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By using the Gauss-Bonnet formula, the integral of the Gaussian curvature over a 2-surface enclosed by

a curve in the asymptotically flat region of a static spacetime was found to be a measure of a gravitational

analogue of the Aharonov-Bohm effect by Ford and Vilenkin in the linearized regime. Employing the

1þ 3 formulation of spacetime decomposition, we study the same effect in the context of the full Einstein

field equations for stationary spacetimes. Applying our approach to static tubelike and cylindrical

distributions of dust, not only do we recover their result but we also obtain an extra term which is

interpreted to be representing the classical version of the Colella-Overhauser-Werner effect (the Colella-

Overhauser-Werner experiment).
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I. INTRODUCTION

Aharonov and Bohm in their celebrated paper [1] have
shown that the interference pattern of an electrically
charged ensemble of particles traveling on a closed path
in a region where the electromagnetic fields are absent can
be affected by the electric and magnetic fields in the region
from which they are excluded. This result is usually inter-
preted as a manifestation of nonlocality of electromagne-
tism or as a direct physical effect attributed to the
electromagnetic four-potential. Looking for gravitational
analogues, physical effects analogous to the electromag-
netic Aharonov-Bohm have been considered by many
authors through different approaches and perspectives
[2–9]. Matter wave interferometry experiments have also
been proposed to measure this effect in the weak field limit
of a uniform gravitational field [10] and also more recently
in a gravitational potential produced by a pair of spherical
masses [11].

Basically, two different versions of the gravitational
Aharonov-Bohm effect are discussed in the literature
which could be attributed to the spacetime under consid-
eration being static or stationary.

In the first version, in closer analogy to the electromag-
netic case, the effect arises in stationary spacetimes which
possess a gravitomagnetic field, and so it should be called
the gravitomagnetic Aharonov-Bohm effect. In this case
taking advantage of the analogy between (weak) gravita-
tional fields and electromagnetism, it is shown, by solving
the Klein-Gordon equation, that the energy spectrum of a
scalar particle in the region where the gravitomagnetic
field vanishes depends on the gravitomagnetic flux in the
region from which it is excluded [12,13]. Other studies
following essentially the same approach but in different
contexts could be found in Refs. [14,15]. Also, loop space

variables in the gravitational field of a slowly rotating long
cylindrical shell as well as a static cosmic string are being
employed to investigate gravitational analogues of the
Aharonov-Bohm effect [16,17]. It is shown that when
one parallel transports a vector around a rotating source
it acquires a gravitationally induced phase shift which is
proportional to the angular momentum of the source as
a local quantity, and this happens despite the fact that
the Riemann tensor does not depend on the angular
momentum.
Closely related to the above version of the effect, Stachel

considers globally stationary but locally static spacetimes
and solves the eikonal equation in such backgrounds [6].
He shows that the eikonal function is proportional to the
period of a one-form which in the 1þ 3 (or threading)
formulation of spacetime decomposition is called the
threading vector. It can be shown that the period is nothing
but the gravitomagnetic flux defined in the same formula-
tion of spacetime decomposition. The important point
about Stachel’s approach is that the dependence of the
phase shift on the rotation of the source is a classical result
and could be obtained without an appeal to the weak field
approximation.
In the present paper, we turn our attention to the second

version of the effect investigated by Ford and Vilenkin [5].
Since the role of potentials and fields in the electromagne-
tism are played in general relativity by the metric and
Riemann curvature tensors, respectively, one can study
physical effects that originated from the regions of nonzero
curvature on particles moving in a region where curvature
vanishes. In other words, in this case there is no need for
the notion of a gravitomagnetic field for the effect to be
realized, and it could even arise in a static spacetime,
which is why it should be called the gravitoelectric
Aharonov-Bohm effect. For this purpose Ford and
Vilenkin consider a tubelike distribution of matter pro-
ducing a spacetime with two Killing vectors � ¼ �a@a
and � ¼ �a@a [18] (which are timelike and spacelike,
respectively) and asymptotically flat in the direction
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perpendicular to the tube. Then they make use of a form of
Gauss-Bonnet theorem stating that if a vector is parallel
transported along a closed curve C in a 2-surface S, it will
not go back to itself but undergo a rotation by an angle �
given by the following area integral:

� ¼
Z
S0

Kda; (1)

where K is the Gaussian curvature of the 2-surface and S0 is
the subsurface of S enclosed by the curve. Now by assuming
that the curve C lies in the asymptotically flat region, then
the particle moving on this curvatureless region still feels
the effect from the nonzero-curvature region, hence a
version of gravitational Aharonov-Bohm effect. To give an
explicit example, they have applied their formulation to
the case of a tubelike dust source using the weak field
approximation to calculate the Gaussian curvature in terms
of the components of the energy-momentum tensor of the
source.

In this paper, we employ the same approach but in the
context of the 1þ 3 decomposition of spacetimes which
leads to the quasi-Maxwell form of the Einstein field
equations and the so-called gravitoelectromagnetism.
This decomposition introduces a differentiable 3-manifold
with a metric element prescribing spatial distances in a
given stationary spacetime. This in turn allows one to
express the Gaussian curvature of a 2-surface in terms of
the components of the energy-momentum tensor of the
source and the gravitoelectric field of the underlying space-
time without using the weak field approximation. The
outline of the paper is as follows: First we introduce briefly
the 1þ 3 decomposition of a stationary spacetime in
Sec. II, and then, using the projection tensor defined on
that basis, in Sec. III we calculate an expression for the
Gaussian curvature in terms of the three-dimensional Ricci
scalar and Ricci tensor. In Sec. IV, we apply this expression
to different solutions including static dust solutions and
spacetime of a cosmic string. In the last section, the results
are summarized.

II. 1 þ 3 (THREADING) FORMULATION OF
SPACETIME DECOMPOSITION

Considering the light propagation in a stationary space-
time between two nearby spatial points x� and x� þ dx�,
the spacetime metric could be written in the following
general form [19]:

ds2 ¼ d�2syn � dl2 ¼ hðdx0 � A�dx
�Þ2 � ���dx

�dx�;

(2)

where h � g00, A� ¼ � g0�
g00

, and

��� ¼ �g�� þ g0�g0�
g00

is the spatial metric. In this so-called 1þ 3 formulation of

spacetime decomposition, d�syn ¼
ffiffiffi
h

p ðdx0 � A�dx
�Þ is

the infinitesimal interval of synchronized proper time,
and dl is the infinitesimal spatial distance between the
two events. The spacetime being stationary [gij �

gijðx0Þ] will allow one to define distance along a curve in

a finite region of the spacetime by the integral
R
dl. In a

more rigorous mathematical language, a stationary space-
time ðM; gabÞ is decomposed into spatial and temporal
sections by a congruence of timelike curves generated by
the timelike Killing vector field �a of the spacetime. This is
achieved through the introduction of the following projec-
tion tensor:

hab ¼ �gab þ uaub;

where ua is the normalized tangent vector to the timelike
curves

ua ¼ �a

j�j ; j�j ¼ ð�a�
aÞ1=2:

By using a coordinate system (denoted by the sign ¼: ) in
which �a ¼: ð1; 0; 0; 0Þ [and �a ¼: ðg00; g�0Þ], i.e., adapted
to the timelike Killing vector field, then

g00 ¼: j�j2 ¼ �0; A� ¼: ���

�0

; h00 ¼: 0;

and

��� ¼: h�� ¼: �g�� þ 1

�0

����;

so that the spacetime metric will take the following form:

ds2 ¼: �0

�
dx0 þ ��

�0

dx�
�
2 � h��dx

�dx�:

It should be noted that�3 is a differentiable 3-manifold but
not a hypersurface in M. Indeed, it is called the quotient

space M
G1

, where G1 is the one-dimensional group of

motions generated by the timelike Killing vector field of
the spacetime M [20].
Working in the general coordinate system of (2), in the

1þ 3 decomposition, gravitoelectric and gravitomagnetic
fields are defined in terms of the derivatives of the metric
components as follows [21]:

Eg ¼ �rh
2h

¼: �r ln j�j; Bg ¼ r�A:

In terms of the above fields, Einstein field equations for a
perfect fluid source could be rewritten in the following
quasi-Maxwell form [21]:

r�Eg ¼ 0; r �Bg ¼ 0; (3)

r � Eg ¼ 1=2hB2
g þ E2

g � 8�

�
pþ �

1� v2
� �� p

2

�
; (4)

r� ð ffiffiffi
h

p
BgÞ ¼ 2Eg � ð ffiffiffi

h
p

BgÞ � 16�

�
pþ �

1� v2
v

�
; (5)
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ð3ÞR	
 ¼ �E	;

g þ hðB	

g B

g � B2

g�
	
Þ þ E	

g E

g

þ 8�

�
pþ �

1� v2
v	v
 þ �� p

2
�	


�
: (6)

The following points need to be mentioned with respect to
the above equations:

(1) ð3ÞR	
 is the three-dimensional Ricci tensor of the
3-space �3 constructed from the three-dimensional
metric ��� in the same way that the usual four-

dimensional Ricci tensor Rab is made out of gab.
(2) In the above equations all the differential operations

are defined in the 3-space �3 with metric ���

[19,21].
(3) The 3-velocities v	 are defined with respect to the

synchronized proper time, i.e., v	 ¼ dx	

d�syn
.

Another feature in the above equations, which will be
employed later, is the simple fact that by Eq. (5) a non-
vacuum, static (Bg ¼: 0) solution produced by a perfect

fluid, in general, has to be in the comoving frame (v	 ¼: 0)
with respect to the dust particles. In other words, the same
frame in which the spacetime has no cross terms is also
comoving [22].

III. GAUSSIAN CURVATURE IN 1 þ 3
FORMALISM AND GRAVITATIONAL

AHARONOV-BOHM EFFECT

After introducing their formulation of the gravitational
Aharonov-Bohm effect, based on (1), Ford and Vilenkin
faced the problem of expressing Gaussian curvature in
terms of the four-dimensional Ricci tensor so as, through
Einstein field equations, to be able to calculate the phase
shift (1) in terms of local quantities such as mass and
angular momentum [5]. To do so, they have appealed to
the weak field limit to express K in terms of the energy
density of a dust source. In what follows, using the 1þ 3
formulation and quasi-Maxwell form of the Einstein field
equations and without employing the weak field limit, we
show that the Gaussian curvature can be expressed in terms
of the gravitoelectromagnetic fields of the source and
consequently in terms of the components of its energy-
momentum tensor. To follow Ford and Vilenkin we con-
sider a stationary spacetime corresponding to a tubelike
distribution of matter with two Killing vectors � ¼ �a@a
and � ¼ �a@a, which are timelike and spacelike, respec-
tively. Let S be a 2-surface in �3 orthogonal to the two
Killing vectors and C a closed curve in the 2-surface which
may or may not encircle the tube containing the source.
Now according to the relation (1) if a vector is parallel
transported around C, it will acquire a rotation angle � due
to the nonzero curvature region in the 2-surface S. To relate
the Gaussian curvature of the 2-surface to the gravitoelec-
tromagnetic fields of the underlying spacetime, we intro-
duce, using the spacelike Killing vector �, a projection
tensor from �3 to S as follows:

~h�� ¼ ��� � n�n�; �;� ¼ 1; 2; 3; (7)

where now n� ¼ ��

j�j is the unit vector normal to S.

By choosing a preferred coordinate system in which
� ¼: @z, i.e., �

� takes the following form:

�� ¼: ð0; 1; 0Þ; x1 ¼ r; x2 ¼ z; x3 ¼ �;

for 2-surface S with metric [23]

~gij ¼ �ij; i; j ¼ 1; 3; (8)

the Gaussian curvature K is given by

K ¼ 1

2
~gik~gjlð2ÞRijkl ¼

1

2
ð2ÞR; i; j; k; l ¼ 1; 3: (9)

The upper left indices indicate the dimension of the space
for which the geometric entity is computed, so in the above
equation the upper left index (2) shows that the Riemann
tensor is calculated for the 2-surface S.
Since � is a Killing vector of the �3 space and orthogo-

nal to the 2-surface S, one can show that the extrinsic
curvature of the 2-surface is zero, and hence by the

Gauss-Codazzi equation we have ð2ÞRkilj ¼ ð3ÞRkilj (i, j,

k, l ¼ 1, 3). This could be used in turn to calculate the two-
dimensional Ricci tensor as follows:

ð2ÞRij ¼ ~gklð2ÞRkilj ¼ ~h��ð3ÞR�i�j; i; j ¼ 1; 3;

where in the last equality by replacing for the projection
tensor (7) we end up with

ð2ÞRij ¼ ð3ÞRij �
����

j�j2
ð3ÞR�i�j; i; j ¼ 1; 3: (10)

Therefore the two-dimensional Ricci scalar of the
2-surface S with coordinates fx1; x3g and metric ~gij is
given by

ð2ÞR¼ ~gijð2ÞRij¼�ij

�
ð3ÞRij�

����

j�j2
ð3ÞR�i�j

�
; i;j¼1;3;

where use is made of the fact that ~gij ¼ �ij. Now applying

the relation ð3ÞR�� ¼ �	
ð3ÞR�	�
 to the above equation,

we obtain the following relation for the Gaussian curvature
of the 2-surface in terms of the three-dimensional Ricci
scalar and Ricci tensor of the 3-space �3:

ð2ÞR ¼ 2K ¼ ð3ÞR� 2
����

j�j2
ð3ÞR��: (11)

Up to now we have considered stationary tubelike space-
times which possess two Killing vectors, but it is obvious
that the above formulation could also be applied to cylin-
drically symmetric spacetimes which have an extra Killing
vector � ¼: @�. In the next two subsections, first we apply

the above relation to a static dust solution and then to
cylindrically symmetric spacetimes to study a gravitational
analogue of the Aharonov-Bohm effect.
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A. Static tubelike distribution of dust: Aharonov-Bohm
effect vs the Colella-Overhauser-Werner effect

As is clear from its derivation, relation (11) can be
applied to any tubelike stationary spacetime with a given
energy-momentum tensor, but to compare our results with
those of Ford and Vilenkin [5] first we apply it to a static
tubelike distribution of dust given by the following general
metric:

ds2 ¼ gttdt
2 � grrdr

2 � gzzdz
2 � g��d�

2; (12)

where all the metric components are functions of r and �.
For such a spacetime from contraction of Eq. (6) (with
Bg ¼ 0, p ¼ 0, and v ¼ 0), we arrive at

ð3ÞR ¼ �r � Eg þ E2
g þ 12�� ¼ 16��; (13)

where we have used (4) in the last step. For the second term
in the right-hand side of (11), we obtain

2
����

j�j2
ð3ÞR�� ¼ 8��� Eg � rlnj�j2; (14)

and after substituting Eqs. (13) and (14) in (11), the
Gaussian curvature for static dust yields

K ¼ 4��þEg � r ln j�j: (15)

The first term in (15) is the exact same term that was
obtained by Ford and Vilenkin [5] for a tubelike distribu-
tion of dust in the weak field regime, but the second term
which depends on the gravitoelectric field of the spacetime
and is generally nonzero is absent in their approach. Now
taking the spacetime (12) to be asymptotically flat (where
Eg ! 0 as r ! 1), by Eq. (1), a particle parallel trans-

ported along a closed path C in this zero-curvature region
will nevertheless be affected by the nonzero curvature in
the interior region.

Since the second term is proportional to the gravito-
electric field, when integrated over a closed path, it re-
minds one of the Colella-Overhauser-Werner (COW)
experiment and effect [24]. This term, arising from a
purely geometrical consideration, shows that the gravita-
tionally induced phase shift has a classical origin [25].
The presence of this term shows that even when the closed
path of a particle does not encircle the source, there still
will be an effect in the interference pattern resulting from
the presence of the gravitoelectric field. To investigate in
more detail the effect of this extra term, in the next sub-
section we consider cylindrically symmetric dust space-
times and sources and their matching to exterior (vacuum)
solutions.

B. Static cylindrically symmetric counterrotating dust

Consider matching of a cylindrically symmetric static
dust solution, at a given radius R, to an exterior (vacuum)
asymptotically flat static solution, both of the general type
(12) but now all metric components are functions only of r.

As an explicit example, one can think of the interior
solution introduced by Teixeira and Som [27], representing
counterrotating dust particles with net zero angular mo-
mentum and the following energy-momentum tensor [28]:

Ta
b ¼ 1

2
�ðuaub þ vav

bÞ; (16)

where ua ¼: ðu0; 0; 0; !Þ and va ¼: ðu0; 0; 0;�!Þ are the
four velocities of the counterrotating particles with uaua ¼
vava ¼ 1. This interior spacetime is matched to the well-
known exterior Levi-Civita metric [29]

ds2 ¼ r4dt2 � r�4½r82ðdr2 þ B2dz2Þ þ C2r2d�2�;
(17)

in which B and C are scaling parameters and , for small
values, could be interpreted as the effective gravitational
mass per unit proper length [30]. Now two cases could be
considered:
(I) The closed path of the parallel transported particle

encircles the nonvacuum cylindrical region (Fig. 1)
so that the rotation angle (1) is given by

� ¼
Z
S0¼Sext

0
[Sint

0

Kda

¼
Z
Sext0

ðKdaÞext þ
Z
Sint0

ðKdaÞint; (18)

where the upper indices show the region of space-
time in which the quantities are calculated.
Repeating the calculation leading to (15), now with
the energy-momentum tensor of the perfect fluid
given by (16), we end up with

FIG. 1. Closed path C of a particle encircling the nonvacuum
cylindrical region at the asymptotically flat region.
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Kint ¼ 4��

1� v2
þ ðEg � rlnj�jÞint (19)

for the Gaussian curvature of the interior region,
where v2 is the squared norm of the three-velocity
of the dust particles defined by v	 ¼ dx	

d� (� being the

proper time in the corresponding static spacetime).
Indeed, using the relation between the components
of this three-velocity and the corresponding four-
velocity u	 ¼ dxa

ds [19], one can obtain the following

relation:

v2 ¼ g��!
2

g��!
2 � 1

: (20)

Equation (19) is an interesting result showing that
not only the density of the particles but also the norm
of their velocity, both as local quantities, have global
effects. The presence of v2 is a manifestation of the
fact that the kinetic energy of the particles gravitates
even though their net angular momentum is zero.
Obviously, for the exterior (vacuum) static solution
(� ¼ 0), we end up with the following relation for
the Gaussian curvature:

Kext ¼ ðEg � r ln j�jÞext: (21)

The overall result in the arrangement of Fig. 1, as in
the case of a simple static dust solution, for a path C
in the asymptotically (locally) flat region, is a
rotation angle (18) which is a manifestation of a
gravitational Aharonov-Bohm effect.

(II) In this case the closed path of the parallel trans-
ported particle does not encircle the nonvacuum
cylindrical region (Fig. 2), so that the rotation angle
(1) is given by

� ¼
Z
Sext0

ðKdaÞext ¼
Z
ðEg � r ln j�jdaÞext; (22)

which is obviously of the COW-type effect leading
to a gravitationally induced phase shift on the trans-
ported particle. In other words, the Gaussian curva-
ture having a nonzero contribution from the second
term in (15) represents the COW-type effect for a
cylindrical gravitational field represented by the
exterior metric (17). Indeed, in this approach, both
the gravitational Aharonov-Bohm effect and the
COWeffect for cylindrically symmetric spacetimes,
were treated as different phase shifts under the same
formulation.

C. Deficit angle of a cosmic string

As another somewhat trivial example of the application
of the formalism introduced in Sec. III, we turn our atten-
tion to the spacetime of a cosmic string that seems to be
naturally adapted to the investigations on the gravitational
Aharonov-Bohm effect. The spacetime metric of a cosmic

string is given by setting  ¼ 1
2 in (17) (with the rescaling

parameter B removed) [31]:

ds2 ¼ dt2 � dr2 � dz2 � C2r2d�2: (23)

The corresponding energy-momentum tensor is given
by [32]

Tt
t ¼ Tz

z ¼ 	
�ðrÞffiffiffi

~g
p ; T�

� ¼ T�
� ¼ 0; (24)

where	 is the linear mass density and ~g is the determinant
of the metric on the t ¼ const and z ¼ const 2-surface S0.
To compute the Gaussian curvature, we rewrite the last of
the quasi-Maxwell equations, Eq. (6), for the above space-
time metric and energy-momentum tensor as follows (with
Eg ¼ Bg ¼ 0):

ð3ÞR	
 ¼ 8�

�
T	
 � 1

2
g	
T

�
: (25)

Contraction with �	
 gives the three-dimensional Ricci

scalar as follows:

ð3ÞR ¼ 16�

�
	
�ðrÞffiffiffi

~g
p

�
: (26)

On the other hand, it is an easy task to see that in the
adapted coordinate system [in which �	 ¼: ð0; 1; 0Þ] the
second term in the right-hand side of relation (11) vanishes,
so that the Gaussian curvature in this case is given by

K ¼ 1

2
ð3ÞR ¼ 8�

�
	
�ðrÞffiffiffi

~g
p

�
: (27)

FIG. 2. Closed path C0 of a particle which does not encircle the
nonvacuum cylindrical region.
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After performing the area integral of K over 2-surface S0,
we have the rotation angle � ¼ 8�	. Now employing the
Gauss-Bonnet theorem

Z
S
Kda ¼ 2��ðSÞ �

Z
@S
kgdl (28)

to the above case, we can find the deficit angle 2��
corresponding to a cosmic string. To do so, we take
�ðSÞ ¼ 1 and kg ¼ 1

r for the Euler characteristic and geo-

desic curvature of the corresponding 2-surface S0 and its
encircling path @S0, respectively, i.e.,

Z
S0

8�	�ðrÞd2r ¼ 2��
Z
@S0

1

r
Crd�; (29)

leading to the scaling factor C � 1� � ¼ 1� 4	 of a
cosmic string in terms of its linear mass density.

IV. CONCLUSION

With the help of a projection tensor defined in the
context of 1þ 3 formulation of spacetime decomposition,
we introduced an expression for the Gaussian curvature of
a 2-surface in terms of the Ricci scalar and Ricci tensor of
the corresponding 3-space�3. On the other hand, using the
quasi-Maxwell form of the Einstein field equations we
have related the components of the energy-momentum
tensor of a source and the gravitoelectromagnetic fields
of the underlying spacetime to the three-dimensional Ricci
tensor of �3. This enabled us to relate the Gaussian
curvature of a 2-surface in �3 to local quantities such as
the energy density of the source and velocity norm of its
constituent particles. The expression is then applied to the
case of a tubelike perfect fluid source to investigate a
version of the gravitational Aharonov-Bohm effect
introduced by Ford and Vilenkin. While they have applied
their formalism to a static dust solution in the weak field
limit, here we have shown that our formulation allows
one to apply it to stationary spacetimes and without appeal
to the weak field limit. In doing so, not only have we
recovered, for a static dust solution, the same result as
that of Ford and Vilenkin, but we also obtained, interest-
ingly enough, another phase shift related to the presence

of the gravitoelectric field of the underlying spacetime.

Since the particles traversing the closed path in the back-

ground spacetime are treated classically (i.e., without any

reference to their quantum mechanical characteristics re-

flected in the quantum mechanical equation they might

satisfy), this phase shift could be interpreted as the classi-

cal version of the well-known COW (experiment) effect.

The presence of this kind of phase shift was discussed

explicitly in the context of a static cylindrically symmetric

vacuum solution matched to an interior static dust solution.

Indeed, applying our formulation to the case of a dust

solution produced by counterrotating particles, we have

arrived at a Gaussian curvature which is given in terms

of the energy density of the source as well as the norm of

the particle velocities, despite the fact that their net angular

momentum is zero. As another trivial example of the

application of our formalism, also showing its consistency,

the deficit angle of a cosmic string was obtained by using

the Gauss-Bonnet theorem. On the experimental side, it

should be noted that the two experimental proposals to

measure versions of this effect [10,11] both use quantum

mechanical particles (atoms) to gain a gravitationally in-

duced phase as a function of the underlying gravitational

potential. In our case, particles traversing the closed paths

are classical but possess a vector-valued characteristic, and

the induced phase shift � on that vector, given by (1), is a

purely geometrical entity. So, in principle, to have any

experimental realization of the above version of the effect,

one needs a static cylindrically symmetric gravitational

field and a classical particle possessing a vector quantity

(for example, a spinning top) traversing a closed path either

around the source or outside it, which is obviously not an

easy task to do, unless one could come up with an indirect

experiment somewhat similar to that in Ref. [11], but with

cylindrical masses instead of spheres.
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