
All-sky analysis of the general relativistic galaxy power spectrum

Jaiyul Yoo1,2,* and Vincent Desjacques3,†

1Institute for Theoretical Physics, University of Zürich, CH-8057 Zürich, Switzerland
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We perform an all-sky analysis of the general relativistic galaxy power spectrum using the well-

developed spherical Fourier decomposition. Spherical Fourier analysis expresses the observed galaxy

fluctuation in terms of the spherical harmonics and spherical Bessel functions that are angular and radial

eigenfunctions of the Helmholtz equation, providing a natural orthogonal basis for all-sky analysis of the

large-scale mode measurements. Accounting for all the relativistic effects in galaxy clustering, we

compute the spherical power spectrum and its covariance matrix and compare it to the standard three-

dimensional power spectrum to establish a connection. The spherical power spectrum recovers the three-

dimensional power spectrum at each wave number k with its angular dependence �k encoded in angular

multipole l, and the contributions of the line-of-sight projection to galaxy clustering such as the

gravitational lensing effect can be readily accommodated in the spherical Fourier analysis. A complete

list of formulas for computing the relativistic spherical galaxy power spectrum is also presented.
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I. INTRODUCTION

The past few decades have seen a rapid progress in
large-scale galaxy surveys. The Sloan Digital Sky Survey
(SDSS; [1]) and the Two degree Field Galaxy Redshift
Survey (2dFGRS; [2]) opened a new horizon in modern
cosmology, mapping three-dimensional positions of mil-
lions of galaxies. The Baryonic Oscillation Spectroscopic
Survey (BOSS; [3]) and the Dark Energy Survey (DES;
[4]) represent the current state-of-the-art galaxy surveys,
together with the recently completed WiggleZ Dark
Energy Survey [5]. The exploration of the large scale
structure of the Universe will continue with future galaxy
surveys such as Euclid,1 the BigBOSS,2 the Large Synoptic
Survey Telescope,3 and the Wide-Field InfraRed Survey
Telescope.4 As they will cover a substantial fraction of the
entire sky and a wide range of redshift, these future surveys
will measure galaxy clustering with stupendous statistical
power, demanding thereby that the current theoretical pre-
dictions be refined to achieve higher levels of accuracy.

The galaxy distribution measured in galaxy surveys rep-
resents a biased version of the underlying matter distribu-
tion. A traditional approach to analyzing galaxy number
density fields is to utilize the power spectrum of its Fourier
components. Since each Fourier mode evolves indepen-
dently in the linear regime, the power spectrum measure-
ments can be used to infer the primordial matter power
spectrum and to extract cosmological information (see

[6–8] for recent power spectrum measurements). While
the power spectrum analysis merits its intuitively simple
interpretation of the measurements in connection with the
underlying matter distribution, it assumes that the density
fields are defined in a cubic volume. As the recent and
forthcoming galaxy surveys cover a progressively larger
fraction of the sky, the validity of the flat-sky approximation
and the power spectrum analysis becomes questionable.
At the same time, there exists a demand for large-scale

measurements from the theoretical side. In the past few
years the relativistic description of galaxy clustering has
been developed [9,10]. The advance in theoretical develop-
ment results from the finding that the observed quantities in
galaxy clustering such as the observed redshift and the
galaxy position on the sky are different from quantities
used to construct the observed galaxy fluctuation such as
the background redshift and the unlensed galaxy position
[11]. Those theoretical quantities are gauge dependent, and
the subtle difference in those quantities becomes substan-
tial on large scales, where the relativistic effect becomes
important [9,10]. The full relativistic formula of galaxy
clustering can be analytically derived at the linear order in
perturbations, providing a complete picture of galaxy clus-
tering on large scales [9,10,12–16]. Furthermore, it is
shown [17] that these relativistic effects in galaxy cluster-
ing can be measured in future galaxy surveys, providing a
great opportunity to test general relativity on cosmological
scales.
The relativistic formula for the observed galaxy fluctua-

tion �obs
g ðz; x̂Þ is well defined in observations, where it is a

function of the observed redshift z and angle x̂ on the sky.
Since the wide angle formalism [18–21] has been devel-
oped to compute the two-point correlation function of the
full Kaiser formula without adopting the distant-observer
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approximation, its extension to the full relativistic formula
can be readily made [22,23]. However, the resulting equa-
tion for the two-point correlation function is highly com-
plicated, even for the full Kaiser formula, mainly due to the
geometrical effect. Furthermore, its physical interpretation
is not as straightforward as in the power spectrum analysis
owing to its nontrivial relation to the primordial matter
power spectrum.

Adopting the flat-sky approximation, Yoo [10] computed
the galaxy power spectrum, accounting for the relativistic
effects (see, also, [16]).While it is always possible to embed
the observed sphere in a cubic volume with rectangular
coordinates and to perform a power spectrum analysis, it
becomes difficult in principle to connect these large-scale
measurements to the underlying theory, because the flat-sky
approximation has a limited range of validity. However, it is
shown [24] that, on these large scales where measurement
uncertainties are significant, the systematic errors associ-
ated with the flat-sky approximation are indeed negligible
in the power spectrum analysis, if performed properly. This
is consistent with the previous finding of [10,17] obtained
by a simpler treatment.

Here we present an alternative to the traditional power
spectrum analysis, based on radial and angular eigenfunc-
tions of the Helmholtz equation. The spherical Fourier
analysis has been well developed [25–27] in galaxy clus-
tering, while its application was limited to the Kaiser
formula. The observed galaxy fluctuation is decomposed
in terms of Fourier modes and spherical harmonics, both of
which provide a natural orthogonal basis for all-sky analy-
sis. On the observational side, Fisher et al. [28] applied the
spherical Fourier analysis to the IRAS Redshift Survey,
and the method was further developed in Fisher et al. [26]
to reconstruct the velocity and the gravitational potential
fields. Theoretical refinement has been made in the past
few years. Rassat and Refregier [29] computed the spheri-
cal power spectrum of the matter density with focus on the
baryonic acoustic oscillation feature, ignoring the redshift-
space distortion (see [30] for the effect of the redshift-
space distortion and nonlinearity). Shapiro et al. [31] used
the spherical Fourier analysis of the redshift-space distor-
tion and its cross-correlation with the cosmic microwave
background (CMB) temperature anisotropies to constrain
the growth rate of structure. The same technique is also
applied to the weak gravitational lensing formalism in
Heavens [32] to take advantage of the information on
distances to background source galaxies. Compared to
the traditional weak lensing, this spherical Fourier analysis
is known as the 3D weak lensing, and it is shown in
Kitching et al. [33] that the 2D tomography in weak
lensing is just the 3D weak lensing with the Limber
approximation.

Drawing on this previous work, we perform a spherical
Fourier analysis of the observed galaxy clustering.
Accounting for all the general relativistic effects in galaxy

clustering, we compute the spherical power spectrum and
its covariance matrix and compare them to the correspond-
ing three-dimensional power spectrum. The organization
of this paper is as follows. In Sec. II, we briefly review the
spherical Fourier analysis. We first discuss the basic for-
malism of the spherical Fourier analysis in Sec. II A and its
application to galaxy redshift survey in Sec. II B. In
Sec. III, we present the full general relativistic description
of galaxy clustering. We first describe the key equations
behind the relativistic description in Sec. III A and present
its relation to the spherical Fourier analysis in Sec. III B. In
Sec. III C, we provide the Limber approximation to the
spherical Fourier analysis of the relativistic description.
The main results of the spherical Fourier analysis are
presented in Sec. IV, in which we discuss the spherical
power spectrum of the relativistic formula in Sec. IVA and
the measurement uncertainties associated with them in
Sec. IVB. Finally, we discuss the implications of our
results in Sec. V. Our numerical calculations are performed
by assuming a flat �CDM universe with cosmological
parameters consistent with the WMAP7 results [34].

II. FORMALISM

Spherical Fourier analysis of three-dimensional density
fields has been well developed [25–27] (see, also, [35] for a
different approach). We briefly review the basics of spheri-
cal Fourier decomposition in Sec. II A and discuss its
application to galaxy surveys in Sec. II B, accounting for
issues associated with redshift distribution.

A. Spherical Fourier decomposition

We begin by defining our normalization convention for
Fourier decomposition. The position vector jxi and the
Fourier mode jki are normalized to satisfy the complete-
ness relation:

1 ¼
Z

d3xjxihxj ¼
Z d3k

ð2�Þ3 jkihkj: (1)

With the plane wave represented by

hxjki � exp ðik � xÞ; (2)

the configuration and the Fourier space vectors are nor-
malized as

hxjx0i ¼ �Dðx� x0Þ; hkjk0i ¼ ð2�Þ3�Dðk� k0Þ:
(3)

Given a scalar field �ðxÞ � hxj�i, its three-dimensional
Fourier components are represented as

�ðkÞ ¼
Z

d3xe�ik�x�ðxÞ ¼
Z

d3xhkjxihxj�i ¼ hkj�i;
(4)

and its ensemble average defines the power spectrum as
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h�ðkÞ��ðk0Þi � Pðk;k0Þ ¼ ð2�Þ3�Dðk� k0ÞPðkÞ; (5)

where the last equality holds if the power spectrum is
rotationally and translationally invariant.

With the normalization convention, we consider a com-
plete radial and angular basis jklmi in a spherical Fourier
space to decompose a scalar field in three-dimensional
space.We define its representation in configuration space as

hxjklmi �
ffiffiffiffi
2

�

s
kjlðkrÞYlmðx̂Þ; (6)

where r ¼ jxj, x̂ ¼ ð�;�Þ is a unit directional vector of x,
jlðkrÞ is a spherical Bessel function, and Ylmðx̂Þ is spherical
harmonics. The normalization coefficient is chosen such
that the basis jklmi is orthonormal

hk0l0m0jklmi ¼
Z

d3xhk0l0m0jxihxjklmi
¼ �Dðk� k0Þ�ll0�mm0 ; (7)

where we used

Z 1

0
drr2jlðarÞjlðbrÞ ¼ �

2ab
�Dða� bÞ: (8)

By expanding the plane wave in Eq. (2)

hxjki ¼ 4�
X
lm

iljlðkrÞY�
lmðk̂ÞYlmðx̂Þ

¼ ð2�Þ3=2X
lm

il

k
Y�
lmðk̂Þhxjklmi; (9)

and using the completeness condition of the jklmi basis

hxjki ¼
Z

dk0
X
lm

hxjk0lmihk0lmjki; (10)

we derive the relation between our spherical Fourier basis
and the usual Fourier mode

hkjk0lmi ¼ ð2�Þ3=2 ð�iÞl
k

Ylmðk̂Þ�Dðk� k0Þ: (11)

Naturally, the spherical Fourier basis jklmi encodes the
amplitude k ¼ jkj of the three-dimensional Fourier mode

jki and its angular direction Ylmðk̂Þ.
Based on the jklmi basis, any scalar field in configura-

tion space can be spherically decomposed as

�ðxÞ ¼ hxj�i ¼
Z 1

0
dk

X
lm

hxjklmihklmj�i

¼
Z 1

0
dk

X
lm

ffiffiffiffi
2

�

s
kjlðkrÞYlmðx̂Þ�lmðkÞ; (12)

and its spherical Fourier mode �lmðkÞ is related to the
three-dimensional Fourier component as

�lmðkÞ � hklmj�i ¼ ilk

ð2�Þ3=2
Z

d2k̂Y�
lmðk̂Þ�ðkÞ: (13)

Due to our normalization convention of the spherical
Fourier basis, the spherical Fourier mode �lmðkÞ is slightly
different from the usual coefficient of the angular decom-

position, which is just the angular integral over k̂. Finally,
the spherical power spectrum Slðk; k0Þ is defined as

h�lmðkÞ��
l0m0 ðk0Þi � �ll0�mm0Slðk; k0Þ

¼ ilð�iÞl0kk0
ð2�Þ3

Z
d2k̂d2k̂0Y�

lmðk̂ÞYl0m0 ðk̂0Þ
� h�ðkÞ��ðk0Þi: (14)

For a rotationally and translationally invariant power spec-
trum in Eq. (5), the spherical power spectrum is

Slðk; k0Þ ¼ �Dðk� k0ÞSlðkÞ ¼ �Dðk� k0ÞPðkÞ; (15)

and it reduces to the three-dimensional power spectrum
SlðkÞ ¼ PðkÞ. Equation (15) defines the three-dimensional
power spectrum SlðkÞ. The three-dimensional power spec-
trum SlðkÞ is independent of angular multipole l, because
the underlying power spectrum is isotropic. In case of
anisotropic power spectrum PðkÞ, SlðkÞ will depend on
angular multipole l. Using the representation �ðxÞ in con-
figuration space, a similar but more convenient formula can
be derived for the spherical Fourier mode as

�lmðkÞ ¼
Z

d3x

ffiffiffiffi
2

�

s
kjlðkrÞY�

lmðx̂Þ�ðxÞ; (16)

and its spherical power spectrum is then

Slðk; k0Þ ¼ 2kk0

�

Z
d3x1

Z
d3x2Y

�
lmðx̂1ÞYlmðx̂2Þ

� jlðkr1Þjlðk0r2Þh�ðx1Þ�ðx2Þi: (17)

Fourier components and its power spectra are
dimensionful:

½�lmðkÞ� ¼ L2; ½�ðkÞ� ¼ ½PðkÞ� ¼ ½SlðkÞ� ¼ L3;

½Slðk; k0Þ� ¼ L4; ½Pðk;k0Þ� ¼ L6: (18)

Despite the similarity to the angular power spectrum Cl

analysis, the spherical Fourier power spectrum SlðkÞ dif-
fers in a key aspect: the spherical Fourier analysis is three
dimensional, utilizing information on the radial positions
of galaxies, while two-dimensional analysis like those in
the CMB literature lacks the radial information. This criti-
cal difference is the advantage in the spherical Fourier
analysis, where full three-dimensional Fourier modes can
be mapped, whereas in two-dimensional analysis radial
modes are projected along the line-of-sight direction, con-
tributing to the power in different angular multipoles.

ALL-SKY ANALYSIS OF THE GENERAL RELATIVISTIC . . . PHYSICAL REVIEW D 88, 023502 (2013)

023502-3



B. Redshift distribution and survey window function

In observation, we can only measure galaxies in the past
light cone. Therefore, radial coordinates parametrized by
the observed redshift carry special information, namely,
time—quantities at two different radial coordinates are at
two different redshifts. Furthermore, the mean number
density �ngðzÞ of galaxies evolves in time, such that their

fluctuation field �g should be properly weighted by

their redshift distribution d �ng=dz. This complication can

be readily handled by decomposing the number density
field ngðxÞ, instead of its fluctuation field �gðxÞ ¼
ngðxÞ= �ngðzÞ � 1, where the three-dimensional position

vector x is understood as a function of its radial position
rðzÞ ¼ jxj and angular position x̂.

Since themean �ngðzÞ is independent of angular position,5
it only contributes to the monopole �00ðkÞ in Eq. (16), and
the monopole vanishes by definition at k ¼ 0. Without loss
of generality, we can express �ngðzÞ as

�ngðzÞ � ~ngW ðzÞ �
�
Ntot

Vs

�
W ðzÞ; (19)

where the surveyed volume is

Vs ¼ 4�
Z 1

0
drr2W ¼ 4�

Z 1

0
dz

r2

H
W ; (20)

and Ntot is the total number of galaxies measured in the
survey. Equation (19) defines the survey window function
W , also known as radial selection function. It is related to
the redshift distribution as

P zðzÞ ¼ r2

H
P rðrÞ ¼ 4�

Vs

r2

H
W ðzÞ ¼ 4�

Ntot

r2

H
�ngðzÞ; (21)

where HðzÞ is the Hubble parameter and the normalization
convention is 1 ¼ R

dzP zðzÞ ¼
R
drr2P rðrÞ. In principle,

W ðzÞ could be generalized to include an angular selection
function. In what follows, however, wewill consider galaxy
surveys with full-sky coverage and uniform angular selec-
tion function for simplicity. The galaxy number density at
position x thus is

ngðxÞ ¼ ~ngW ðzÞ½1þ �gðz; x̂Þ�; (22)

and its two-point correlation function reads

hngðx1Þngðx2Þi ¼ ~n2gW ðz1ÞW ðz2Þ½1þ �gðx2 � x1Þ�
þ ~ngW ðz1Þ�Dðx2 � x1Þ; (23)

where�gðx2 � x1Þ is the Fourier transform of the noise-free

galaxy power spectrum. We have assumed that the

galaxies are an (inhomogeneous) Poisson sampling of
1þ �gðxÞ to derive the shot-noise term [36].

Before we proceed further, we introduce the transfer
functions T Xðk; zÞ of random perturbation variables X
that further simplify the spherical Fourier decomposition
by separating radial (time) dependence from angular
dependence. For the galaxy fluctuation, we have

�gðk; zÞ ¼ T gðk; zÞ’vðkÞ þ �ðk; zÞ; (24)

where the power spectrum of the comoving curvature
�2

’v
ðkÞ ¼ k3P’v

ðkÞ=2�2 at initial epoch is nearly scale

invariant and the transfer function is independent of angle.
The comoving curvature ’vðkÞ is often denoted as �ðkÞ
in literature. Arising from the discrete distribution, �ðk; zÞ
is a residual Poisson noise that is uncorrelated with
�gðk; zÞ, with power spectrum h�ðk; zÞ�ðk0; zÞi ¼
ð2�Þ3�Dðk� k0Þ=ð~ngW ðzÞÞ.
In the case that time evolution is related to radial coor-

dinates, it is more natural to use Eq. (16) rather than
Eq. (13), and so is it to use Eq. (17) rather than Eq. (14)
for computing spherical Fourier modes and their spherical
power spectrum, respectively. On inserting Eq. (22) into
Eq. (16) and substituting the transfer function T g and

survey selection function W , the spherical Fourier mode
simplifies to

�lmðkÞ ¼ il
Z d ln k0k03

2�2

Z
d2k̂0’vðk0ÞY�

lmðk̂0ÞMlðk0; kÞ
þ �lmðkÞ; (25)

where �lmðkÞ is the spherical Fourier transform of the
residual noise field ~ngW ðzÞ�ðxÞ, and the spherical multi-

pole function Mlðk0; kÞ is defined as

Mlð~k; kÞ � k

ffiffiffiffi
2

�

s Z 1

0
drr2W ðrÞjlð~krÞjlðkrÞT gð~k; rÞ;

(26)

where its dimension is ½Mlð~k; kÞ� ¼ L2. After some
simplification, the spherical power spectrum in Eq. (17)
eventually reads

Slðk; k0Þ ¼ 4�~n2g
Z

d ln ~k�2
’v
ð~kÞMlð~k; kÞMlð~k; k0Þ

þ 2kk0

�
~ng

Z 1

0
drr2W ðrÞjlðkrÞjlðk0rÞ: (27)

The second term in the right-hand side is the shot-noise
contribution. Using the Limber approximation (see
Sec. III C), the shot-noise power spectrum can be rewritten
as

N lðk; k0Þ � 2kk0

�
~ng

Z 1

0
drr2W ðrÞjlðkrÞjlðk0rÞ

� ~ngW ð	=kÞ�Dðk� k0Þ; (28)

5By definition, the mean �ngðzÞ is a quantity in a homogeneous
universe, and the residual part �gðz; x̂Þ is a fluctuation around the
mean. In observation, the mean is independent of angle by
construction. The two means should agree, provided that ngðxÞ
is averaged over a large volume at a given redshift.
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where 	 ¼ lþ 1=2. For a homogeneous and isotropic
galaxy population with constant comoving number density
�ng ¼ ~ng and power spectrum h�gðkÞ��

gðk0Þi ¼ ð2�Þ3�D

ðk� k0ÞPgðkÞ, the spherical power spectrum Eq. (27)

yields the well-known relation

SlðkÞ ¼ �n2gPgðkÞ þ �ng: (29)

The angular multipole l controls the transverse wave
number k? but, since the amplitude of the wave vector
k ¼ jkj is already set in SlðkÞ, the spherical power spec-
trum must be independent of l. In practice, however,
W ðrÞ is always different than unity so that Slðk; kÞ is
never independent of the multipole l. Note also that, with
the galaxy number density defined as Eq. (22), both the
spherical power spectra Sl and N l have dimensions of
L�2. We will henceforth assume that Vs is accurately
known and work with the normalized galaxy number
density ngðxÞ=~ng, instead of ngðxÞ. In this case, the spheri-
cal power spectrum is given by the right-hand side of
Eq. (27) divided by ~n2g.

Before we close this section and apply the spherical
Fourier analysis to the general relativistic description of
galaxy clustering, we discuss our assumption for survey
geometry and other approaches to handling the survey
window function. Our spherical Fourier decomposition
assumes that the full sky is available for measuring the
galaxy number density field ngðxÞ. For surveys with an

incomplete sky coverage, angular multipoles with charac-
teristic scale larger than the sky coverage are simply un-
available, while angular multipoles on smaller scales
remain unaffected.

In literature, the radial boundary condition is often
imposed by choosing discrete wave numbers knl , in which

the range of integer nl depends on angular multipole l (e.g.,
[26,27,31]). Since the galaxy number density can be mea-
sured only within the survey region, the number density
field outside the survey volume is set to zero in those
approaches. Hence, this situation is equivalent to solving
the Poisson equation within the survey area and the
Laplace equation outside the survey [26]. A unique solu-
tion can be singled out on imposing Dirichlet or Neumann
conditions at the boundary (or a linear combination
thereof) [27]. Therefore, despite the same number density
measured within the survey region, the resulting potential
and velocity fields are different due to the nonlocality of
their relation to the density field, depending on the choice
of boundary conditions. As we are interested in describing
the observed galaxy number density nobsg ðxÞ, rather than the
other derived quantities such as velocity or potential, no
boundary condition need be imposed, and the results for
nobsg ðxÞ are identical in all approaches, whenever our con-

tinuous wave numbers equal discrete ones or the survey
volume becomes infinite.

III. GALAXY CLUSTERING IN GENERAL
RELATIVITY

Here we present the full relativistic description of galaxy
clustering in Sec. III A. Weight functions are derived to
facilitate the full calculations of the spherical galaxy power
spectrum in Sec. III B and simplified Limber formulas are
presented in Sec. III C to provide physical insight.

A. General relativistic description of galaxy clustering

Since the standard approach to modeling galaxy cluster-
ing is based on the Newtonian framework, it naturally
breaks down on large scales, where relativistic effect be-
comes significant. Recently, the fully relativistic descrip-
tion of galaxy clustering was formulated [9,10], resolving
gauge issues between observable and unobservable quan-
tities. The key finding in the theoretical development is that
unobservable quantities such as the true redshift and the
unlensed galaxy position are gauge dependent. Therefore,
we need to construct galaxy clustering statistics based on
observables quantities like the galaxy redshift and the
position on the sky. In doing so, effects such as redshift-
space distortions and lensing magnification are naturally
incorporated. Hence, this approach provides a unified de-
scription of various effects in galaxy clustering [11].
The relativistic description of galaxy clustering can be

derived from the fact that the number dNobs
g of observed

galaxies in a small volume is conserved:

dNobs
g ¼ nobsg dVobs ¼ nphyg dVphy; (30)

and this equation defines the observed galaxy number
density nobsg with the observed volume element

dVobsðzÞ ¼ r2ðzÞ
HðzÞ sin�dzd�d�; (31)

described by the observed galaxy position ð�;�Þ on the sky
and the observed redshift z. The ‘‘observed’’ volume ele-
ment dVobs is different from the ‘‘physical’’ volume dVphy

occupied by the observed galaxies on the sky, and the
distortion between these two volume elements, so-called
the volume effect, gives rise to contributions to the observed
galaxy fluctuation. While the dominant contribution in the
volume effect is the redshift-space distortion and the gravi-
tational lensing effect, there exist other subtle relativistic
contributions, and the physical volume can be obtained by
tracing the photon path backward (see [9,10] for details in
deriving dVphy and computing the volume effect).

Another source of fluctuations in galaxy clustering is the
source effect describing the distortion associated with the

physical galaxy number density nphyg . The mean galaxy
number density is obtained by averaging the observed
galaxy number density at the observed redshift, which
differs from the proper time at the galaxy rest frame. The
contribution of this source effect is proportional to the
evolution bias factor of the galaxy number density
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e ¼ 3þ d ln �ng
d ln ð1þ zÞ ; (32)

where the factor 3 in Eq. (32) appears because we use the
comoving number density �ng. Other contributions of

the source effect can arise, depending on how we define
the galaxy sample at hand (see [9–11,17]). In typical
galaxy surveys, galaxy samples are defined with the ob-
served luminosity inferred from the observed flux, which is
different from the intrinsic luminosity. So the source effect
associated with it is then proportional to the luminosity
function slope

p ¼ �0:4
d log �ng
d logL

; (33)

where the luminosity L is computed by using the observed
flux and the observed redshift.

Putting all these effects together and accounting for the
relativistic contributions, the general relativistic descrip-
tion of the observed galaxy fluctuation can be written, to
the linear order in perturbation, as [9,10]

�obs
g ¼ b�v � e�zv � 5p�DL þ 
� þ 2’� þ V þ 3�z�

�H
d

dz

�
�z�

H

�
þ 2

�R
r

� 2K; (34)

where the linear bias factor is b, the comoving gauge
matter density is �v, the lapse term �z in the observed
redshift is defined as 1þ z ¼ ð1þ �zÞð1þ �zÞ, the dimen-
sionless fluctuation in the luminosity distance is �DL, the
gauge-invariant temporal and spatial metric perturbations
are 
� and ’�, the line-of-sight velocity is V, and the

gauge-invariant radial displacement and lensing conver-
gence are �R and K. The subscripts � and v represent
that the gauge-invariant quantities with the corresponding
subscript are identical to those quantities evaluated in the
conformal Newtonian gauge (� ¼ 0) or in the dark matter
comoving gauge (v ¼ 0), in which the shear seen by the
normal observer vanishes (� ¼ 0) or the off-diagonal com-
ponent of the energy momentum tensor vanishes (v ¼ 0),
respectively. Note that 
� and ’� correspond to the

Bardeen’s variables�A and�H [37] and we have assumed
no vector and tensor contributions in Eq. (34). We refer
the reader to [9,10,17] for details in the derivation (see
also [12–16]).

Equation (34) is written in a physically transparent way.
The observed galaxy fluctuation is modulated by the matter
density �v, and there exist additional contributions from
the source and the volume effects. The source effect is
composed of e�zv and 5p�DL, and the other terms in
Eq. (34) come from the volume effect. Of the volume
effect, the last three terms in the first line of Eq. (34) define
the rest frame of the observed galaxies, and the remaining
terms in the second line describe the distortion of the
comoving volume element in Eq. (31). It is noted that the
term 3�z� accounts for the distortion in the comoving

volume factor a3 and in Eq. (31) the conversion between
the comoving and the physical volume elements is based
on the observed redshift.
In order to compute the observed galaxy fluctuation �obs

g ,

we need to evaluate the individual gauge-invariant varia-
bles in Eq. (34). While Eq. (34) is arranged in terms of
gauge-invariant variables to explicitly ensure the gauge-
invariance of �obs

g , it can be computed with any choice of

gauge conditions, but preferably with the most convenient
for computation. Using the Einstein equations, we have the
following relation for a flat �CDM universe [37–41],

� � ’� ¼ �
� ¼ 3H2
0

2

�m

ak2
�m; (35)

v � v� ¼ � 1

k
�0
m ¼ �H f

k
�m; (36)

where the comoving gauge matter density is obtained upon
setting �m � �v. and the logarithmic growth rate is f ¼
d ln�m=d ln a. Other gauge-invariant variables in Eq. (34)
can be readily expressed in terms of �m, v, and � as [17]

V ¼ @

@r

Z d3k

ð2�Þ3
�v

k
eik�x; (37)

�z� ¼ V þ�þ
Z r

0
d~r2�0; (38)

�zv ¼ �z� þ
Z d3k

ð2�Þ3
Hv

k
eik�x; (39)

�R ¼ ��z�

H
�

Z r

0
d~r2�; (40)

K ¼ �
Z r

0
d~r

�
r� ~r

~rr

�
r̂2�; (41)

�DL ¼ �R
r

þ �z� þ��K; (42)

�H
d

dz

�
�z�

H

�
¼ �V � 1þ z

H
�0 � 1þ z

H

@V

@r
� �z�

þ 1þ z

H

dH

dz
�z�: (43)

We also note that the total derivative in Eq. (43) is along the
past light cone: dr ¼ dz=H and dr ¼ @r� @�.

B. Fourier decomposition and weight function

Now that all the contributions in Eq. (34) can be ex-
pressed in terms of the matter density �m and its transfer
functionT mðk; rÞ, we define the weight functionsWiðx;kÞ
for each contribution in Eq. (34) through the following
decomposition of the observed galaxy fluctuation:
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�obs
g ðxÞ ¼ X

i

Z r

0
d~r

Z d3k

ð2�Þ3 Wið~x;kÞT mðk; ~rÞ’vðkÞeik�~x

þ �ðxÞ; (44)

where the observed galaxy position is x ¼ ½rðzÞ; x̂� and the
line-of-sight position is ~x ¼ ð~r; x̂Þ in spherical coordinates
(x==~x). The dimension of the weight functions is
½Wið~x;kÞ� ¼ L�1, and �ðxÞ is the residual shot-noise field.

Categorically, each contribution in Eq. (34) can be clas-
sified in three different types according to its dependence
on the angle x̂ and the line-of-sight distance ~r. The first and
simplest type includes all the contributions such as �v, 
�,

and ’� that are independent of x̂ and ~r. For example, the

matter density in Eq. (34) is

�vðxÞ ¼ �mðxÞ ¼
Z d3k

ð2�Þ3 T mðk; rÞ’vðkÞeik�x; (45)

and hence the weight function for the matter density takes
the simplest form

Wð~x;kÞ ¼ �Dðr� ~rÞ: (46)

Similarly, the weight function for the potential ’� ¼ � is

Wð~x;kÞ ¼ �Dðr� ~rÞ 3H
2
0

2

�m

ak2
: (47)

Fluctuations of the second type depend on the observed
angle, yet are independent of the line-of-sight distance.
This applies to the line-of-sight velocity contribution V
(and functions thereof such as �z�, �R, �DL),

VðxÞ ¼ @

@r

Z d3k

ð2�Þ3
�
H f

�m

k2

�
eik�x

¼
Z d3k

ð2�Þ3
H f

k
T mðk; rÞ’vðkÞ

�
@

k@r

�
eik�x; (48)

of which the weight function is

Wð~x;kÞ ¼ �Dðr� ~rÞ
�
H f

k

@

k@r

�
: (49)

The derivative operator acts on the radial component of the
plane wave in Eq. (44).

Finally, the third type covers the contributions along the
line-of-sight direction that are independent of the observed
angle. This category includes numerous line-of-sight inte-
grals in Eqs. (38)–(42), including the Sachs-Wolfe effect
and the weak lensing convergence. For example, the
Sachs-Wolfe contribution in �z� in Eq. (38) can be

decomposed as

Z r

0
d~r�0 ¼

Z r

0
d~r

Z d3k

ð2�Þ3 �ðk; ~rÞ0eik�~x

¼
Z r

0
d~r

Z d3k

ð2�Þ3

�
�
3H2

0

2
�m

~Hð~f� 1Þ
k2

�
T mðk; ~rÞ’vðkÞeik�~x;

(50)

and, therefore, the resulting weight function is

Wð~x;kÞ ¼ 3H2
0

2
�m

~Hð~f� 1Þ
k2

; (51)

where ~H and ~f depend on ~r and we used �0¼H�ðf�1Þ.
Another example of this type is the weak lensing conver-
gence in Eq. (41)

K ¼ �
Z r

0
d~r

�
r� ~r

~rr

�
r̂2

Z d3k

ð2�Þ3 �ðk; ~rÞeik�~x

¼ �
Z r

0
d~r

Z d3k

ð2�Þ3
��

r� ~r

~rr

�
3H2

0

2~ak2
�m

�
�T mðk; ~rÞ’vðkÞr̂2eik�~x: (52)

The weight functions depend on position r, wave vector k,
and line-of-sight distance ~r, and its angular dependence
can be removed by using the plane wave expansion, i.e.,

Wlðr; ~r; kÞ ¼ 3H2
0

2
�mlðlþ 1Þ

�
r� ~r

~rr

�
1

~ak2
; (53)

where the expansion factor ~a depends on ~r and the

angular part of the plane wave satisfies r̂2Ylmðx̂Þ ¼
�lðlþ 1ÞYlmðx̂Þ. For convenience, Table I summarizes
all the weight functions.
With the full Fourier decomposition of the observed

galaxy fluctuation, the spherical multipole function in
Eq. (26) must be generalized as follows to take into proper
account each component in Eq. (44),

Mi
lð~k; kÞ � k

ffiffiffiffi
2

�

s Z 1

0
drr2W ðrÞjlðkrÞ

�
Z r

0
d~rWi

l ðr; ~r; ~kÞT mð~k; ~rÞjlð~k ~rÞ; (54)

and the spherical multipole function of the observed galaxy
fluctuation is simply

Mlð~k; kÞ ¼
X
i

Mi
lð~k; kÞ: (55)

The spherical power spectrum of the observed (normalized)
galaxy fluctuation is then

Slðk; k0Þ � �Slðk; k0Þ þN lðk; k0Þ; (56)

where �Slðk; k0Þ is the noise-free galaxy power spectrum,

�Slðk; k0Þ ¼ 4�
Z

d ln ~k�2
’v
ð~kÞMlð~k; kÞMlð~k; k0Þ; (57)

and the noise component is
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N lðk; k0Þ � 2kk0

�~ng

Z 1

0
drr2W ðrÞjlðkrÞjlðk0rÞ; (58)

where Sl is identical to Eq. (27) except for a factor of ~n
2
g. Its

dimension thus is L4.
The weight functions defined here differ from those in

[9], as we scale all the perturbation variables with the
matter density in the comoving gauge. This approach is
better suited to numerical computation, but its applicability
is limited to a flat universe with a pressureless component,
including a cosmological constant and baryons on large
scales. For different cosmological models or modified
gravity theories, the relation among �v, 
�, ’�, and v�

is in general different [42–44] from what we assumed for a
pressureless medium, and one should use the weight func-
tions in [9] with the corresponding transfer functions.

C. Limber approximation

Before we present numerical calculations of the spheri-
cal power spectrum in Sec. IV, we adopt the Limber
approximation to derive analytic formulas for the spherical
multipole functions and the spherical power spectra. The
Limber approximation ([45–47]) relies on the fact that the
spherical Bessel function jlðxÞ peaks at x � 	 � lþ 1=2
and oscillates rapidly for x * 	. For large values of angular
multipole l, integrals of product of a smooth function fðxÞ
times jlðxÞ can be approximated by

Z 1

0
dxfðxÞjlðxÞ ’

ffiffiffiffiffiffiffi
2

�	

s
fð	Þ½1þOð1=	2Þ�: (59)

With aid of the orthogonality relation for the spherical
Bessel functions, this result can also be written as [48]

�

2

Z 1

0
drr2fðrÞjlðkrÞjlðk0rÞ

’ �Dðk� k0Þ
k2

fð	=kÞ½1þOð1=	2Þ�: (60)

In the case of the matter density, for instance, we obtain
the spherical multipole function

M�
l ð~k; kÞ �

ffiffiffiffiffiffiffiffi
�

2k2

r
W ð	=kÞT m

�
k;
	

k

�
�Dðk� ~kÞ; (61)

and the spherical power spectrum

S�
l ðk; k0Þ � W ð	=kÞ2Pm

�
k;
	

k

�
�Dðk� k0Þ: (62)

Similarly, on using the Limber approximation, the spheri-

cal power spectrum S�
l ðk; k0Þ of the potential perturbation

can be readily computed owing to the simple dependence
of the spherical multipole function on the weight function.
The noise contribution to the spherical power spectrum
falls in the same category, and the Limber approximation
gives

N lðk; k0Þ � 1

~ng
W ð	=kÞ�Dðk� k0Þ: (63)

In addition, the Limber approximation can greatly sim-
plify the computation of the projected quantities such as the
Sachs-Wolfe contribution and the gravitational lensing con-
tribution. These quantities contain two line-of-sight inte-
grations in the sphericalmultipole function in Eq. (54), each
of which involves the spherical Bessel function. With the
Limber approximation, the spherical multipole function of
the gravitational lensing is

TABLE I. Weight functions of the observed galaxy fluctuation in Eq. (44). All the perturbation variables in Eq. (34) are scaled with
the matter density in the dark-matter comoving gauge by using the Einstein equations, and its relations to the matter density are defined
as the weight functions that can be used for computing the spherical multipole function in Eq. (54) and the spherical power spectrum in
Eq. (57). Time-dependent quantities a, H, and f are evaluated at the observed redshift z, and those with a tilde depend on the line-of-
sight distance ~r (or the corresponding redshift ~z � z).

Gauge-invariant quantity Weight function Wlðr; ~r; kÞ
�v �Dðr� ~rÞ

�

��Dðr� ~rÞ 3H2
0

2
�m

ak2

’�
�Dðr� ~rÞ 3H2

0

2
�m

ak2

V
�Dðr� ~rÞðHf

k
@
k@rÞ

�z�
�Dðr� ~rÞ½ðH f

k
@
k@rÞ þ

3H2
0

2
�m

ak2
� þ 3H2

0�m
~Hð~f�1Þ
k2

�zv
�Dðr� ~rÞ½ðH f

k
@
k@rÞ þ

3H2
0

2
�m

ak2
� H 2f

k2
� þ 3H2

0�m
~Hð~f�1Þ
k2

�R
r

� �Dðr�~rÞ
H r

½ðH f
k

@
k@rÞ þ

3H2
0

2
�m

ak2
� � 3H2

0

H r
�m

~Hð~f�1Þ
k2

� 3H2
0

r
�m

~ak2

�H d
dz ð�z�H

Þ ��Dðr� ~rÞ½ð2� 1þz
H

dH
dz ÞðHf

k
@
k@rÞ þ

3H2
0

2
�m

ak2
ðf� 1þz

H
dH
dz Þ þ f @2

ðk@rÞ2� � 3H2
0�mð1� 1þz

H
dH
dz Þ

~Hð~f�1Þ
k2

K
3H2

0

2 �mlðlþ 1Þðr�~r
~rr Þ 1

~ak2

�DL
�Dðr� ~rÞ½ð1� 1

H r
ÞðH f

k
@
k@rÞ þ

3H2
0

2
�m

ak2
ð2� 1

H r
Þ� þ 3H2

0
�m

k2
½ ~Hð~f� 1Þð1� 1

H r
Þ � 1

~ar � lðlþ1Þ
2~a ðr�~r

~rr Þ�
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MK
l ð~k; kÞ ’

ffiffiffiffiffiffiffiffi
�

2~k2

r
W ð	=kÞ 3H

2
0

2
�mT mð~k; 	=~kÞlðlþ 1Þ

�
�~k� k

~ak2 ~k2

�
; (64)

where ~a is the expansion factor at ~r ¼ 	=~k. The spherical

power spectrum SK
l ðk; k0Þ of the gravitational lensing is

then obtained by integrating the spherical multipole func-

tion over ~k, instead of a quintuple integration over ~k and two
pairs ðr; ~rÞ.

The spherical multipole function of the line-of-sight
velocity or the redshift-space distortion involves the
derivatives of the spherical Bessel function, since their
weight function acts on the radial component as in
Eq. (48). Since derivatives of the spherical Bessel function
jlðxÞ are linear combinations of spherical Bessel functions
at different angular multipoles, they do not form an
orthogonal basis. In these cases, we find that the Limber
approximation becomes less accurate, and next-leading
corrections are required to enhance the accuracy. Despite
this shortcoming in a few cases, the Limber approximation
provides nonetheless a simple and physical explanation of
the complicated spherical power spectrum. Therefore, we
will frequently rely on it when we discuss the physical
interpretation of the full numerical results in Sec. IV.

IV. OBSERVED SPHERICAL POWER SPECTRUM

Here we present the observed spherical power spectrum
in Sec. IVA and compare to the corresponding flat-sky
three-dimensional power spectrum. The measurement un-
certainties associated with the spherical power spectrum
are presented in Sec. IVB.

A. Spherical power spectrum

For definiteness we consider all-sky galaxy surveys with
two different survey window functions. Figure 1 plots two
survey window functions W ðrÞ and their corresponding
redshift distributionP zðzÞ.We consider two specificwindow
functions that approximately represent a flux-limited survey
(solid line) and a volume-limited survey (dotted line), if the
comoving number density �ngðzÞ is constant. Survey window
functions (top panel) are related to galaxy redshift distribu-
tions (bottom panel) via Eqs. (19) and (21), and hence to the
evolution bias factor in Eq. (32). The former window func-
tion is modeled as a Gaussian (solid line)

W ðrÞ ¼ exp

�
�
�
r

r0

�
2
�
; (65)

and the latter window function is modeled as a top-hat
(dotted line)

W ðrÞ ¼
�
1; r � r0;

0; r > r0;
(66)

where the characteristic distance or the survey depth is r0 ¼
2354h�1 Mpc set equal to the comoving distance to z ¼ 1.
In both cases, the redshift distribution rises with redshift as
morevolume becomes available, but it drops sharply at r0 for
the volume-limited survey, while the tail of the flux-limited
survey extends to higher redshift z 	 1. By defining the
spherical Fourier modes through Eq. (16), we are implicitly
assuming that the galaxy overdensity �gðxÞ is pixelized.

Therefore, the survey window function W ðrÞ should in
principle include a pixel window function. For simplicity,
however, we will ignore this complication and assume that
the data has been deconvolved.
Figure 2 illustrates the spherical power spectra of rep-

resentative components of the full general relativistic for-
mula �obs

g in Eq. (34), such as the matter density �m, the

line-of-sight velocity V, the gravitational potential �, and
so on [see Eqs. (37)–(43)]. The Gaussian window function
is adopted in computing the spherical power spectra. For
simplicity, we first assume that the matter transfer function
T mðk; zÞ is independent of redshift (i.e., of the line-of-sight
distance ~r) and the redshift-dependent quantities in the
weight functions Wi

l ðr; ~r; kÞ such as a, H, and f are set

equal to those evaluated at z ¼ 0 when computing the

spherical multipole functions Mi
lð~k; kÞ in Eq. (54). The

spherical multipole function is then integrated over ~k to
obtain the spherical power spectrum SlðkÞ by using
Eq. (57). The full spherical galaxy power spectrum

FIG. 1. Survey window functionsW and redshift distributions
Pz. Upper panel:Gaussianwindow function (solid line) inEq. (65)
and top-hat window function (dotted line) in Eq. (66). Bottom
panel: Corresponding redshift distributions obtained by using
Eq. (21). The characteristic scales r0 of the surveys are set equal
to the comoving distance to z ¼ 1. The comoving number density
is related to the survey window function as in Eq. (19).
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Sobs
l ðkÞ is the sum of the auto and the cross power spectra of

all the components in Eq. (34), which can be readily
deduced from Fig. 2 (see also [10]).

The first column shows the spherical power spectra SlðkÞ
of the matter density �m (solid line) and the redshift-space
distortion 1þz

H
@V
@r (dashed line) as a function of wave num-

ber k and angular multipole l. Each row shows the same
spherical power spectra but at different angular multipoles,
ranging from l ¼ 2 (top) to l ¼ 10 (bottom). Since the
matter density power spectrum PmðkÞ is isotropic, the
spherical power spectrum S�

l ðkÞ (solid line) of the matter

density is independent of angular multipole, and it reduces
to the three-dimensional power spectrum PmðkÞ ’ S�

l ðkÞ

(gray solid). Given angular multipole l in each row, the
characteristic wave number kc � l=r0 is shown as the
vertical lines, below which the power is highly suppressed
and well beyond which the equality of two power spectra
holds. Technically, the power is suppressed at k 
 kc due
to the spherical Bessel function jlðkrÞ ’ 0 at kr 
 l, and
the physical interpretation is that larger scale modes k 

kc ’ k? cannot be measured given the survey depth r0. The
match between S�

l ðkÞ and PmðkÞ could be extended to

larger scales, if more survey volume is available than
what is assumed here.
For the Gaussian survey window function we adopted

here, there exists an analytic formula for the spherical

FIG. 2. Spherical power spectra with Gaussian window function. In each panel, various curves with labels show the spherical
power spectra of representative components of the full general relativistic formula �obs

g in Eq. (34), which are further decomposed in

Eqs. (37)–(43). The time evolution of the transfer and the weight functions is ignored, and their values are set equal to those at z ¼ 0.
Each column plots the same spherical power spectra at angular multipoles, ranging from l ¼ 2 (top rows) to l ¼ 10 (bottom rows),
illustrating their angular dependence. Vertical lines mark the characteristic wave number kc � l=r0, below which spherical power
spectra are suppressed due to the constraint k 	 k? ’ kc. Gray curves show the three-dimensional power spectra at z ¼ 0, if there exist
well-defined correspondences. For example, spherical power spectra for the density (solid line) and the redshift-space distortion
(dashed line) in the first column reduce to the corresponding three-dimensional power spectra on small scales. The noise power
spectrum (dotted line) is shown in the first column, assuming ~ng ¼ 10�4 ðh�1 MpcÞ�3. Compared to the contributions in the first two

columns, the projected quantities in the third column are negligible, except the gravitational lensing convergence. The turnover of the
spherical power spectra on large scales reflects the limit set by survey depth � a few times 1=r0. These large-scale modes can be
recovered by deconvolving the survey window function.
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multipole function M�
l ðk0; kÞ. Using Eq. (6.633) in

Gradshteyn and Ryzhik [49] and setting 
 ¼ 0 and
� ¼ 	 ¼ l, a useful identity can be derived as

Z 1

0
dxx2e�
x2jlð�xÞjlð�xÞ ¼ �e�

�2þ�2

4


4

ffiffiffiffiffiffiffi
��

p Ilþ1
2

�
��

2


�
; (67)

where the modified Bessel function is I	ðzÞ ¼ ð�iÞ	J	ðizÞ.
If we again ignore the time evolution of the transfer func-
tionT mðk; zÞ ’ T mðkÞ, the spherical multipole function of
the matter density is [29]

M�
l ðk0; kÞ ¼

ffiffiffiffiffiffiffiffiffi
�

2k02

r
T mðk0Þ r

2
0

ffiffiffiffiffiffiffi
kk0

p
2

e�
ðk2þk02Þr2

0
4 Ilþ1

2

�
r20kk

0

2

�
;

(68)

and in the limit r20kk
0 � 2lðlþ 1Þ (valid at small scales) it

reduces to

M�
l ðk0; kÞ ¼

ffiffiffiffiffiffiffiffiffi
�

2k02

r
T mðk0Þ �

�
r0ffiffiffiffiffiffiffi
4�

p e�
ðk�k0 Þ2

4 r2
0

�
; (69)

where the Gaussian wave packet in the square bracket
converges towards the Dirac distribution in the limit of
infinite volume (r0 ! 1). The resulting spherical multi-
pole function is independent of angular multipole l, reflect-
ing the fact that high-kmodes do not feel the r dependence
of the Gaussian window function.

At sufficiently high k, whereM�
l ðk0; kÞ is well described

by Eq. (69), the spherical power spectrum in Eq. (57)
becomes

S�
l ðk; kÞ ’

Z
d~kPmð~kÞ

�
r0ffiffiffiffiffiffiffi
4�

p e�
ðk�~kÞ2

4 r2
0

�
2 ’ PmðkÞ r0

2
ffiffiffiffiffiffiffi
2�

p ;

(70)

and we define the three-dimensional spherical power
spectrum as

S�
l ðkÞ ¼ S�

l ðk; kÞ
�

r0

2
ffiffiffiffiffiffiffi
2�

p
��1

: (71)

Equation (70) reduces to Eq. (15), if the volume is infinite.
Since numerical integrations of the spherical power spec-
trum in Eq. (57) require fine sampling and are prone to
numerical errors due to the highly oscillating nature of the

spherical Bessel functions in Mlð~k; kÞ, we tested our
numerical calculations against the analytic solution, and
both results agree to high precision.

Next, the dashed curves in the first column represent the
redshift-space distortion contribution 1þz

H
@V
@r . Since there is

only one line-of-sight direction in the plane parallel limit,
the redshift-distortion contribution is conveniently ex-

pressed in terms of cosine angle �k ¼ x̂ � k̂ between the
line-of-sight x̂ and the wave vector k, and its three-
dimensional power spectrum is Pzðk;�kÞ ¼ f2�4

kPmðkÞ.
Thin dashed curves show the spherical power spectrum
Sz
l ðkÞ of the redshift-space distortion, while the gray

dashed curves in each row show Pzðk;�k ¼ 1Þ ¼
f2PmðkÞ for comparison. As the angular multipole be-
comes higher at a given k ¼ jkj, more angular modes are
emphasized (or equivalently lower �k), and the spherical
power spectrum Sz

l ðkÞ decreases. At k � kc, the spherical
power spectrum reduces to the three-dimensional power
spectrum Pzðk;�kÞwith its angular dependence encoded in
angular multipole in each row.
The second column plots the spherical power spectra of

the dominant relativistic corrections to the observed galaxy
fluctuation �obs

g , such as the line-of-sight velocity V (solid

line), the gravitational potential � (dashed line), and their
linear combinations in Eqs. (37)–(43). Since the velocity
and the potential contributions scale as ðk=H Þ and
ðk=H Þ2 relative to the matter density �m, these relativistic
contributions are comparable only at the horizon scale k ’
H and constitute small corrections in most galaxy surveys
(see [17] for measuring these effects).

The spherical power spectrum S�
l ðkÞ (dashed line) of the

gravitational potential � follows the three dimensional
power spectrum P�ðkÞ (gray dashed line) at each row,

whose amplitude quickly decreases at high k as P�ðkÞ /
k�3, but is independent of angular multipole l. At a given

small k, the amplitude S�
l ðkÞ becomes lower in the lower

panels, simply because k � kc (the vertical line in each
row again illustrates the characteristic minimum wave
number kc given angular multipole l). The angular depen-
dence of the line-of-sight velocity V means that its spheri-
cal power spectrum SV

l ðkÞ (solid line) also depends on

angular multipole l, and it decreases with increasing angu-
lar multipole (or smaller �k) on all scales, in addition to
the effect at k � kc. Since the three-dimensional power
spectrum of the line-of-sight velocity is PVðk;�kÞ ¼
�2

kPvðkÞ ¼ ðH f=kÞ2�2
kPmðkÞ, we plot PVðk;�k ¼ 1Þ

(gray solid) at each row for comparison, and again the
spherical power spectrum SV

l ðkÞ reduces to the three-

dimensional power spectrum PVðk;�kÞ. Last, the dotted
curves show the noise power spectrumN lðkÞ for a galaxy
sample with ~ng ¼ 10�4 ðh�1 MpcÞ�3. For the Gaussian

radial selection function, the shot-noise contribution to
Slðk; k0Þ can be computed exactly by using Eq. (67) as

N lðk; k0Þ ¼ 1

2

r20
~ng

ffiffiffiffiffiffiffi
kk0

p
e�

r2
0
4 ðk2þk02ÞIlþ1

2

�
r20kk

0

2

�
; (72)

and it asymptotically matches the Poisson power spectrum
1=~ng on small scales.

The remaining two curves show the variants of the line-
of-sight velocity and the gravitational potential, V=H r
(dot-dashed line) and�=H r (dotted line). They both arise
due to the radial distortion �R=r. With the prefactor
1=H r in those terms, more weight is given to shorter
distance r, and hence they peak at a slightly higher wave
number k than their counterparts without the prefactor,
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while the shift in the peak position depends on the adopted
window function.

The last column shows the spherical power spectra of the
projected quantities along the line-of-sight direction, such
as the gravitational lensing K (solid line), the integrated
Sachs-Wolfe effect

R
r
0 d~r�

0 (dashed line), the Sachs-Wolfe

effect
R
r
0 d~r�=r (dot-dashed line), and their linear combi-

nations in Eqs. (37)–(43). Since these contributions are
intrinsically angular and their variations are largely limited
to the transverse direction, the angular power spectrumCl is
often used to characterize them, and there is no exact
analogy to the usual three-dimensional power spectrum
for the projected quantities (see, however, [50]). Apart
from the gravitational lensing convergence, the spherical
power spectra of the projected quantities are at least an
order-of-magnitude smaller than the gravitational potential
� in the second column. Those projected quantities are
isotropic and independent of angular multipole, with the
sole exception of the gravitational lensingK, whose addi-
tional angular dependence lðlþ 1Þ arises due to the angular
Laplacian operator. The spherical power spectrum of the
gravitational lensingK exactly corresponds to the 3Dweak
lensing [32,33,51], where the same spherical Fourier analy-
sis is applied to background source galaxies to map the
foregroundmatter distribution.While twomore shear fields
are available in weak lensing measurements, only the con-
vergence fieldK contributes to galaxy clustering.

In Fig. 3, we show the spherical power spectra with the
top-hat window function in Eq. (66) and discuss its effect
on the spherical power spectra, compared to those in Fig. 2.
We have again ignored the time evolution of the transfer
and the weight functions for simplicity. Three-dimensional
power spectra shown as gray curves in Fig. 3 are identical
to those in Fig. 2. The normalization of the spherical power
spectra can be obtained in a similar manner by considering
the spherical power spectrum of the matter density,

S�
l ðk; kÞ ¼

Z
d~kPmð~kÞ

�
2k~k

�

Z r0

0
drr2jlðkrÞjlð~krÞ

�
2
; (73)

and taking the limit k ! 1 (see Appendix A)

lim
k!1

S�
l ðk; kÞ ¼ PmðkÞ r0�

ffiffiffiffi
3

�

s
: (74)

Therefore, we plot the spherical power spectra in Fig. 3 as

SlðkÞ ¼ Slðk; kÞ
�
r0
�

ffiffiffiffi
3

�

s ��1
: (75)

The spherical power spectra of the matter density (solid
line) and the redshift-space distortion (dashed line) in the
first column are nearly identical to their counterparts with
the Gaussian window function. The prominent difference
is the oscillations in SlðkÞ at k � 2�=ðr0=3Þ, where most
contributions to SlðkÞ at those low k arise near r ’ r0 and

the highly oscillating spherical Bessel function is abruptly
truncated at the survey boundary r ¼ r0, causing incom-
plete cancellation of the oscillations. The noise power
spectrum (dotted line) is nearly constant under the top-
hat survey window function. With full weight given
W ðrÞ ¼ 1 near r � r0, however, the recovery of the
three-dimensional power spectra is somewhat extended to
lower k than in Fig. 2.
A similar pattern is observed for the line-of-sight veloc-

ity SV
l ðkÞ and the potential S�

l ðkÞ spherical power spectra
in the second column. Due to additional suppression factor
1=k2 in the weight function for the potential �, more
weight is given to large r at a given k for � than for V,

which results in oscillations in S�
l ðkÞ even at k >

2�=ðr0=3Þ. The remaining two curves (dot-dashed and
dotted) in the radial distortion follow the same trend, but,
compared to Fig. 2, their peak is somewhat shifted to larger
scale k due to the change in the window function.
The spherical power spectra of the projected quantities in

the third column show the reversed trend, smooth power on
large scales and oscillations on small scales, compared to
the spherical power spectra in the first column. The pro-
jected quantities have additional integral in the spherical

multipole functionMlð~k; kÞ, and this line-of-sight integra-
tion cancels the oscillating part of the second spherical
Bessel function, while the overall oscillation is determined
by the first spherical Bessel function. The high-k oscillation
arises near r � l=k, at which there is no suppression in the
top-hat window function. Furthermore, the peak position is
shifted to smaller scales, since the mean distance to the
source galaxies is smallerwith the top-hatwindow function.
Having understood the key features in the spherical

power spectra with the simplifying assumptions, we are
now in a position to consider the full generality: time
dependence of the transfer function and the weight func-
tion on the line-of-sight distance. In Fig. 4, we present the
spherical power spectra with the Gaussian window func-
tion, explicitly accounting for their time dependence in the
spherical multipole function. Overall, the spherical power
spectra in Fig. 4 resemble those in Fig. 2, where the time
dependence is neglected. The key difference in this case
lies in the amplitude of the spherical power spectra, as the
matter transfer functionT mðk; rÞ decreases in amplitude at
r > 0 (i.e., z > 0).
The first column shows the spherical power spectra of

the matter density (solid line) and the redshift-space dis-
tortion (dashed line). Compared to the flat-sky matter
power spectrum (gray solid line) at z ¼ 0, the spherical
power spectrum S�

l ðkÞ is lower in amplitude, as it is

obtained by averaging over a range of redshift in Fig. 1.
For the same reason, the logarithmic growth rate f is
higher at z > 0, and hence the spherical power spectrum
of the redshift-space distortion is higher in amplitude. The
noise power spectrum (dotted line) remains unchanged in
Fig. 4, since the time dependence of the mean number
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density is already accounted by the survey window func-
tion in Fig. 2.

In the second column, the spherical power spectra of the
line-of-sight velocity, the gravitational potential, and their
variants show little difference, compared to those in Fig. 2.
A small change in amplitude arises due to the shift in the
peak line-of-sight distance. The velocity is nearly constant
in redshift, while the gravitational potential is somewhat
larger at z > 0, as dark energy domination leads to the
decay in the gravitational potential. This trend is further
reflected in the third column, where the projected quanti-
ties are displayed. The spherical power spectra of the
gravitational lensing (solid line) and the gravitational po-
tential (dot-dashed line) are slightly larger in amplitude,
while the integrated Sachs-Wolfe contributions (dashed
and dotted lines) are smaller, since the potential is constant
in the Einstein-de Sitter phase at z > 0.

B. Statistical uncertainties

The covariance matrix of the spherical power spectrum
Slðk; kÞ generally involves the power spectrum, bispec-
trum, and trispectrum of the spherical Fourier modes

�lmðkÞ. Non-Gaussianity induced by nonlinear gravita-
tional clustering or, possibly, already present in the initial
conditions can generate significant covariance through the
bispectrum and trispectrum. For simplicity, however, we
will henceforth ignore these contributions and assume that
�lmðkÞ is simply Gaussian.
We begin with the calculation of the covariance of the

spherical power spectrum assuming an all-sky experiment.
At fixed multipole l, Slðk; kÞ can be estimated by averaging
over all m and a thin wave number interval �k and by
subtracting the shot-noise component. However, since the
shot-noise contributionN l is difficult to compute without
precise knowledge of the radial selection function, we
simply present the observed spherical power spectrum,
i.e., without shot-noise subtraction. We thus define an
estimator of the spherical power spectrum

Ŝlðk; kÞ ¼ 1

2lþ 1

X
m

1

�k

Z
�k

duj�lmðuÞj2; (76)

where the integration runs over the domain ½k� �k=2; kþ
�k=2, given a chosen band width �k. The covariance of
this (unbiased) band-power estimator is

FIG. 3. Spherical power spectra with top-hat window function, in the same format as in Fig. 2. The general trend in the spherical
power spectra are similar, but oscillations are imprinted in the spherical power spectra, due to the incomplete cancellation of the
spherical Bessel function, imposed by the top-hat window function. The gray curves are identical to those in Fig. 2.
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Cov½Ŝlðk; kÞ; Ŝl0 ðk0; k0Þ�
¼ 1

ð2lþ 1Þð2l0 þ 1Þ
X
m;m0

1

ð�kÞ2

�
Z
�k

du
Z
�k

du0½hj�lmðuÞj2j�l0m0 ðu0Þj2i
� hj�lmðuÞj2ihj�l0m0 ðu0Þj2i�: (77)

The assumption of Gaussian random fields considerably
simplifies the evaluation of the trispectrum. A straightfor-
ward application of Wick’s theorem yields

Cov½Ŝlðk; kÞ; Ŝl0 ðk0; k0Þ�
¼ 1

ð2lþ 1Þ2
X
m;m0

1

ð�kÞ2
Z
�k

du
Z
�k

du0½ �Slðu; u0Þ

þN lðu; u0Þ�2ð�m;m0 þ �m;�m0 Þ�ll0

¼ 2

2lþ 1

1

ð�kÞ2
Z
�k

du
Z
�k

du0½ �Slðu; u0Þ
þN lðu; u0Þ�2�ll0 : (78)

In the flat-sky approximation, estimates from different
band powers are uncorrelated in the Gaussian limit, so
that the covariance of power spectrum estimators

Cov½P̂ðkiÞ; P̂ðkjÞ� is proportional to 2PðkiÞPðkjÞ�ki;kj . In

the spherical Fourier decomposition, the Limber approxi-
mation shows that, for the matter (and potential) perturba-
tions, band-power estimates of the spherical power
spectrum are also uncorrelated. However, contributions
from, e.g., the line-of-sight velocity or z distortions will
introduce covariance between measurements from differ-
ent band powers.
For shorthand convenience, let us now define

SlðkÞ � �SlðkÞ þN lðkÞ: (79)

If we restrict ourselves to a galaxy sample of constant
comoving density �ng ¼ ~ng ¼ Ns=Vs and Poisson white

noise, the error on ŜlðkÞ scales as

½�ŜlðkÞ�2 ¼ 2

2lþ 1

�
�SlðkÞ þ 1

�ng

�
2

(80)

FIG. 4. Spherical power spectra with Gaussian window function. The time evolution of the transfer and the weight functions over the
line-of-sight distance is explicitly computed. Compared to the spherical power spectra without evolution in Fig. 2, the spherical power
spectra remain largely unaffected in shape, while the amplitude is naturally lower than the three-dimensional power spectra (gray) at
z ¼ 0. Various curves are in the same format as in Fig. 2.
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for infinitely narrow k bins (�k ! 0). Equation (80) is the

intrinsic error in ŜlðkÞ, reduced by the number of angular
mode l available in the all-sky survey volume. This ex-
pression is a 2D analogy to the Feldmann-Kaiser-Peacock
expression [36] in 3D, except that the number NðkÞ=2 of
independent modes in a k shell is replaced by the number
ð2lþ 1Þ=2 of independent jklmi modes at fixed k and l. In
general, however, the survey window function is not uni-
form and 1= �ng must be replaced by the line-of-sight inte-

gralN lðkÞ. In addition to angular modes, there exist more
radial modes available in the survey. The cumulative

signal-to-noise ratio for a measurement of �Sl is then�
S

N

�
2 ¼ V1=3

s

2

Xlmax

l¼2

�
2lþ 1

2

�Z kmax

kmin

dk

2�

� �SlðkÞ
N lðkÞ þ �SlðkÞ

�
2
;

(81)

where V1=3
s k is the number of radial modes at k. We intro-

duced an extra multiplicative factor of V1=3
s (which is the

only scale in the problem) in order to get a dimensionless
quantity. This step can be made more rigorous by consid-
ering pixelized window functions along the line of sight.
Going into this level of details is, however, beyond the scope
of this work. The factor of 1=2 arises from the fact that �ðxÞ
is real, i.e. ��

lmðkÞ ¼ �l�mðkÞ. Note that the cumulative

signal-to-noise ratio for a measurement of, e.g., the spheri-
cal power induced by the line-of-sight velocity is given by

the same formula with SV
l replacing �Sl in the numerator.

In order to establish a correspondencewithmode counting

in the 3D flat case, let us consider the limit �Sl � N l. Let

also L ¼ V1=3
s and �L be the characteristic length and

resolution of the survey. The maximum wave number and
wave number resolution thus are kmax ¼ 2�=�L and�k ¼
2�=L. The angular resolution of the survey is �� �L=L,
which yields amaximummultipole lmax � 1=�� kmax =�k.
Therefore, the signal-to-noise ratio is

�
S

N

�
2 ’ 1

4
lmax ðlmax þ 2Þ

�
kmax

�k

�
’ 1

4

�
kmax

�k

�
3
: (82)

This is equal (up to a factor of order unity) to the signal-
to-noise ratio in the flat-sky limit,

�
S

N

�
2¼Vs

2
�2�

Z dk?k?
ð2�Þ2

Z dkk
2�

’�
2

�
k2max�k2min

�k2

��
kmax�kmin

�k

�

’�
2

�
kmax

�k

�
3
; (83)

where the last equality assumes kmin 
 kmax . When dealing
with real galaxy data, however, one must take into account
the shot-noise and the survey window function. Ignoring
contributions other than fluctuations in the matter density,
the Limber approximation gives

�
S

N

�
2

l<lmax

� V1=3
s

2

Xlmax

l¼2

�
2lþ 1

2

�Z 1

0

dk

2�

�
�

~ngW ð	kÞPmðk; 	kÞ
1þ ~ngW ð	kÞPmðk; 	kÞ

�
2
: (84)

In Fig. 5, this expression is evaluated as a function of lmax for
the Gaussian (GW) and top-hat (TW) survey window con-
sidered in Sec. IV (dotted and solid curves). The galaxy bias
is assumed to be constant,b ¼ 2, and the z dependence of the
matter power spectrum has been neglected, i.e., Pmðk; rÞ ¼
Pmðk; 0Þ. To exemplify the scaling ðS=NÞ / V1=6

s , results are
also shown for the Gaussian window with 1=8 and 1=64 the
fiducial volume Vs � 55h�1 Gpc. The signal-to-noise ratio
eventually saturates at largevalues of lmax because, for l�1,
the Gaussian window W ð	=kÞ � exp ½�ðl=kr0Þ2� only
picks up (small-scale) measurements that are shot-noise
dominated. For our choice of b, this occurs at k�
0:2h�1 Mpc. As a result, the signal-to-noise ratio flattens
out around lmax � kr0 � 400 (r0 ¼ 2354h�1 Mpc) and
�100 (r0 ¼ 589h�1 Mpc). The filled symbols represent
the signal-to-noise ratio in the flat-sky approximation,

�
S

N

�
2 ¼ 1

�

Z 1

0
drr2

Z 1

0
dkk2

�
~ngW ðrÞPmðk; rÞ

1þ ~ngW ðrÞPmðk; rÞ
�
2
;

(85)

FIG. 5. Signal-to-noise ratio for a measurement of the spheri-
cal power spectrum of galaxies with constant bias b ¼ 2 (see
text). Results are shown as a function of the maximum multipole
lmax . The curves show Eq. (85) for the top-hat (TW) and
Gaussian (GW) survey window with several choices of r0. The
filled symbols show S=N in the flat-sky approximation [Eq. (85)]
for the Gaussian survey window with r0 ¼ 2354 (circle), 1177
(square), and 589h�1 Mpc (triangle). Note that their abscise is
arbitrary.
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computed for the Gaussian survey window with r0 ¼ 2354
(circle), 1177 (square), and 589h�1 Mpc (triangle). The
flat-sky estimates are consistent with the Limber-
approximated ðS=NÞð<lmax Þ in the limit lmax � 1. This
provides support for the validity of Eq. (85).

V. DISCUSSION

We have performed an all-sky analysis of the galaxy
power spectrum, accounting for all the relativistic effects in
galaxy clustering. The spherical Fourier analysis has been
well developed in galaxy clustering [25–27], while its
application to galaxy clustering has been limited to the
Kaiser formula [52]. We have used the spherical Fourier
analysis to analyze the full relativistic formula. The ob-
served galaxy fluctuation is decomposed in terms of spheri-
cal harmonics and spherical Bessel functions that are
angular and radial eigenfunctions of the Helmholtz equa-
tion, providing a natural basis for the observer at origin
to describe the galaxy clustering measurements on the
observed sphere.

In light of the recent development in the relativistic
formulation of galaxy clustering [9,10], there exist numer-
ous relativistic effects in galaxy clustering, in addition to
the standard redshift-space distortion effect. These relativ-
istic effects become substantial on very large scales, and
measurements of these large-scale modes inevitably in-
voke complications associated with the flat-sky approxi-
mation and the survey geometries. By using the spherical
harmonics for its angular decomposition, the spherical
power spectrum is independent of the validity of the flat-
sky approximation, while it retains the advantage of the
standard Fourier analysis, namely, the simple and physi-
cally intuitive interpretation of the measurements in con-
junction with the underlying matter distribution.

We have computed the spherical Fourier power spec-
trum of the observed galaxy distribution, accounting
for the relativistic effects. Compared to the standard
Newtonian description, there exist additional contributions
to the observed galaxy fluctuation, and these additional
contributions can be categorized as the matter density
fluctuation, the line-of-sight velocity contribution, the
gravitational potential contribution, and the line-of-sight
projection contribution [12–16]. The spherical power
spectrum of the matter density is identical to the usual
three-dimensional matter power spectrum S�

l ðkÞ ’ PmðkÞ,
regardless of its angular multipole l, as the matter power
spectrum is isotropic. This correspondence greatly facili-
tates the physical interpretation of the measurements.

Since the line-of-sight velocity affects the observed
distance to the galaxies in redshift space, the velocity
contribution in galaxy clustering is angular dependent.
Therefore, the spherical power spectrum SV

l ðkÞ of the

velocity contribution is similar to its three-dimensional
counterpart PVðk;�kÞ, but its angular dependence is en-
coded as a function of angular multipole l: At a given

amplitude k of a wave vector k, higher angular multipoles
represent larger transverse modes, or lower cosine angle
�k ¼ kk=k. The redshift-space distortion effect arises from
the spatial derivative of the line-of-sight velocity, and its
spherical power spectrum Sz

l ðkÞ follows the similar trend,

as its three-dimensional power spectrum is Pzðk;�kÞ ¼
f2�4

kPmðkÞ.
The gravitational potential contribution to the observed

galaxy fluctuation can be readily computed from the
spherical Fourier decomposition. Similar to the case of
the matter density fluctuation, the gravitational potential
power spectrum P�ðkÞ is isotropic, and the spherical power
spectrum for the gravitational potential is identical to the

three-dimensional power spectrum S�
l ðkÞ ’ P�ðkÞ, regard-

less of its angular multipole. Furthermore, while the gravi-
tational potential contribution to the variance of galaxy
clustering often diverges due to its scale-free nature, the
spherical power spectrum is unaffected by this problem
since it measures individual modes of fluctuations as in the
traditional power spectrum analysis.
The other contributions to the observed galaxy fluctua-

tion, such as the gravitational lensing and the integrated
Sachs-Wolfe effects, arise from fluctuations along the line-
of-sight direction. Since these projected quantities are in-
trinsically angular, it is difficult to handle their contribution
in the standard power spectrum analysis. However, with its
angular decomposition using spherical harmonics, the
spherical Fourier analysis can naturally implement the con-
tribution of the projected quantities to galaxy clustering.
With the sole exception of the gravitational lensing effect,
we find that compared to the matter density fluctuation, the
contribution of the projected quantities are negligible, and
this justifies the simplification of ignoring the projected
quantities in the power spectrum analysis [10,17].
Moreover, the spherical power spectrum S�

l ðkÞ of the gravi-
tational lensing contribution in galaxy clustering is also
known as 3D weak lensing [32,33], where the information
on radial distances to the background source galaxies
is utilized to map the matter distribution in 3D,
as opposed to the traditional 2Dweak lensing. Our spherical
Fourier analysis provides a complete and comprehensive
description of galaxy clustering and its associated effects.
We have derived the covariance matrix of the spherical

power spectrum, assuming that the matter density fluctua-
tion is the dominant contribution. The covariance matrix of
the spherical power spectrum asymptotically matches that
of the three-dimensional power spectrum on small scales.
It is also shown [10,17,24] that since the volume available
for galaxy surveys at low redshift is relatively small, there
are too few large-scale modes that are sensitive to the
relativistic effect in galaxy clustering. Therefore, it makes
little difference in terms of measurement significance, if
one chooses to embed the observed sphere in a cubic
volume and performs the standard Fourier analysis, instead
of performing the spherical Fourier analysis. However, the
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spherical Fourier analysis presented in this paper provides
a more natural way to analyze the full relativistic effects in
galaxy clustering. Furthermore, it is shown [17] that the
multitracer analysis [53] with the shot-noise cancelling
technique [54] can substantially enhance the measurement
significance of the relativistic effects in galaxy clustering,
in which case we expect that the spherical Fourier analysis
becomes essential in describing the measurements on large
scales.
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APPENDIX A: TOP-HAT NORMALIZATION

Here we derive the normalization coefficient for the top-
hat window function in Eq. (74). The normalization coef-
ficient can be obtained by computing the spherical power
spectrum for the matter density

S�
l ðk; kÞ ¼

Z
d~kPmð~kÞ

�
2k~k

�

Z r0

0
drr2jlðkrÞjlð~krÞ

�
2
; (A1)

and taking the limit (k ! 1). We first define the integrand

Fðk; ~kÞ � 2k~k

�

Z r0

0
drr2jlðkrÞjlð~krÞ; (A2)

and then arrange Eq. (A1) as

S �
l ðk; kÞ ¼

Z 1

�1
d �kPmðkþ �kÞ½Fðk; kþ �kÞ�2: (A3)

Since the integrand peaks around k ’ �k, we take the limit
(k ! 1) and expand the integrand Fðk; kþ �kÞ:

lim
k!1

S�
l ðk; kÞ ’ PmðkÞ

Z 1

�1
d �k

�
F þ

�k2

2
F 00 þ � � �

�
2

¼ PmðkÞ
ffiffiffiffiffiffiffi
2�

p
F 2

�
� F

2F 00

�
1=2

; (A4)

where we performed a Gaussian integral. The asymptotic
values of the integrand are

F � lim
k!1

FðkÞ ¼ lim
k!1

2r0
�x

Z x

0
dxx2j2l ðxÞ ¼

r0
�
; (A5)

F 00 � lim
k!1

F00ðkÞ ¼ lim
k!1

2r30
�x3

Z x

0
dxx4jlðxÞ

�
�
2

x
j0lðxÞ þ j00l ðxÞ

�
¼ � r30

3�
; (A6)

and we obtain the normalization coefficient in Eq. (74)

lim
k!1

S�
l ðk; kÞ ¼ PmðkÞ r0�

ffiffiffiffi
3

�

s
: (A7)

APPENDIX B: COVARIANCE OF THE SPHERICAL
POWER SPECTRUM

Here we present details of the calculation of the covari-
ance matrix of the spherical power spectrum estimator. We
will omit the band-power averaging for the sake of con-
ciseness. Using Eq. (16), the four-point correlator of the
spherical Fourier modes reads

h�lmðkÞ��
lmðkÞ�l0m0 ðk0Þ��

l0m0 ðk0Þi

¼
�
2

�

�
2
k2k02

Y4
i¼1

�Z
d3xi

�
jlðkr1Þjlðkr2Þjlðk0r3Þ

� jlðk0r4ÞY�
lmðx̂1ÞYlmðx̂2ÞY�

l0m0 ðx̂3ÞYl0m0 ðx̂4Þ
� h�ðx1Þ�ðx2Þ�ðx3Þ�ðx4Þi: (B1)

Assuming the galaxy overdensity field �ðxÞ follows
Gaussian statistics, the four-point correlator in the right-
hand side reduces to the sum of three products of two-point
correlation functions, whose explicit expression is given by
Eq. (23) divided by ~n2g. The contribution that involves

h�gðx1Þ�gðx2Þih�gðx3Þ�gðx4Þi exactly cancels out the

term hj�lmðkÞj2ihj�l0m0 ðk0Þj2i in the covariance matrix in
Eq. (77). To compute the two other contributions, we
must evaluate, e.g.,

J14 � 2

�
kk0

Z
dr1r

2
1

Z
dr4r

2
4jlðkr1Þjl0 ðk0r4Þ

�
Z

d2x̂1

Z
d2x̂4Y

�
lmðx̂1ÞYl0m0 ðx̂4Þ

�
�
W ðr1ÞW ðr4Þ½1þ �gðx1 � x4Þ�

þ 1

~ng
W ðr1Þ�Dðx1 � x4Þ

�
: (B2)

On expressing �gðx1 � x4Þ as the Fourier transform

�gðx1 � x4Þ

¼
Z d3k

ð2�Þ3 T gðk; r1ÞT gðk; r4ÞP’v
ðkÞeik�ðx1�x4Þ; (B3)

and inserting the Rayleigh expansion in Eq. (9), the inte-
grals over the angular variables simplify to

Z
d2x̂1

Z
d2x̂4Y

�
lmðx̂1ÞYl0m0 ðx̂4Þeik�ðx1�x4Þ

¼ ð4�Þ2il�l0jlðkr1Þjl0 ðkr4ÞY�
lmðk̂ÞYl0m0 ðk̂Þ: (B4)

As a consequence, the contribution of �gðx1 � x4Þ to J14
becomes

ALL-SKY ANALYSIS OF THE GENERAL RELATIVISTIC . . . PHYSICAL REVIEW D 88, 023502 (2013)

023502-17



32�kk0il�l0
Z

dr1r
2
1

Z
dr4r

2
4W ðr1ÞW ðr4Þjlðkr1Þjl0 ðk0r4Þ

Z d3 ~k

ð2�Þ3T gð~k; r1ÞT gð~k; r4Þjlð~kr1Þjl0 ð~kr4ÞY�
lmð ~̂kÞYl0m0 ð ~̂kÞP’v

ð~kÞ

¼ ð4�Þ
Z

d ln ~k�2
’v
ð~kÞ

�
2

�
kk0

Z
dr1r

2
1W ðr1Þjlðkr1Þjlð~kr1ÞT gð~k; r1Þ �

Z
dr4r

2
4W ðr4Þjlðkr4Þjlð~kr4ÞT gð~k; r4Þ

�
�ll0�mm0

¼ Slðk; k0Þ�ll0�mm0 : (B5)

Similarly, using �Dðx1 � x4Þ ¼ �Dðr1 � r4Þ�Dðx̂1 � x̂4Þ=r21 and the orthonormality of the spherical harmonics, the
contribution of the Poisson noise term to J14 is

2kk0

�~ng

Z
dr1r

2
1

Z
dr4r

2
4W ðr1Þjlðkr1Þjl0 ðk0r4Þ�Dðr1 � r4Þ

Z
d2x̂1Y

�
lmðx̂1ÞYl0m0 ðx̂1Þ ¼ N lðk; k0Þ�ll0�mm0 : (B6)

J14 is the sum of these two contributions, i.e. J14 ¼ ½Slðk; k0Þ þN lðk; k0Þ��ll0�mm0 . Symmetry considerations show that
this holds true for Jij, i � j. This leads to the desired result in Eq. (78).

[1] D. G. York et al., Astron. J. 120, 1579 (2000).
[2] M. Colless et al., Mon. Not. R. Astron. Soc. 328, 1039

(2001).
[3] D. J. Schlegel et al., in American Astronomical Society

Meeting Abstracts (IOP, Philadelphia, PA, 2007), Vol. 211,
pp. 29–36.

[4] The Dark Energy Survey Collaboration, arXiv:astro-ph/
0510346.

[5] M. J. Drinkwater et al., Mon. Not. R. Astron. Soc. 401,
1429 (2010).

[6] M. Tegmark et al., Astrophys. J. 606, 702 (2004).
[7] W. J. Percival et al., Astrophys. J. 657, 51 (2007).
[8] B. A. Reid et al., Mon. Not. R. Astron. Soc. 404, 60

(2010).
[9] J. Yoo, A. L. Fitzpatrick, and M. Zaldarriaga, Phys. Rev. D

80, 083514 (2009).
[10] J. Yoo, Phys. Rev. D 82, 083508 (2010).
[11] J. Yoo, Phys. Rev. D 79, 023517 (2009).
[12] A. Challinor and A. Lewis, Phys. Rev. D 84, 043516

(2011).
[13] C. Bonvin and R. Durrer, Phys. Rev. D 84, 063505

(2011).
[14] T. Baldauf, U. Seljak, L. Senatore, and M. Zaldarriaga, J.

Cosmol. Astropart. Phys. 10 (2011) 031.
[15] M. Bruni, R. Crittenden, K. Koyama, R. Maartens, C.

Pitrou, and D. Wands, Phys. Rev. D 85, 041301
(2012).

[16] D. Jeong, F. Schmidt, and C.M. Hirata, Phys. Rev. D 85,
023504 (2012).

[17] J. Yoo, N. Hamaus, U. Seljak, and M. Zaldarriaga, Phys.
Rev. D 86, 063514 (2012).

[18] A. S. Szalay, T. Matsubara, and S. D. Landy, Astrophys. J.
Lett. 498, L1 (1998).

[19] I. Szapudi, Astrophys. J. 614, 51 (2004).
[20] T. Matsubara, Astrophys. J. 535, 1 (2000).
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