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Neutron stars are extremely relativistic objects which abound in our universe and yet are poorly

understood, due to the high uncertainty on how matter behaves in the extreme conditions which prevail in

the stellar core. It has recently been pointed out that the moment of inertia I, the Love number �, and the

spin-induced quadrupole moment Q of an isolated neutron star, are related through functions which are

practically independent of the equation of state. These surprising universal I� ��Q relations pave the

way for a better understanding of neutron stars, most notably via gravitational-wave emission.

Gravitational-wave observations will probe highly dynamical binaries and it is important to understand

whether the universality of the I � ��Q relations survives strong-field and finite-size effects. We apply a

post-Newtonian-affine approach to model tidal deformations in compact binaries and show that the I � �

relation depends on the inspiral frequency, but is insensitive to the equation of state. We provide a fit for

the universal relation, which is valid up to a gravitational wave frequency of �900 Hz and accurate to

within a few percent. Our results strengthen the universality of I � ��Q relations, and are relevant for

gravitational-wave observations with advanced ground-based interferometers. We also discuss the

possibility of using the Love-compactness relation to measure the neutron-star radius with an uncertainty

&10% from gravitational-wave observations.
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I. INTRODUCTION

Neutron stars (NSs) are extremely compact objects
formed as the end-state of the collapse of massive stars,
which populate the Universe either in isolation or in
binaries. NS-NS binaries are one of the most promising
sources for second-generation, ground-based detectors of
gravitational waves, such as advanced Virgo [1], advanced
LIGO [2] and KAGRA [3] (see also the proposed third-
generation detector ET [4]); in addition, NSs are copious
radio and x-ray emitters, and they can potentially be used
as laboratories for high-energy and fundamental physics, to
probe the behavior of matter in extreme conditions [5].
A persistent obstacle against exploring the full potential of
NSs physics lies precisely in our ignorance on their inner
structure, and, in particular, in the uncertainties of the
equation of state (EOS) of matter at ultranuclear densities.
The star radius R, mass M, moment of inertia I, and
deformability, as measured by the tidal Love number �
and spin-induced quadrupole moment Q, all depend sensi-
tively on the EOS. The lack of knowledge on the EOS
therefore affects our understanding of the NS properties
and prevents model-independent tests of gravity with these
objects.

Despite the multitude of modern EOS proposed in the
literature, leading to different NS configurations, Yagi and
Yunes (hereafter, YY) recently discovered [6,7] some

universal relations between the moment of inertia, the tidal

Love number, and the spin-induced quadrupole moment,

which are essentially insensitive to the NS EOS. These

tantalizing I � ��Q relations open the interesting possi-

bility of breaking degeneracies between these parameters

and effectively make NSs viable laboratories for funda-

mental physics and astrophysics.
The tidal Love number used to derive the I � ��Q

relations was computed assuming a static, spherically

symmetric star placed in a time-independent external quad-

rupolar tidal field [8]. Effectively, this means that these

relations were derived for stars in isolation. However,

gravitational-wave detectors in the next years will observe

coalescing compact binaries, i.e. they will detect gravita-

tional waves emitted by NSs at small orbital separations,

d=R & 10, and high frequencies fGW � 40 Hz; thus

gravitational-wave observations will probe highly dynami-

cal NSs which strongly interact with their compact com-

panion (either a black hole or another NS). The question

then arises as to whether the I � ��Q relations are

actually useful or even correct in situations of physical

interest.
The purpose of this article is to derive EOS-independent

I� � relations which hold true throughout almost the
entire inspiralling phase of the binary coalescence, and to
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provide accurate fits describing this relation at each orbital
frequency.

II. EVALUATION OF THE TIDAL LOVE NUMBER

Tidal deformability properties of NSs can be described
in terms of a set of parameters, the Love numbers [8–12],
which relate the mass multipole moments of the star to
the (external) tidal field multipole moments. In particular,
the dominant contribution to the stellar deformation is
encoded in the electric, l ¼ 2 Love number, which we
simply call tidal Love number �, and is defined by the
relation

Qij ¼ ��Cij; (1)

where Qij is the traceless quadrupole moment of the star,

and Cij ¼ e�ð0Þe
�
ðiÞe

�
ð0Þe

�
ðjÞR���� is the tidal tensor which

induces the deformation; e�ð�Þ is a parallelly transported

tetrad attached to the deformed star, and R���� is the

Riemann tensor.
Two approaches are currently used to evaluate the tidal

Love number: a stationary and a dynamical approach. In
the stationary approach used by YY [8–14], the compact
bodies forming the binary system are assumed to be very
far apart. Using spacetime perturbation theory [15] to
study the l ¼ 2 stationary perturbations of a NS induced
by a test tidal field, the quadrupole and tidal tensors
are evaluated; the Love number is then computed from
Eq. (1). As discussed in [9,16], this approach assumes that
the time scale of the stellar deformation is much smaller
than time scales associated with the orbital motion, an
assumption which becomes less accurate in the last stages
of coalescence.

In the dynamical approach [16,17], the evolution of the
tidal deformation of NSs in compact binaries is modeled
combining the post-Newtonian (PN) description of the
two-body metric and of the orbital evolution, with an affine
description of the NS as a deformable ellipsoid, subject to
its self-gravity, to internal pressure forces and to the PN
tidal field of the companion. The deformed NS is described
in terms of five dynamical variables: the principal axes of
the ellipsoid, and two angles describing the orientation of
the principal frame; these quantities are determined by
solving a set of ordinary differential equations in time,
coupled with the PN equations of motion. This approach,
called post-Newtonian affine (PNA), allows one to com-
pute QijðtÞ and CijðtÞ in terms of the dynamical variables,

so that the tidal Love number can be evaluated during the
inspiral. To parametrize the dynamical evolution of the
system, it is convenient to use the orbital frequency f,
instead of time or radial distance. The ratio between quad-
rupole and tidal tensors is then a function (the tidal Love
function) �ðfÞ [16,17], and the Love number obtained in
the stationary approach corresponds to the zero-frequency
(i.e. infinite orbital separation) limit of this function.

The PNA approach also allows one to compute the
moments of inertia Ii ¼ I � ðai=RÞ2, where i ¼ 1, 2, 3
indicate the star principal axes (i ¼ 1 corresponds to the
axis pointing toward the companion), I and R are the
moment of inertia and the radius of the spherical star,
and ai is the ith axis of the deformed, ellipsoidal star.
During the inspiral, I1 increases, while I2 and I3 decrease.

III. RESULTS

Using the PNA approach, we have computed the
normalized Love function �� ¼ �=M5 and the normalized
moment of inertia corresponding to the axis pointing
toward the companion, �I ¼ I1=M

3, as functions of the
orbital frequency f; M is the NS mass.
We have performed simulations of NS-NS binaries

for three different EOS which are expected to cover a
wide range of NS deformability, APR4, MS1, and H4,
and masses in the range ½1:2–2�M�. In Table I we show
the maximum mass, and the radius and compactness
C ¼ M=R of a 1:4M� star, for the EOS APR4, MS1,
and H4. Comparing these values with those shown in
the extensive survey of [13], we see that (excluding
manifestly unphysical models), all EOS fall in the range
of compactness considered in this paper within 10%. The
EOS APR4 describes soft NS matter and yields models
with high compactness and small deformability, whereas
MS1 describes stiff matter and large deformability; H4

provides intermediate configurations. All EOS are mod-
eled by parametrized piecewise polytropes as proposed
by Read et al. [13].
Our results are summarized in Fig. 1. On the three left

panels, we plot �I versus �� for three different values of
the gravitational wave frequency, fGW � 2f ¼ 170, 500,
875 Hz, for equal-mass NS-NS binaries with different EOS.
The data have been fitted with the following function:

ln �I ¼ b0 þ b1 ln ��þ b2ðln ��Þ2 þ b3ðln ��Þ3 þ b4ðln ��Þ4;
(2)

where the fitting parameters bi are functions of fGW
and are listed in Table II. The dashed lines in the left
panels of Fig. 1 are the fits corresponding to the selected
frequencies.
In the upper, right panel of Fig. 1, the relative error

ð �I � �IfitÞ= �Ifit is plotted versus ��, for the selected frequen-
cies. This error is always& 2%. In the lower panel the ratio

TABLE I. Maximum mass, radius, and compactness of a
1:4M� neutron star, for the EOS APR4, H4, and MS1.

EOS Mmax =M� R1:4ðkmÞ C1:4

APR4 2.20 11.12 0.186

H4 2.03 13.59 0.152

MS1 2.78 14.47 0.143
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�IðfÞ= �I0 is plotted versus ��, where �I0 is the asymptotic
value of �I when the stars are in isolation. This figure shows
that, as the stars approach the merger, their moments of
inertia change with respect to the asymptotic value, and
grow as much as 10%–30%, depending on the EOS: for
stiffer EOS, the variation with respect to the values at
infinity is larger.

Nonetheless, the relative errors ð �I� �IfitÞ= �Ifit are small
and only mildly dependent on the EOS, suggesting that
a simple frequency-independent relation can be found
between �I and ��. We find that

ln �I ¼ 1:95� 0:373 ln ��þ 0:155ðln ��Þ2 � 0:0175ðln ��Þ3
þ 0:000775ðln ��Þ4; (3)

describes very well our numerical results. In the upper
panel of Fig. 2, we compare the fit (3) with our numerical
results, for the full set of binaries and frequencies we have
considered. In the lower panel we plot the relative errors
between the numerical results and the universal fit (3),

showing also how well YY’s fit performs in the dynamical
case. Our fit [Eq. (3)] reproduces the �I � �� relation to
within 5% at any frequency &875 Hz and for all EOS
and masses we have considered, while the YY fit becomes
less accurate as the frequency increases, with fractional
errors which become of the order of 10%.
The general fit (3) also holds for unequal mass NS-NS

binaries. For instance, we have checked that for M1 ¼
1:2M� and M2 ¼ 1:6M�, the fit reproduces the �I � ��
relation at any frequency & 875 Hz to within 5% for the
1:2M� star, and 3% for the 1:6M� star.

IV. DISCUSSION

NS-NS binaries are the prototypical sources for up-
coming second-generation gravitational-wave detectors.
Strong-field and finite-size effects are important to model
the waveform during the latest stages of the inspiral. Our
results show that the I � � relations discovered by YY in
the low frequency regime can be extended to describe

TABLE II. Fitting parameters of the �I � �� relation given by Eq. (2), for several values of the
gravitational wave frequency. These fits reproduce our data to within 2%, cf. Fig. 1. The last row
corresponds to the fit (3) that reproduces data at any frequency to within 5% [cf. Fig. 2].

fGW b0 b1 b2 b3 b4

170 1.54 �3:72� 10�2 5:49� 10�2 �4:78� 10�3 1:87� 10�4

300 1.58 �6:53� 10�2 6:26� 10�2 �5:68� 10�3 2:26� 10�4

500 1.60 �8:34� 10�2 6:83� 10�2 �6:39� 10�3 2:59� 10�4

700 1.64 �1:18� 10�1 7:89� 10�2 �7:69� 10�3 3:18� 10�4

800 1.68 �1:46� 10�1 8:76� 10�2 �8:77� 10�3 3:68� 10�4

875 1.71 �1:72� 10�1 9:54� 10�2 �9:72� 10�3 4:12� 10�4

any 1.95 �3:73� 10�1 1:55� 10�2 �1:75� 10�3 7:75� 10�4
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FIG. 1 (color online). Left: the �I� �� relation is plotted for equal mass NS-NS binaries, three values of the gravitational wave
frequency fGW � 2f ¼ ð170; 500; 875Þ Hz, and for the EOS APR4 (cross), MS1 (open circle), H4 (open square). Markers refer to
numerical data, while dashed lines are the fits (2). Right top: relative fractional errors between fits and numerical results. Right bottom:
�I � �� relation with moment of inertia normalized by its value at infinity.
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the dynamical evolution of NSs during the late stages
of the inspiral. These results open the possibility for
strong-field, model-independent tests of NS properties. If,
for instance, advanced gravitational-wave detectors LIGO/
Virgo measure the tidal Love number in a compact binary
coalescence to within (5–10)%, as estimated in [9,18],
this would allow for an indirect estimate of the moment
of inertia with roughly the same precision. This measure-
ment would be independent of (and competitive to)
the estimates coming from pulsar-timing observations
[19]. In addition, as shown in YY, these estimates would
allow one to set constraints on modified theories of
gravity.

Although in this paper we have presented only NS-NS
binaries, our approach also describes the dynamical evo-
lution of mixed black hole-NS systems as well. We have
computed the I � � relation for mixed binaries (with mass
ratio up to 5), finding similar universal relations during the
entire inspiral.

In this work we have studied the I � � relation, to under-
stand the effects of the tidal interaction when the stars are at
short orbital distance. Spin effects have been neglected.
They have been considered by YY in the slow rotation,
low frequency limit. It would be interesting to establish
whether a simple EOS-independent, universal relation
exists, between the tidal Love number and the spin-induced
quadrupole moment Q in the fast rotation, high frequency
regime. This matter will be investigated in a following
work.

We conclude this discussion with some considerations
on the relation between the tidal Love number and the

NS compactness. YY showed that this relation is more
EOS-dependent than the I � ��Q relations. However,
they included in their study hot and young NSs, which
are unlikely to be members of a coalescing binary system.
If we consider only old and cold NSs, we find that the
C� � relation acquires a remarkable universality.1 By
computing �� in the low frequency limit, for the EOS
APR4, MS1, H4, and masses in the range ½1:2–2�M�, we
find that C is well described by the fit

C ¼ 3:71� 10�1 � 3:91� 10�2 ln ��

þ 1:056� 10�3ðln ��Þ2: (4)

This fit gives the compactness with a relative error & 2%.
The C� � relation can be extremely useful to extract

information on the NS EOS from a detected gravitational
wave signal emitted in a binary coalescence. If the tidal
Love number is extracted by Advanced LIGO/Virgo with an
error �ln� ¼ ��=�� 60% [7], we can determine the com-

pactness with an error �C �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
fit þ ð@C=@ ln�Þ2�2

ln�

q

&

10%C [where we have assumed �fit & max ðC� CfitÞ].
Amuchmore optimistic estimate of the error on the measure
of the tidal Love number, �ln� � 5% [18], would imply a
relative error on the compactness of the order of �2% (this
remarkable decrease of the relative error can be traced back
to the �R5 dependence of ��). Since the same detection
would allow for an accurate estimate of the NS mass, we
would then know the NS radius with an uncertainty of
�10% or smaller. It should be noted that current estimates
of NS radius based on astrophysical observations (see [21]
and references therein), with a claimed error of �10%, are
highly debated in the literature since theymay depend on the
way the NS surface emission is modeled [22]. A measure-
ment of the NS radius, based on gravitational wave obser-
vations and on the C� � relation, would have the same, or
better, accuracy and it would be model independent. Such a
measurement would be extremely useful to put constraints
on the NS EOS [23].

ACKNOWLEDGMENTS

We would like to thank M. Fortin for useful discussions.
V. C. acknowledges partial financial support provided
under the European Union’s FP7 ERC Starting Grant
‘‘The dynamics of black holes: testing the limits of
Einstein’s theory’’ Grant Agreement No. DyBHo–
256667. Research at Perimeter Institute is supported by
the Government of Canada through Industry Canada and
by the Province of Ontario through the Ministry of

10

20

30

 100  1000

Fit

10-4

10-2

10-1

 100  1000

FIG. 2 (color online). Top: fitting curve (3) (dashed line)
and numerical results of the �I� �� relation, for data set including
points up to fGW ¼ 875 Hz and the EOS APR4 (cross), MS1

(open circle), H4 (open square). Bottom: relative fractional errors
between fits and numerical results. Black squares and red circles
refer to the fit of Eq. (3), and to the analytical relation found by
YY, respectively.

1This is consistent with the results of Ref. [20], who studied
the Q� C relation using a set of EOS describing old, cold NSs,
finding hints of universality. If we combine the Q� C and the
Q� � relation discovered by YY, the universal behavior of the
C� � relation naturally emerges.

MASELLI et al. PHYSICAL REVIEW D 88, 023007 (2013)

023007-4



Economic Development and Innovation. A.M. is
supported by a ‘‘Virgo EGO Scientific Forum’’ (VESF)
grant. P. P. acknowledges financial support provided by the
European Community through the Intra-European Marie

Curie Contract No. aStronGR-2011-298297. This work
was supported by the NRHEP 295189 FP7-PEOPLE-
2011-IRSES grant, and by FCT-Portugal through projects
CERN/FP/123593/2011.

[1] VIRGO, http://www.virgo.infn.it.
[2] LIGO, http://www.ligo.caltech.edu.
[3] KAGRA, http://gwcenter.icrr.u-tokyo.ac.jp/en.
[4] ET, http://www.et-gw.eu/.
[5] A. G. Lyne et al., Science 303, 1153 (2004).
[6] K. Yagi and N. Yunes, arXiv:1302.4499.
[7] K. Yagi and N. Yunes, arXiv:1303.1528.
[8] T. Hinderer, Astrophys. J. 677, 1216 (2008).
[9] E. E. Flanagan and T. Hinderer, Phys. Rev. D 77, 021502

(2008).
[10] T. Damour and A. Nagar, Phys. Rev. D 80, 084035

(2009).
[11] T. Binnington and E. Poisson, Phys. Rev. D 80, 084018

(2009).
[12] T. Damour and A. Nagar, Phys. Rev. D 81, 084016

(2010).
[13] J. S. Read, B. D. Lackey, B. J. Owen, and J. L. Friedman,

Phys. Rev. D 79, 124032 (2009).

[14] J. Vines, E. E. Flanagan, and T. Hinderer, Phys. Rev. D 83,
084051 (2011).

[15] K. S. Thorne and A. Campolattaro, Astrophys. J. 149, 591
(1967).

[16] A. Maselli, L. Gualtieri, F. Pannarale, and V. Ferrari, Phys.
Rev. D 86, 044032 (2012).

[17] V. Ferrari, L. Gualtieri, and A. Maselli, Phys. Rev. D 85,
044045 (2012).

[18] T. Damour, A. Nagar, and L. Villain, Phys. Rev. D 85,
123007 (2012).

[19] J.M. Lattimer and B. F. Schutz, Astrophys. J. 629, 979
(2005).

[20] M. Urbanec, J. C. Miller, and Z. Stuchlik, arXiv:1301.5925.
[21] F. Ozel, Rep. Prog. Phys. 76, 016901 (2013).
[22] A.W. Steiner, J.M. Lattimer, and E. F. Brown, Astrophys.

J. 722, 33 (2010).
[23] J.M. Lattimer and M. Prakash, Astrophys. J. 550, 426

(2001).

EQUATION-OF-STATE-INDEPENDENT RELATIONS IN . . . PHYSICAL REVIEW D 88, 023007 (2013)

023007-5

http://www.virgo.infn.it
http://www.ligo.caltech.edu
http://gwcenter.icrr.u-tokyo.ac.jp/en
http://www.et-gw.eu/
http://dx.doi.org/10.1126/science.1094645
http://arXiv.org/abs/1302.4499
http://arXiv.org/abs/1303.1528
http://dx.doi.org/10.1086/533487
http://dx.doi.org/10.1103/PhysRevD.77.021502
http://dx.doi.org/10.1103/PhysRevD.77.021502
http://dx.doi.org/10.1103/PhysRevD.80.084035
http://dx.doi.org/10.1103/PhysRevD.80.084035
http://dx.doi.org/10.1103/PhysRevD.80.084018
http://dx.doi.org/10.1103/PhysRevD.80.084018
http://dx.doi.org/10.1103/PhysRevD.81.084016
http://dx.doi.org/10.1103/PhysRevD.81.084016
http://dx.doi.org/10.1103/PhysRevD.79.124032
http://dx.doi.org/10.1103/PhysRevD.83.084051
http://dx.doi.org/10.1103/PhysRevD.83.084051
http://dx.doi.org/10.1086/149288
http://dx.doi.org/10.1086/149288
http://dx.doi.org/10.1103/PhysRevD.86.044032
http://dx.doi.org/10.1103/PhysRevD.86.044032
http://dx.doi.org/10.1103/PhysRevD.85.044045
http://dx.doi.org/10.1103/PhysRevD.85.044045
http://dx.doi.org/10.1103/PhysRevD.85.123007
http://dx.doi.org/10.1103/PhysRevD.85.123007
http://dx.doi.org/10.1086/431543
http://dx.doi.org/10.1086/431543
http://arXiv.org/abs/1301.5925
http://dx.doi.org/10.1088/0034-4885/76/1/016901
http://dx.doi.org/10.1088/0004-637X/722/1/33
http://dx.doi.org/10.1088/0004-637X/722/1/33
http://dx.doi.org/10.1086/319702
http://dx.doi.org/10.1086/319702

