPk

2
h�̂ ~kð�Þi; (44)

where we have used the fact that, during inflation, s ¼ffiffiffiffiffiffiffiffi
�=2

p ðaHI=MPÞ, with MP as the reduced Planck mass
M2

P � ℏ2=ð8�GÞ. The expectation value depends on the
state of the quantum field; therefore, as we already noted,
prior to the collapse, we have � ~kð�Þ ¼ 0, and the space-

time is still homogeneous and isotropic at the correspond-
ing scale. However, after the collapse takes place, the state
of the field is a different state with new expectation values
that generically will not vanish, indicating that, after this
time, the Universe becomes anisotropic and inhomogene-
ous at the corresponding scale. We now can reconstruct the
space-time value of the Newtonian potential using

�ð�; ~xÞ ¼ 1

L3

X
~k

ei
~k� ~x� ~kð�Þ; (45)

to extract the quantities of observational interest.
In order to connect with the observations, we shall relate

the expression (44) for the evolution of the Newtonian
potential during the early phase of accelerated expansion
to the small anisotropies observed in the temperature of the
cosmic microwave background radiation, �Tð�; ’Þ=T0

with T0  2:725 Kas the temperature average. They are
considered the fingerprints of the small perturbations per-
vading the Universe at the time of decoupling, and un-
doubtedly any model for the origin of the seeds of cosmic
structure should account for them. As already mentioned in
Sec. I, these data can be described in terms of the coef-
ficients �lm of the multipolar series expansion, i.e., Eq. (5).
The different multipole numbers l correspond to different
angular scales: low l to large scales and high l to small
scales. At large angular scales (l & 20), the Sachs-Wolfe
effect is the dominant source for the anisotropies in the
CMB. That effect relates the anisotropies in the tempera-
ture observed today on the celestial sphere to the inhomo-
geneities in the Newtonian potential on the last scattering
surface,

17In fact, we need only be concerned with the relevant modes,
those that affect the observational quantities in a relevant way.
Modes that have wavelengths that are either too large or too
small are irrelevant in this sense.
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�T

T0

ð�; ’Þ ¼ 1

3
�ð�D; ~xDÞ: (46)

Here, �D is the conformal time of decoupling that
lies in the matter-dominated epoch, and ~xD ¼
RDðsin � sin’; sin� cos’; cos�Þ, with RD as the radius
of the last scattering surface. Furthermore, using Eq. (45)

and ei
~k� ~xD ¼ 4�

P
lmi

ljlðkRDÞYlmð�; ’ÞY�
lmðk̂Þ, the expres-

sion (5) for �lm can be rewritten in the form (6). The
transfer function �ðkÞ represents the evolution of the
Newtonian potential from the end of inflation �R to
the time of decoupling �D, i.e., � ~kð�DÞ ¼ �ðkÞ� ~kð�RÞ.

Substituting Eq. (43) in Eq. (44) and using Eqs. (40) and
(41) gives

� ~kð�RÞ¼�ðLℏÞ3=2 ffiffiffi
�

p
HI

2
ffiffiffi
2

p
MPk

3=2

�
�2

�
cosDkþsinDk

zk

�
ðxR~k;2þixI~k;2

Þ

��1sinDk

�
1þ 1

z2k

�
1=2ðxR~k;1þixI~k;1

Þ
�
: (47)

Finally, using Eq. (47) in Eq. (6) yields

�lm ¼ ��ilℏ3=2
ffiffiffiffiffiffi
2�

p
HI

3ðLkÞ3=2MP

X
~k

�ðkÞjlðkRDÞY�
lmðk̂Þ



�
�2

�
cosDk þ sinDk

zk

�
ðxR~k;2 þ ixI~k;2Þ

� �1 sinDk

�
1þ 1

z2k

�
1=2ðxR~k;1 þ ixI~k;1

Þ
�
; (48)

note that in Eqs. (47) and (48), Dk is evaluated at �R,
i.e., Dkð�RÞ ¼ k�R � zk.

It is worthwhile to mention that the relation of �lm with
the Newtonian potential, as obtained in Eq. (48), within the
collapse framework has no analogue in the usual treat-
ments of the subject. It provides us with a clear identifica-
tion of the aspects of the analysis where the ‘‘randomness’’
is located. In this case, it resides in the randomly selected

values xR;I~k;1
, xR;I~k;2

that appear in the expressions of the

collapses associated with each of the modes. Here, we
also find a clarification of how, in spite of the intrinsic
randomness, we can make any prediction at all. The indi-
vidual complex quantities �lm correspond to large sums of
complex contributions, each one having a certain random-
ness but leading in combination [i.e., the sum of contribu-
tions appearing in Eq. (48)] to a characteristic value in just
the same way as a random walk made of multiple steps. In
other words, the justification for the use of statistics in our
approach is that the quantity �lm is the sum of contribu-
tions from the collection of modes, each contribution being
a random number leading to what is, in effect, a sort of
‘‘two-dimensional random walk,’’ for which the total dis-
placement corresponds to the observational quantity.
Nothing like this can be found in the most popular ac-
counts, in which the issues we have been focussing on are

hidden in a maze of often unspecified assumptions and
unjustified identifications [5].
Thus, according to Eq. (48), all the modes contribute to

�lm, with a complex number. If we had the outcomes
characterizing each of the individual collapses, we would
be able to predict the exact value of each of these individ-
ual quantities. However, we have, at this point, no other
access to such information than the observational quanti-
ties �lm themselves.
We hope to be able to say something about these, but

doing so requires the consideration of further hypothesis
regarding the statistical aspects of the physics behind the
collapse as well as the conditions previous to them.
As is generally the case with random walks, one cannot

hope to estimate the direction of the final displacement.
However, one might say something about its estimated
magnitude. It is for that reason that we will be focusing
on estimating the most likely value of the magnitude:

j�lmj2 ¼ 16�2

9L6

X
~k; ~k0
�ðkÞ�ðk0ÞjlðkRDÞjlðk0RDÞY�

lmðk̂ÞYlmðk̂0Þ


� ~kð�RÞ��
~k0
ð�RÞ: (49)

Note, however, that although, in our approach, each of
the quantities � ~kð�RÞ has, in principle, a particular nu-

merical value, the fact that such value is the result of a
quantum collapse characterized by random numbers
indicates we cannot make a definite prediction for it. We
believe that our approach has, among others, the advantage
of offering a clear way to express the prediction for the
observable quantities, in a manner in which the aspects that
are controlled by randomness are clearly identified. This
allows, in principle, the consideration in a separate way of
each of the hypotheses and identifications one is interested
in making. Our inability of predicting the specific values
for the quantities j�lmj, characterizing our observations, is
then clearly identified and located in the particular random
variables introduced in the collapse hypothesis. But, of
course, we want to make predictions. So further consider-
ations become necessary, but the point is that these are
clearly identifiable. We will see below what these hypoth-
eses are and how they lead to more specific predictions.
One of the advantages we have is that one is able, in
principle, to consider removing or modifying each one of
those hypotheses. In this case, we can make progress, for
instance, by making the assumption that we can regard the
specific outcomes characterizing our Universe as a typical
member of some hypothetical ensemble of universes.
For example, we are interested in estimating the most

likely value of the magnitude of j�lmj2 above, and, in such a
hypothetical ensemble, we might hope that it comes very
close to our single sample. It is worth emphasizing that, for
each l and m, we have one single complex number charac-
terizing the actual observations (and, thus, the real Universe
we inhabit). For a given l, for instance, we should avoid
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confusing ensemble averages with averages of such quanti-
ties over the 2lþ 1 values of m. The other universes in the
ensemble are just figments of our imagination, and there is
nothing in our theories that would indicate that they are real.

We can simplify things even further by taking the en-

semble average j�lmj2 (the bar indicates that we are taking

the ensemble average) and identifying it with the most likely
value of the quantity, and it is needless to say that these two
notions are not exactly equal for many types of ensembles.
However, let us, for the moment, ignore this issue and
assume the identity of those two values and look at the
ensemble average of the quantity j�lmj2, which is given by

j�lmj2 ¼ 16�2

9L6

X
~k; ~k0
�ðkÞ�ðk0ÞjlðkRDÞjlðk0RDÞY�

lmðk̂ÞYlmðk̂0Þ� ~kð�RÞ��
~k0
ð�RÞ: (50)

One can, for instance, assume that collapsing events are all uncorrelated (Something not always justified, as exemplified
in the analysis of Ref. [13]) and then consider estimating the most likely value; thus,

j�lmj2ML ¼ 16�2

9L6

X
~k; ~k0
�ðkÞ�ðk0ÞjlðkRDÞjlðk0RDÞY�

lmðk̂ÞYlmðk̂0Þ� ~kð�RÞ��
~k0
ð�RÞ: (51)

Under the assumption of the validity of such an approxi-
mation and the additional assumption that the random
variables xR~k;1

, xI~k;1
, xR~k;2

, xI~k;2
are all uncorrelated, we obtain

that all the information regarding the ‘‘self-collapsing’’
model will be codified in the quantity

� ~kð�RÞ��
~k0
ð�RÞ: (52)

Generally, one expects this term to be proportional to �~k ~k0 ,

but alternatives cannot be ruled out. In fact, a case in which
this assumption is relaxed was explored in Ref. [14].
Furthermore, we will take the limit �k�R ! 0 in Eq. (52),
which can be expected to be appropriate when restricting
interest to the modes that are ‘‘outside the horizon’’ at the
end of inflation (including the modes that give a major
contribution to the observationally relevant quantities).

Then, with the help of Eq. (47) and after taking the
continuum limit (L ! 1), we obtain

j�lmj2ML ¼ ℏ3�H2
I

36�M2
P

Z dk

k
�2ðkÞj2l ðkRDÞCðkÞ; (53)

where some of the information regarding that a collapse
has occurred is contained in the function CðkÞ.18 The

explicit form of CðkÞ for the class of collapse schemes
considered here is

CðkÞ ¼ �2
1

�
1þ 1

z2k

�
sin 2zk þ �2

2

�
cos zk � sin zk

zk

�
2
: (54)

As we have noted in previous works, this quantity becomes
a simple constant if the collapse time happens to follow a
particular pattern in which the time of collapse of the mode
~k is given by �c

k ¼ Z=k with Z as a constant. In fact, the

standard answer would correspond to CðkÞ ¼ constant
(which can be thought as an equivalent ‘‘nearly scale-
invariant power spectrum’’). Thus, the result obtained for
the relation between the time of collapse and the mode’s
frequency, i.e., �c

~k
k ¼ constant, is a rather strong conclu-

sion that could represent relevant information about what-
ever the mechanism of collapse is.
It is quite clear that if the time of collapse of each mode

does not adjust exactly to the pattern k�c
k ¼ Z, then the

collapse schemes under consideration (characterized by
the values of �1, �2), or some other one resulting in a
nontrivial function CðkÞ, would lead to different predic-
tions for the exact form of the spectrum, and comparing
these predictions with the observations can help us to
discriminate between the distinct collapse schemes. An
analyses of these issues have been presented in Refs. [8,9].
We end this section by noting that the treatment of the

statistical aspects in the collapse proposal is quite different
from the standard inflationary paradigm. We will deepen
this discussion in the next section. However, at this point,
the differences should be evident. In the standard accounts,
one is going from quantum correlation functions to classi-
cal n-point functions averaged over an ensemble of uni-
verses; then, one goes to n-point correlation functions
averaged over different regions of our own Universe,
and, finally, one relates this last quantity with the observ-
able j�lmj2. These series of steps are not at all direct, and
they involve a lot of subtle issues that the standard picture
does not provide in a transparent way. On the other hand,
within the collapse approach to the subject, the observable

18The standard amplitude for the spectrum is usually presented as
/ V=ð�M4

PÞ / H2
I =ðM2

P�Þ. The fact that � is in the denominator
leads, in the standard picture, to a constraint scale for V. However,
in Eq. (53), � is in the numerator. This is because we have not used
(and, in fact, we will not) explicitly the transfer function �ðkÞ. In
the standard literature, it is common to find the power spectrum for
the quantity ðxÞ, a field representing the curvature perturbation
in the comoving gauge. This quantity is constant for modes
‘‘outside the horizon’’ (irrespectively of the cosmological epoch);
thus, it avoids the use of the transfer function. The quantity  can

be defined in terms of the Newtonian potential as  �
�þ ð2=3ÞðH�1 _�þ�Þ=ð1þ!Þ, with ! � p=�. For large-
scale modes  ~k’� ~k½ð2=3Þð1þ!Þ�1þ1�, and during inflation,
1þ! ¼ ð2=3Þ�. For these modes,  ~k ’ � ~k=�, and the power

spectrum isP  ðkÞ ¼ P�ðkÞ=�2 / H2
I =ðM2

P�Þ / V=ð�M4
PÞ, which

contains the correct amplitude. For a detailed discussion regarding
the amplitude within the collapse framework, see Ref. [10].
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j�lmj2 is related to the random variables, xk, through a
two-dimensional (i.e., the result is the sum of individual
complex numbers) random walk. As we mentioned, the
value of j�lmj2 corresponds then to the ‘‘length’’ of the
random walk. This random walk is associated to a particu-
lar realization of a physical quantum process (i.e., the
collapse of the inflaton’s wave function), and as we have
only access to one realization—the random walk corre-
sponding to our own Universe—the most natural assump-
tion (but certainly not the only one) is that the average
value of the length of the possible random walks, which

corresponds to j�lmj2, is equal to the most likely value, i.e.,
to j�lmj2ML, and this, in turn, is associated with the j�lmj2 of
our observable Universe.

V. FURTHER STATISTICAL ASPECTS

The first thing we should now note is that there are
several statistical issues at play and that, within our ap-
proach, various novel ones emerge. One central aspect is
the exact nature of the state previous to all collapses, i.e.,
the state characterizing the first stages of the inflationary
regime, and normally taken to be the Bunch-Davies vac-
uum. There are various possibilities that might modify the
nature of that state: For instance, if the field is not truly a
free field, and self-interactions are important, one might
find correlations between the various modes of the field.
These effects could be manifest, for instance, by nonvan-
ishing values of quantities like h0jŷ ~kŷ ~k0 j0i (as argued in the
case studied in Ref. [14]). However, we should be aware
not only of the inherent problems of accessing those sta-
tistical signatures associated with the fact that we have at
our disposal a single Universe but also that our Universe,
including the relevant perturbations, is not characterized by
the vacuum state but rather by the state that results after the
collapses of all the modes, and it is quite clear that the
collapse process itself can be a source of unexpected
correlations. These would manifest themselves, for ex-
ample, in correlations between the values taken by the
x ~ks appearing in the collapse process and which we have

so far assumed were different and independent quantities
for each mode.

Moreover, we have to note that the quantities that are
more or less directly accessible to observational investiga-
tion are not the h�jŷ ~kj�i, and the n-point functions, in

general, for the post-collapse state, but the various �lms,
and the latter are related to the former, as can be seen in
Eq. (48) in a nontrivial way. In fact, as we saw, each �lm

corresponds to a sort of two-dimensional random walk
(i.e., a sum of complex quantities), and each of the steps
is related to h�jŷ ~kj�i. It is, thus, clear that there might be

correlations between the various �lms simply due to the
fact that they arise from different combinations of the same
random variables. Of course, we should note that the
version of the collapse proposal we have presented here
is based on the assumption that the elementary collapse

processes were associated with the observables ŷ ~k and their

conjugate momenta according to Eqs. (40) and (41). It is
clearly conceivable that the elementary process might have
been associated, instead, with other observables. One sim-
ple possibility for those alternative observables is the vari-
ous options offered by linear combinations of the former.

A. The new outlook on non-Gaussianities

In this section, we discuss the aspects that need modifi-
cation in the study of primordial non-Gaussianities, in view
of the approach we have been discussing to the origin of
the primordial fluctuations.
The first point we should stress is that, from the two

aspects of cosmology mentioned in Sec. I, we have seen
that we have had to modify the first, namely, the nature of
the quantum state, in order to be compatible with the
existence, at the fundamental (quantum) level, of the in-
homogeneities and anisotropies that are behind the emer-
gence of structure and, thus, of everything—including
observers—in our Universe.
In other words, the standard physics of the very early

Universe had to be supplemented with the collapse hy-
pothesis in order to fully account for the process that
created the primordial seeds for large-scale structure.
Otherwise, we could not really identify the process by
which the inhomogeneity and anisotropies emerged from
the initial vacuum.
As in the standard approach, we take the curvature

perturbations � to be the generators of the CMB anisot-
ropy, �T=T. However, in our approach, the observed fluc-
tuations are determined, not just by the initial vacuum
state, which is and remains homogeneous and isotropic,
but also by the characteristics of the collapse process,
besides, of course, by the effects of the late-time physics.
In this more precise and detailed approach, it is clear

that, even if the primordial state can be considered as
Gaussian, in the sense that the corresponding n-point
functions are completely determined by the two-point
functions—and, thus, the odd n-point functions vanish—
it might still be possible for the collapse processes to
drastically affect and modify this. In other words, there
exists, in principle, the possibility that the collapse process
itself introduces non-Gaussian characteristics into the
state. We will not discuss this possibility here, but only
point it out as something to have in mind and a topic for
future research.
As we have argued, the quantity of observational interest

is not really h0j�̂ð ~x; �Þ�̂ð ~y; �Þj0i, as the argument to
justify that in the standard approach depends not only

on accepting the identification h0j�̂ð ~x; �Þ�̂ð ~y; �Þj0i ¼
�ð ~x; �Þ�ð ~y; �Þ, where �ð ~x; �Þ is taken to be a classical
stochastic field and the overline denotes the average over
an ensemble of universes, but also on a series of arguments
indicating one can replace the ensemble averages with
suitable spatial averages of quantities in our Universe.
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As a matter of fact, a clear example of how a careless
approach to the statistics at hand can lead to wrong con-

clusions is brought by the variance �2. We mentioned in

Sec. III that �2 diverges generically if one does not intro-
duce an ad hoc cutoff for k. Therefore, if we consider the
temperature fluctuations in a particular point ~x0 of the last
scattering surface, and we estimate it in terms of

h0j�̂2ð ~x0; �Þj0i, we obtain a divergent quantity. Note that
we are not saying that the temperature anisotropy is diver-

gent, but only that h0j�̂2ðxÞj0i, during the inflationary
period, is divergent (see Appendix B). This divergence at
an early state would invalidate any subsequent analysis
based on perturbation theory, which works under the as-
sumption that the metric perturbations are small in every
point. However, we know from the observational data that
these fluctuations of the mean temperature, in any particular
point, are rather small �10�5 K. On the other hand, in the
collapse proposal, these issues become much less problem-
atic because the scheme indicates which variable we should
focus on: the variables subjected to the collapse are not
ŷð ~x; �Þ, �̂ð ~x; �Þ but the field modes ŷ ~kð�Þ, �̂ ~kð�Þ, i.e., the
collapse does not occur in the position space, and an inde-

pendent collapse is assumed for each mode ~k. The quantities
of observational interest, namely, the j�lmj2s, depend on the
expectation values hŷ ~kð�Þi�, h�̂ ~kð�Þi�, in the state j�i after
the collapse, and, as we have shown, these can be estimated
directly in terms of the values of the random variables.

As we saw in the introduction, if we really took�ð ~x; �Þ
to be Gaussian and allowed the identification of its n-point
functions with the observations, we would have to accept
that such identification holds, in particular, for the one-
point function, and that would lead us to a clear conflict
between theory and observation.

Similarly, one must be careful when considering the
identification of the quantum three-point function:

h0j�̂ð ~x; �Þ�̂ð ~y; �Þ�̂ð~z; �Þj0i; (55)

with the average over an ensemble of Universes

�ð ~x; �Þ�ð ~y; �Þ�ð~z; �Þ, and finally, the identification of
the latter with the measured quantities as an indicator of
non-Gaussian features in the cosmological perturbations.

As we saw, the bispectrum � ~k1
� ~k2

� ~k3
¼ ð2�Þ3�ð ~k1 þ

~k2 þ ~k3ÞB�ðk1; k2; k3Þ is usually said to represent the lowest-
order statistics able to distinguish non-Gaussian from
Gaussian perturbations because Gaussianity is identified
with the requirement that all statistical information is con-
tained in the two-point functions and, thus, implicitly, with
the vanishing of all n-point functions with n odd. However,
the lowest odd integer is not 3 but 1, and, as we have already
seen, there is a serious issue that arises when considering the
one-point function. This, we believe, forces us to question
and reconsider some of the standard arguments.

In fact, looking anew at the quantities normally associ-
ated with the one-point function, we see that we have at our

disposal not only the average quantitiesCl but also, for every
value of l and m, the individual quantities �lm. Each one of
those corresponds, in our approach, to different random
walks. It could prove very interesting to study the distribu-
tion of the pair of real quantities that constitute the complex
number �lm: namely, we can look at the plot of, say, the real
and imaginary part of �lm, i.e., Reð�lmÞ and Imð�lmÞ, for a
given value of l. This set of 2lþ 1 numbers for each one of
the real and imaginary parts can naturally be expected to
display a Gaussian shape (which, in turn, would make the
distribution of j�lmj a Rayleigh distribution).
This seems to be a particularly relevant analysis, and we

do not know of anything like that which has been studied in
the literature. It seems to us that the traditional approach
does not naturally lead to the consideration of that issue.
Looking at the distribution of the corresponding phases
should be equally enlightening. Moreover, as we mentioned
in the discussion around the Eq. (8), it would be interesting
to evaluate the quantity ��l defined there and compare the
result with any of the natural estimates for its value, par-
ticularly, the expected ensemble average of its magnitude.
Another point worth revisiting is that it is usually believed

that a large detectable amount of non-Gaussianity can
be expected when the initial state of the quantum
field is not the preferred Bunch-Davies vacuum state.
Nevertheless, in the collapse proposal, the quantum state
of the field after the collapse, is j�i � j0i (the analysis of a
particular characterization of the post-collapse state has been
done in Ref. [11]). Therefore, the curvature perturbation
responsible for the temperature anisotropies in the CMB is
due to the expectation values hŷ ~ki� and h�̂ ~ki�, which, in
principle, could generate detectable non-Gaussianities.
These quantities are never considered in the standard ac-
counts, and it is clear that a further exploration of these ideas
would be required for a serious assessment of their value.
The other delicate issue related to the statistical aspects

of the traditional approach is related to the ergodicity
assumption. As we already saw in Sec. III, the CMB
bispectrum was defined as the three-point correlator of

the �lm through B
l1l2l3
m1m2m3

� �l1m1
�l2m2

�l3m3
. The standard

picture forces us to deal with the issue that the rhs repre-
sents an average over an ensemble of universes, while we
have but one realization f�l1m1

; �l2m2
; . . . ; �lnmn

g. To over-

come this issue, the standard approach relies on an ergo-
dicity assumption, which identifies the average value of a
certain quantity in a process measured over time with the
average value measured over the ensemble.
There are various issues that lead one to be concerned

about this assumption and the application to the situation at
hand. The first thing we must be aware of is that ergodicity
is a property of systems in equilibrium, and it is rather
unclear why this should be valid regarding the conditions
associated with the inflationary regime.
Next, as already mentioned, the ergodicity assumption is

translated, in the case at hand, into the notion that the
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volume average of the fluctuations behaves like the en-
semble average; ‘‘the universe may contain regions where
the fluctuation is atypical, but with high probability most
regions contain fluctuations with root-mean-square ampli-
tude close to 	,’’ and, thus, one argues that the probability
distribution on the ensemble translates to a probability
distribution on smoothed regions of a determined size
within our own Universe [44].

There are at least three issues that arise here:
(i) How do we go from the arguments supporting

ergodicity in time averages to the corresponding
arguments for spatial averages?

(ii) Regarding the CMB, we, in fact, do not have access
to the spatial sections that would allow us to inves-
tigate the space averages. We only have access to
the particular intersection of our past light come
with the 3D hypersurface of decoupling. That is,
to a two-sphere that we see as the source of the
CMB photons that reach us today: the surface of last
scattering. How do we go from spatial averages to
averages over that two-sphere?19

(iii) Each one of the quantities of interest, �lm, is itself
already a weighted average over the CMB two-
sphere [with the weight function given by the cor-
responding Ylmð�; ’Þ]. Therefore, what would be
the role of a new average over the ms? Why do we
need to perform any additional average? In other
words, if one is willing to accept that the ensemble
averages should coincide with averages over the
two-sphere, why would one not also accept that the
weighted averages over the two sphere should co-
incide with the equally weighted average over en-
sembles? If we were to accept this, we would
conclude that the weighted average (with weight
Ylm and fixed l and m) of �T=T over the surface of
last scattering for our Universe should coincide
with the corresponding weighted average of that
quantity over the ensemble of universes, without
any further averaging over m. The problem is that
the latter would be zero, but the former is just �lm,
which, empirically, is not zero. Thus, there must be
something wrong with our arguments and assump-
tions. One should then consider what it is, and why.

Let us leave that rhetorical question based on a position we
are rejecting and consider again the issue of averaging over
m. It seems clear that what we are dealing with here are
orientation averages: The different �lm would mix among
themselves if we were to redefine the orientation of the
coordinate chart used to describe the CMB two-sphere.
Thus, when we look at the averages that are actually
performed in connection with the study of the primordial

spectrum, we see these are indeed orientation averages. For
instance, the observational quantity Cobs

l ¼ 1
2lþ1

P
mj�lmj2

is just the orientation average value of the magnitude of the
�lms for a fixed value of l. In the same way, we see that the
angle-averaged bispectrum Bl1;l2;l3 (25) is an orientation

average for fixed ls, and, as for the same reason as the one-
point function, it is quite unclear how to identify orienta-
tion averages with ensemble averages. Thus, the statistical
analysis would be more transparent if one would focus on

the distribution of the quantities Bl1l2l3
m1m2m3

.
As we saw, it is customary to take as an estimator for

the nonlinearity parameter the quantity f̂NL defined in
Eq. (32). This seems a bit problematic, as it involves a
mixture of theoretical and observational quantities.
Ideally, one would like to have the two aspects rather
well separated. In fact, even within the standard approach,
for the case of the two-point functions, we have on one
hand the theoretical quantity,

Cth
l ¼ 2

�

Z
k2P�ðkÞ�2ðkÞj2l ðkRDÞdk; (56)

and on the other hand the observational quantity,

Cobs
l ¼ 1

2lþ 1

X
m

j�lmj2: (57)

This independence of the definitions allows one to
cleanly compare theory and observation. It, thus, seems
that one would want to consider studying the aspects tied to
non-Gaussianity using a quantity that can be equally sus-
ceptible to theoretical and observational determination.
Here, we would like to propose, based on the considera-
tions we have been discussing, the option we present
below.
First, motivated by the quantity defined in Eq. (25), let us

introduce the definition of the observed bispectrum as the
orientation average,

Bobs
l1l2l3

� X
mi

l1 l2 l3

m1 m2 m3

 !
ð�l1m1

�l2m2
�l3m3

Þobs; (58)

and the definition of the normalized observational reduced
bispectrum as the quantity

~bobsl1l2l3
�
2
4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2l1þ1Þð2l2þ1Þð2l3þ1Þ
4�

s
l1 l2 l3

0 0 0

 !35�1

Bobs
l1l2l3

;

(59)

and, finally, let us define the magnitude of the bispectral
fluctuations as

F obs
l1l2l3

� 1

ð2l1þ1Þð2l2þ1Þð2l3þ1Þ
X
mi

jð�l1m1
�l2m2

�l3m3
Þobs

�Gm1m2m3

l1l2l3
~bobsl1l2l3

j2: (60)

19We note, in relation to this point, that there are intrinsic
problems in considering ergodicity of processes within a two-
sphere as discussed in Ref. [49].
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One can then compare this pure observational quantity
with the corresponding theoretical estimation characterizing
a suitable ensemble average, where each element of the
ensemble is specified by a concrete choice of the random
numbers x ~k that we have used to represent the collapses.

That is, one can carry out a Monte Carlo simulation leading
to an ensemble of possible CMB skies characterized by
possible choices of x ~ks and then characterize each one of

those in terms of the corresponding value of F obs
l1l2l3

. Finally,

one would analyze the degree to which our own real sky is
generic when characterized in that manner. It seems clear
that this kind of theoretical calculation or simulation cannot
be carried out in the standard approach, as there is no place
there for the concrete randomness (characterized, in our
approach, by the numbers x ~k), which would be produced

in a simulation of our collapse proposal.
Thus, the study of the quantity displayed in Eq. (60)

seems to offer an approach to study the issue at hand that
indeed has the advantage of allowing a direct comparison
between the purely observational quantities, untainted by
theoretical models, and the quantities that are purely de-
fined in terms of such theoretical analysis. This, in fact,
seems to share some of the spirit of the analyses made in
Refs. [30,31], although our proposal provides a clear op-
tion to compute the observational and theoretical quantities
in complete separation, and that seems not to be available
in the former. The reason for this seems easy to understand:
The fact that we maintain a clear distinction between
ensemble averages and orientation averages avoids the
possibility of the confusion associated with the simple
observation that the ensemble average of the quantity

ð�l1m1
�l2m2

�l3m3
Þobs � Gm1m2m3

l1l2l3
~bobsl1l2l3

; (61)

appearing in Eq. (60), vanishes identically.
The detailed analysis of estimators like this will be

carried out in future works, but we wanted to present it
as an example of the type of studies that could be motivated
by our approach to the whole question of the emergence of
structure from quantum fluctuations in the inflationary
early Universe.

VI. PREDICTIONS AND DISCUSSION

Focusing on trying to understand the essence of the
emergence of inhomogeneous and anisotropic features
from a quantum state, that is, homogeneous and isotropic
and in the absence of a measurement process,20 has led us
to consider modifying the standard approach through the
incorporation of the collapse hypothesis.

We have seen in previous works that, despite the fact that
the motivation for such considerations seems to be purely
philosophical and tied to issues like the measurement
problem in quantum mechanics, the analysis has led us to
expect certain departures that could potentially be of ob-
servational significance.
In previous works, we have focused on two main ob-

servationally related issues: the shape of the spectrum and
the question of tensor modes. We have argued previously
that it would be very unlikely that one could find a scheme
in which the function CðkÞ would be exactly a constant and
that some dependence on k is likely to remain in any
reasonable collapse scheme, simply because we do not
expect those collapses to follow exactly the �c

k ¼ Z=k
rule for the time of collapse for each mode. Any remaining
dependency of CðkÞ on k will lead to slight deviations from
the standard form of the predicted spectrum. In fact, analy-
ses of this issue have been carried out in Refs. [8,9],
confirming these expectations. These have been used to
set the first bounds emerging from the CMB observational
data on these kinds of theories.
We have also stated, in earlier works, that the most clear

prediction of the novel paradigm we have been proposing
is the absence of tensor modes, or at least their very strong
suppression. The reason for this can be understood by
considering the semiclassical version of Einstein’s equa-
tions and its role in describing the manner in which the
inhomogeneities and anisotropies arise in the metric. As
we have explained in our approach, the metric is taken to
be an effective description of the gravitational DOF, in the
classical regime, and not as the fundamental DOF suscep-
tible to be described at the quantum level. It is, thus, the
matter degrees of freedom (which in the present context are
represented by the inflaton field), the ones that are de-
scribed quantum mechanically and which, as a result of a
fundamental aspect of gravitation at the quantum level,
undergo effective quantum collapse (the reader should
recall that our point of view is that gravitation at the
quantum level will be drastically different from standard
quantum theories, and, in particular, it will not involve
universal unitary evolution). This collapse of the quantum
state of the inflaton field leads to a nontrivial value for

hT̂
�i, which then generates the metric fluctuations. The

point is that the energy momentum tensor contains linear
and quadratic terms in the expectation values of the quan-
tum matter field fluctuations, which are the source terms
determining the geometric perturbations. In the case of the
scalar perturbations, we have first-order contributions pro-

portional to _�0h _̂��i, while no similar first-order terms
appear as source of the tensor perturbations (i.e., of the
gravitational waves). Of course, it is possible that the
collapse scheme works at the level of the simultaneously
quantized matter and metric fluctuations, as has been pre-
sented in Ref. [50], although, as explained there, we would
find it much harder to reconcile that with the broad general

20In the early Universe, there were no observers or measuring
devices, and, in fact, the conditions for their emergence is the
result of the breakdown of such symmetries, so it would seem
very odd if one takes a view that they are part of the cause of that
breakdown.
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picture that underlies our current understanding of physical
theories.

In the present work, we have focused on the modified
statistical considerations associated with this novel para-
digm. We have argued that the collapse process itself could
be the source of non-Gaussian features. We discussed some
difficulties associated with the usual identification of mea-
suring quantities with the quantum n-point functions and
particularly found that extending the standard arguments to
the one-point functions lead to disastrous disagreements
with observations.

We have shown that our approach provides expressions
that have no parallel in the standard formulations and that
allow a precise identification of the location of the random-
ness, as exemplified by our theoretical formula (48) for�lm

in terms of the random numbers characterizing the collap-
ses, namely, the quantities xR~k;1

, xI~k;1
, xR~k;2

, xI~k;2
. This kind of

expression facilitates all resulting statistical considera-
tions, and, in particular, it is the basis for the theoretical
estimation of the quantity (60).

We have proposed various novel ways to look into the
statistical aspects of the problem:

(i) We indicate the importance of exploring the true
nature of the one-point function by studying the
degree of deviation from zero of the complex quan-
tity ��obs

l ¼ 1
2lþ1

P
l�

obs
lm (i.e., expanding and refining

the analysis of Ref. [29]).
(ii) We have argued that it is worthwhile to study the

specific form of the distribution of the values of the
observed quantities j�obs

lm j for each fixed l.
(iii) We have proposed new characterizations of the

quantities normally associated with the bispectrum
and the quantum three-point functions, which can
be computed both in purely theoretically and in
a completely observational fashion. This is the
quantity defined in Eq. (60).

It is clear that this work represents only the first step in
the study of the statistical aspects of the cosmic structure
and its generating process during inflation, within the
context of the new paradigm that centers on the collapse
hypothesis. Much more work remains to be done, but we
hope this can become a research avenue of great richness
and one that would lead to important insights, with pos-
sible implications not only for the generation of structure
itself but for the modification of quantum theory, which
would underlie the collapse mechanism and which, as has
been argued before, might have a deeper origin at the
quantum/gravity interface [5,16,17,51].
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APPENDIX A: THE BUNCH-DAVIES VACUUM IS
HOMOGENEOUS AND ISOTROPIC,

CORRELATIONS NOT WITHSTANDING

Theorem.—The Bunch-Davies vacuum state (this, by the
way, is also valid for the Minkowski vacuum state) is
homogeneous and isotropic.
Proof.—The vacuum state is defined by â ~kj0i ¼ 0. This

is supposed to represent the state of the quantum field after
a few e-folds of inflation (up to negligible corrections of
order e�N , with N as the number of e-folds), i.e., the
exponential expansion of the Universe takes the metric
and all fields to a very simple state, which, in particular,
is highly symmetric. It is easy to see that the state j0i is
H&I. The generator of spatial translations is ~̂P¼P

~k
~kây~k â ~k.

So a translation by ~D leaves the state unchanged,

ei
~D� ~̂Pj0i ¼ j0i, and, thus, the state is homogeneous. One

can equally check that it is isotropic considering the be-
havior of the state under rotations. Q.E.D.
Furthermore, this is clearly not in contradiction with the

existence of quantum correlations, as they do not imply a
breakdown of the symmetry. This can be easily seen in a
Einstein-Podolsky-Rosen setup. Consider a state of two
spin-1=2 particles that result from the decay of a spin 0
particle.
Let us assume that the decay occurring along the x axis

(the particles’ momenta are ~P ¼ �Px̂ with x̂ the unit
vector in the ~x direction). Using the ~z polarization states
as a basis for the Hilbert space of each of the spin-1=2
particles, the state of system after the decay is

j�i ¼ 1ffiffiffi
2

p ðjþið1Þj�ið2Þ þ jþið2Þj�ið1ÞÞ: (A1)

The state can be seen to be invariant under rotations
around the x axis (simply because it is an eigenstate with
zero angular momentum along that axis). It is, neverthe-
less, straightforward to compute the correlations between

the operators Ŝð1Þ ¼ ~̂	ð1Þ � ~̂N
ð1Þ

and Ŝð2Þ ¼ ~̂	ð2Þ � ~̂N
ð2Þ

cor-
responding to the projectors of the spin along the vectors

(taken to be on the y� z plane) ~̂N
ð1Þ

and ~̂N
ð2Þ
, respectively.

The result, as is well known from the studies of Bell’s
inequalities, is proportional to cos�, where � is the angle

between ~̂N
ð1Þ

and ~̂N
ð2Þ
. Thus, the existence of these corre-

lations is in no conflict, whatsoever, with the rotational
invariance of the state j�i. It seems that the belief that there
is something in the correlations that indicates the break-
down of the symmetry is tied to some implicit intuition
suggesting that each one of the particles is in a definite state
of spin, even before there are any measurements involved.
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We, of course, know that such notions are in strong conflict
with both quantum theory and the experimental facts.

APPENDIX B: DIVERGENCE OF h0j�̂2ð ~x; �Þj0i
In order to illustrate a common misconception about

the quantity h0j�̂2ð ~x; �Þj0i, let us consider the following
argument: The gravitational potential that gives tempera-

ture anisotropy is not �̂ð ~kÞ from the primordial era but

�̂ð ~kÞ�ðkÞ, where �ðkÞ is the transfer function. Since

�ðkÞ / ln ðkÞ=k2 for large k, h0j�̂2j0i is convergent in the
UV regime.

The previous statement is not correct. The transfer func-
tions characterize the physics that is relevant after the end
of inflation (i.e., the physics characterizing the behavior of
the radiation and particles that emerge as the result of
reheating, including, for instance, the famous plasma os-
cillations). That is why they are called transfer functions.
They indicate how the perturbations that were present
during inflation (to be exact, at its end point) evolve during
the radiation-dominated era into the perturbations that are
present at the time of decoupling, which is the relevant one
for what we see in the CMB. The transfer functions are, of
course, not relevant at all during the inflationary era itself,
which is the era we are focusing on (and the one in which
we argue the collapse should occur). The issue, related to

the divergence of h0j�̂2ð ~x; �Þj0i, clearly refers to the infla-
tionary era. The (rhetorical) question we are posing is the

following: If we do not take the expectation value of �̂k to
be the inflationary prediction for the �k, as that would be
zero, and we are instead instructed to compute the vacuum

expectation value for quantity �̂k�̂k and to use it in order
to make our estimates of �k, then, why would it be
incorrect to compute the vacuum expectation value of

�̂ðxÞ�̂ðxÞ and take it as an estimate of the value of �ðxÞ
(during the inflationary era)? The issue is that such an
estimate would be infinite, and then the whole scheme of
perturbation theory on which the treatment is based would
be invalid. We would, therefore, not be able to rely on it,
either to consider the study of the predictions regarding the
radiation-dominated era or the CMB.

APPENDIX C: ON THE INTERPRETATION
OF QUANTUM THEORYAND THE

COSMOLOGICAL CONTEXT

Here, we will briefly consider, for the convenience of the
reader, some of the most common views we have found
among colleagues regarding the interpretation of quantum
physics and their implications for its application to the
cosmological problem at hand, and, at the same time, we
present our basic perspective on such views. A more de-
tailed discussion of these issues has been presented in
Ref. [5], and the reader is advised to turn to that reference
for a thorough analysis of the alternative postures taken by
researchers in the field.

The issue we are facing is, of course, related to the so-
called measurement problem in quantum mechanics [52].
Any reasonably complete discussion of this question and
the broader one concerning the interpretation of quantum
mechanics would require much more space than what can
reasonably be accommodated here, so we point the reader
to some of the literature [53]. Here, we will merely present
our version of the status of the general problem, touching,
when appropriate, on the particular instance that concerns
us here: the cosmological setting. That issue has not re-
ceived to much attention from the physics community, with
notable exceptions represented by Penrose [17], Hartle [7],
and others.
(i) Quantum physics as a theory of statistical physics—

A point of view indicating that quantum mechan-
ics acquires meaning only as it is applied to an
ensemble of identically prepared systems [54].
Thus according to this view, a single atom, in
isolation, is not described by quantum mechanics.
We must avoid getting confused by the correct, but
simply distracting, argument that atoms in isola-
tion do not exist. The issue is whether, to the
extent to which one can neglect its interactions
with other systems, quantum mechanics is appli-
cable to the description of a single atom. One
might wonder about the meaning of that question,
given that we can not say anything about the atom
without making it interact with a measuring de-
vice. The question is simply whether or not apply-
ing the formalism of quantum mechanics to treat
the single isolated atom can be expected to yield
correct results regarding subsequent measure-
ments. It is sometimes argued that this is a non-
sensical question, as these results are always
statistical in nature. However, in fact, this state-
ment is not accurate; for instance, if the atom (e.g.,
of hydrogen) was known to have been prepared in
its ground state, the probability of detecting it in
some other energy eigentstate is zero. Thus, there
must be something empirical in the description of
that single atom by its usual quantum mechanical
state. The notion that quantum mechanics is not
applicable to a single system [55] is, thus, simply
incorrect. However, the most important point in
relation with the issue that concerns us in this
article is that taking a posture like this about
quantum physics, would be admitting from the
beginning that we would have no justification in
employing such a theory in addressing questions
concerning the unique Universe. Note that the
situation would not be helped if we assumed that
there exists, in some sense of the word, an en-
semble of universes, as we would, in principle,
have access just to one: ours. Advocates of the
standard accounts of inflation usually invoke some
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sort of identification of the statistics with an en-
semble of universes and the statistics within one
single Universe. However, as we have argued
throughout this work, it is paramount to avoid
confusion between those types of statistical mea-
sures as a matter of principle, even if one would
later want to argue they might be identified in
some special cases. It should be clear that in order
to be able to argue for any such identification, one
must be in a position to say something about the
individual system. In fact, we can imagine consider-
ing any individual system whatsoever, say, a cloud of
gas, and constructing an ensemble of similar systems
by performing say ‘‘all possible rotations and trans-
lations of the system.’’ It is clear that the resulting
ensemble is, by construction, homogeneous and iso-
tropic. Now, can this be used to say anything about the
original system?Clearly, it cannot, simply because our
starting point was a completely arbitrary system. Thus,
if we negate from the start that our theory could say
anything about an individual system, there is no way
we can apply it to our Universe. Furthermore, going
back to the general case, if a quantum state serves only
to represent an ensemble, how is each element of the
ensemble to be described? Perhaps, it cannot be de-
scribed at all. Then, how are we supposed to make
statistics over the attributes of such systems?

(ii) Quantum physics as a theory of human knowl-
edge—According to this view, the state of a quan-
tum system is not considered as reflecting anything
‘‘objective’’ about the system in question but just
provides a characterization of ‘‘what we know about
the system’’.21 This attitude, naturally rises the
question of what there is to be known about the
system if not something that pertains to the system.
Advocates of this point of view often answer in
terms of correlations between the system and the
measuring devices. This leads us to consider the
question of the significance of these correlations.
Note that the meaning of the word ‘‘correlation’’
implies some coincidence of certain conditions per-
taining to one object, with some other conditions
pertaining to a second object. Therefore, if a quan-
tum state describes such a correlation, there must be
some meaning to the conditions pertaining to each
one of the objects: the quantum state and the system.
Are not these, then, the very same conditions that
are described by the quantum mechanical state and
those that correspond to the object? If the answer
is ‘‘no’’, it must mean that there are further

descriptions of the object that cannot be cast in the
quantummechanical state vector. On the other hand,
if the answer is ‘‘yes’’, we would be implying that
the state vector says something about the object in
itself. Independently of these issues, it seems rather
clear that if we follow the above described view, we
would have abandoned the possibility to consider
questions about the evolution of the Universe in the
absence of sapient beings or to consider the emer-
gence, in that Universe, of the conditions that are
necessary for the eventual evolution of humans,
while making use of our quantum theory.

(iii) Quantum physics as a noncompletable description
of the world—Within this class we consider any
posture that effectively, if not explicitly, states,
‘‘The theory is incomplete, and no complete theory
containing it exists or will ever do.’’ Such a view
includes any posture indicating we should use
quantum mechanics ‘‘as we all know how’’ and
supported by the observation that no violation of
quantum mechanics has ever been observed.22 At
this point we must note that although this is a
literally correct statement, the prescription refers,
in fact, to the Copenhagen interpretation, which, as
discussed above raises severe interpretational is-
sues that become insurmountable once we leave
the laboratory and attempt to apply quantum theory
to something like the Universe itself.
The fact is that, in situations in which one cannot
identify the system and themeasuring apparatus, the
observables that are to be measured, the entity
carrying out those measurements, and the time at
which the measurements take place, the theory does
not provide any clearly defined scheme specifying
how to make the desired predictions. Thus applies,
in particular, to the questions pertaining to the early
Universe. However, according to such pragmatic
approach we should be satisfied with the fact that
the predictions have, in fact, been made and that
they do seem to agree with observations. The prob-
lem is, that in the absence of a well-defined set of
rules, it becomes quite unclear whether or not such
‘‘predictions’’ follow or not from the theory without
the use of extraneous and ad hoc, but convenient
hypothesis suitably introduced in connection to the
particular problem at hand. Especially suspicious
are, of course, those predictions that are, in fact,
retrodictions, and, on this point, we should recall
that, long before inflation was invented, Harrison
and Zel’dovich [59] had already concluded what
should be the form of the primordial spectrum,
based on quite general observations about the nature
of the large-scale structure of our Universe.

21One can find statements in this sense in well-known books,
for instance, ‘quantum theory is not a theory about reality, it is a
prescription for making the best possible predictions about the
future, if we have certain information about the past’’ [56]. See
also Ref. [57].

22In practice, this view is essentially indistinguishable from the
so-called for all practical purposes approach to the matter [58].
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(iv) Quantum physics as part of a more complete
description of the world—Completing the theory
would require something that removes the need for
invoking any sort of a priori distinct notions of
external measurement apparatus, an external ob-
server, etc. One proposal of this kind is provided
by D. Bohm’s ‘‘pilot wave theory’’ [60], and, in
particular, we note a specific proposal to apply
such ideas to the cosmological problem at hand
[61,62]. As we have mentioned, there are other
proposals invoking something like the dynamical
reduction models proposed by Pearle [23] and/or
Ghirardi et al. [18] and the ideas of R. Penrose
about the role of gravitation in modifying quantum
mechanics in the merging of the two aspects
of nature [17] (see also Ref. [63]). In the
context of inflationary cosmology, the works
(Refs. [4,8–10,14]) are an example in which the
issues are faced directly. Those works represent
the position we favor, and which is inspired, in
part, by the arguments made in Refs. [17,18,20].

(v) Quantum physics as a complete description of the
world—Here we refer to any of the postures indicat-
ing that quantum mechanics faces no open issues
and that, in particular, the measurement problem has
been solved. The advocates of this position fall into
groups identified with one of the the main currents:
those that subscribe to ideas along the so-called
‘‘many world interpretation of quantum mechan-
ics,’’ and consider this to be a solution to the mea-
surement problem, and those that consider that this
problem has been solved by the various considera-
tions involving ‘‘decoherence.’’ We consider that the
many world interpretation does very little to ameli-
orate the measurement problem, as there is a map-
ping between what in that approach would be called
the ‘‘splittings of worlds’’23 and what would be
called measurements in the Copenhagen interpreta-
tion. In fact one can see that almost every issue that
can be raised against in the context of the latter has a
corresponding one in the many worlds interpretation
choice of basis or context in dealing with measure-
ment problems correspond to the selection of basis
for the ‘‘world splittings,’’ time of such splittings
would need to include those that one takes as the

‘‘times of measurements,’’ and so forth. In other
words, concerning a specific measurement situation,
and the corresponding description within the Many
Wolds Interpretation, the issues would be the follow-
ing: When does a world splitting occur? Why, and
under what circumstances does it occur? What con-
stitutes a trigger? And, finally, what selects the basis
in which such splittings takes place? The ideas based
on a decoherence type solution and its shortcomings
will be discussed in some detail in Appendix D.

APPENDIX D: SHORTCOMINGS THE USUAL
EXPLANATIONS OF THE EMERGENCE
OF PRIMORDIAL INHOMOGENEITIES

AND ANISOTROPIES

We offer here a very brief version of the discussion
presented in Ref. [5] of why we find the most widely
held views on the way of addressing our problem as
lacking. In our experience, these are the ‘‘decoherence
approach’’ (perhaps supplemented by the many worlds
interpretation of quantum theory) and the ‘‘consistent or
decohering histories approach.’’
We will, thus, offer some considerations regarding the

degree to which these two proposals do, in general, offer a
‘‘solution’’ to the measurement problem and, particularly,
of their applicability in the present context. Again, we
suggest turning to Ref. [5] for a more exhaustive discussion
of all these issues.

1. Decoherence

Decoherence is a direct prediction of quantum mechan-
ics, with very important implications in many experimen-
tal situations. The central observation is that, in the
general experimental setting involving a quantum me-
chanical system, one should take into account the fact
that generally the system becomes entangled with the
environment, consisting of degrees of freedom that are
not under the control of the experimentalist and which
are, moreover, uninteresting from the point of view of
what one is interested in measuring. On the other hand
many colleagues seem to think that it has implications
that go well beyond that and which represents a complete
and satisfactory solution of the measurement problem in
quantum mechanics. This is not the case, and the inter-
ested reader is directed to consult the literature on the
matter (see, for instance, Ref. [64]).
Here, we will limit ourselves to indicating the postures

that, in this regard, are held by several people that have
considered the issue at length, in order to contrast them with
the prevalent notions among inflationary cosmologists.
Let us start with the explicit conclusion by

A. Neumaier [65]:

‘‘Many physicist nowadays think that decoherence

provides a fully satisfying answer to the measure-

ment problem. But this is an illusion.’’

23It is often claimed that there is no splitting of the worlds in the
many worlds interpretation, but the fact of the matter is that,
whenever people make use of it, they cannot avoid talking about
things such as ‘‘our branch,’’ ‘‘the realms we perceive,’’ or other
notions that implicitly make use of a notion that is essentially just
that of a splitting of the world. One can see this in each specific
application of the idea, by focusing on the complete description
of what one would take as ‘‘the relevant state describing our
reality’’ and following it in time backward and forward. In the
inflationary situation at hand, this is easily done by focusing on
the symmetry of the state describing the quantum fields.
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Also worthwhile is the warning by M. Schlosshauer [66]
against misinterpretations:

‘‘...note that the formal identification of the reduced

density matrix with a mixed state density matrix is

easily misinterpreted as implying that the state of

the system can be viewed as mixed too.... the total

composite system is still described by a superposi-

tion, it follows from the rules of quantum mechan-

ics that no individual definite state can be attributed

to one of (the parts) of the system...’’

and the explicit refutation by E. Joos [67]:

‘‘Does decoherence solve the measurement prob-

lem? Clearly not. What decoherence tells us is that

certain objects appear classical when observed, but

what is an observation? At some stage we still have

to apply the usual probability rules of Quantum

Theory.’’

Thus, the decoherence ideas, even if taken together with
the many worlds interpretation, clearly fail to offer a
satisfactory resolution of the matter in general [68], and,
in particular, it fails to do so in connection for the situation
we face here.

Let us end by noting that even W. Zurek, one of the most
well-known researchers in the field of decoherance, states
unequivocally that [69]:

‘‘The interpretation based on the ideas of decoher-

ence and ein-selection has not really been spelled out

to date in any detail. I have made a few half-hearted

attempts in this direction, but, frankly, I was hoping

to postpone this task, since the ultimate questions

tend to involve such ‘‘anthropic’’ attributes of the

‘‘observership’’ as ‘‘perception’’, ‘‘awareness,’’ or

‘‘consciousness,’’ which, at present, cannot be mod-

eled with a desirable degree of rigor.’’

The point is that in the context of inflationary cosmol-
ogy, in which we want to explain the emergence of the
seeds of cosmic structure, and, thus, the emergence of the
conditions that would eventually create the conditions for
the emergence of galaxies, stars, biology, and intelligent
life, we cannot even hope to rely on any of those anthropic
notions. Thus, decoherence does not represent an adequate
solution to the problem at hand.

2. Consistent Histories

The general scheme as described in Ref. [70] is based
on the consideration, given a quantum state of the sys-
tem j�i, or, more generally, a density matrix �̂, for the
system at time t0, of families of histories characterized

by a set of projection operators fP̂nðtnÞg, each of which is

associated with the system possessing a value of certain
physical property in a given range at a given time.24 That
is, each one of the projector operators is associated with
a certain range within the spectrum of a given observ-
able. A given family F of such projectors, is called self-
consistent if the resulting histories do not interfere
among themselves. In that case, one may consistently
assign probabilities to each individual ‘‘coarse-grained
history’’ within the family.25

The probability assigned to one particular coarse-
grained history within a consistent family is given by

P¼TrðP̂nðtnÞUðtn;tn�1ÞP̂n�1Uðtn�1;tn�2Þ . . . . . .P̂2Uðt2;t1Þ

 P̂1Uðt1; t0Þ�̂Uðtn;t0ÞyÞ; (D1)

where Uðt; t0Þ stands for the standard unitary evolution
operators connecting the two times. This approach,
apparently, has many followers within the cosmology
community, even though it has received some strong
criticisms in the foundational physics community [71].
The issue is that, although the scheme works fine once

one has selected a particular decoherent family F, there
exist, in principle, an infinitude of other such decoherent
families F0, which are, however, mutually inconsistent,
(i.e., there are elements of F and F0 that do interfere,
and, thus, fFg [ fF0g is not a decohering set of histories).
This problem, which is well known to the advocates of
this approach should according to them be addressed by
the ‘‘single family rule,’’ which indicates one should
never consider, simultaneously, more than one family.
Moreover, according to this approach, we should never
make any logical inferences while considering together
two inconstant sets, as they can produce logical contra-
dictions (see, for instance, the example discussed in
Sec. 3 of Ref. [72]. As noted in Ref. [73], it is unclear
what would justify this rule within a reasonable onto-
logical view of what the theory is describing.
The issue becomes then how should we select a

particular family to be that from which the particular
history that represents ‘‘the actual one’’ is to be chosen.
(It seems very reasonable that the fact that one assigns
probabilities within a family indicates that the interpre-
tation must be that one of the histories in that family is
‘‘actualized’’ in our world. Otherwise, one must wonder
what these probabilities refer to [i.e., the probabilities
assigned according to Eq. (D1) are probabilities of
what? (see, however, Ref. [72])]. Let us emphasize
once more that we do not want to take the view that

24In the cosmological setting, one must use a subtler relational
time approach [7], in which one of the dynamical variables is
used as an effective time parameter. The cosmological scale
factor is a popular choice.
25The characterization of the histories as coarse-grained is
meant to reelect the fact that the projection operators P̂nðtnÞ
are generically associated with a finite range of eigenvalues
rather than a single eigenvalue.
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they are probabilities of ‘‘observing a certain value of
a physical quantity when that quantity is measured’’
because the whole point of this program is to have an
interpretational framework for quantum theory that avoids
using concepts like measurements or ‘‘observations’’ in the
discussion (otherwise, one might as well have retained the
Copenhagen interpretation).

The fundamental problem is that there is in principle, no
clear way to single out one specific family without relying
on an a priori given set of questions one interested on—
those associated with the quantities whose spectral char-
acteristics one chooses to construct the family—and this
ambiguity leads to serious interpretational difficulties [73].

In a specific situation, we might be guided in making the
‘‘appropriate’’ choice, by the questions the experimental
setup is ‘‘asking’’ (in fact, this has a close analogy with the
use of Bohr’s rule in a given experiment). Nevertheless the
fact remains that, in general, without such an common sense,
or practical guidance, there is no well defined procedure
indication how to select the family. Wemust here emphasize
that one is not asking how to select a particular historywithin
the family but how to select a particular family of constant
histories fromwithin the collection of all possible decoherent
families. The problem here is: what justifies considering that
the experimental setup corresponds to asking a particular
question; this seems to implicitly assume that the measuring
apparatus is always in a state of definite value for the mea-
sured quantity and never in the superposition of states of that
type. This seems very close to what one does in adopting the
Copenhagen interpretation.

Returning to our specific problem, of describing the
evolution of the very early universe, there is simply no
recipe provided by the theory, that would dictate the se-
lection of the appropriate projector operators and, thus, of
the appropriate family (if we require a description that does
not make use of the fact of our own existence and our own
asking of certain questions as part of the input).

Let us see a clear manifestation of this problem in the
cosmological situation of interest: Consider the family of
projector operators as is done in Ref. [74], and obtain their
results, but then note that, alternatively, we might consider
the family in what follows. We next define PHI to be the
projector into the intersection of the kernels of the gener-
ators of translations and rotations (note that it is the pro-
jector onto the space of homogeneous and isotropic states).
Let us further define Pnon � I � PHI the orthogonal

projector. Take the initial state for the quantum fluctuations
(usually called the vacuum) j�0i, and note that it is homo-
geneous and isotropic.
The next step is to consider an arbitrary collection of

values for time ftig and construct the family associated with
that initial state and the two projector operators PHI and
Pnon at each of those times. One can easily check that this
procedure defines a family of consistent histories, simply
because the dynamics (characterized by the operators U)
preserves the symmetries (homogeneity and isotropy).
Consider now the question of what the probability is

that (at a given time, characterized in the appropriate
relational way) the Universe is isotropic and homogene-
ous. Evaluating this using the formula (D1) (and starting
with the vacuum state), we find that any history contain-
ing the orthogonal projector at any time Pnon has zero
probability, while the history containing only the opera-
tors PHI has probability one. We seem to be led to con-
clude that, at any time, the Universe is homogeneous and
isotropic. It, thus, can have no inhomogeneities or anisot-
ropies at all. We would then have to face not only such a
problematic prediction but also the fact that the approach
we followed has led us to two conflicting conclusions: this
latter one and the one obtained in, say, Ref. [74].
In fact, this problem is similar to those considered in

Ref. [71] and that discussed in Sec. 3 of Ref. [72]. The
posture advocated in Ref. [72] is that one should accept all
the different families and use only the appropriate one in
connection with the particular question one is asking in
order to make ‘‘bets about the future,’’ while at the same
time renouncing the idea that there is a single objective
reality. As discussed in Ref. [73], such a posture seems
unsustainable in addressing the fact that we humans seem
to coincide regarding our appreciation of the ‘‘world out
there.’’
Apparently, if choosing to accept the consistent histories

approach to the quantum theory, in general, one would
have to adopt a rather problematic position close to that
of posture b) in Appendix C, with the difficulties already
mentioned there. It seems that this is not a satisfactory
situation regarding something that ought to serve as a
fundamental theory and, in particular, to help us deal
with the quantum aspects of the early Universe. The inter-
ested reader is referred to the literature, particularly, to
the works referred to above, for much more extensive
discussions on the matter.
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