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We study quantum critical behavior in three dimensional lattice Gross-Neveu models containing two

four-component massless Dirac fermions. We focus on two models with SUð2Þ flavor symmetry and either

a Z2 or a Uð1Þ chiral symmetry. Both models could not be studied earlier due to sign problems. We use

the fermion bag approach which is free of sign problems and compute critical exponents at the

phase transitions. We estimate � ¼ 0:83ð1Þ, � ¼ 0:62ð1Þ, �c ¼ 0:38ð1Þ in the Z2 and � ¼ 0:849ð8Þ,
� ¼ 0:633ð8Þ, �c ¼ 0:373ð3Þ in the Uð1Þ model.
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Quantum phase transitions between massless and mas-
sive fermion phases, are of general interest in particle
physics [1,2]. Symmetries are expected to play an important
role in governing their properties since such phase transi-
tions are associated with spontaneous breaking of these
symmetries. In 2þ 1 dimensions, one expects a rich class
of such second order quantum phase transitions and the
physics of graphene has recently attracted even condensed
matter physicists to the subject [3–9]. Renormalization-
group arguments suggest that nonrelativistic effects and
long range interactions could be irrelevant [10], and the
transition could belong to the universality class of similar
phase transitions in three dimensional relativistic four-
fermion field theories with two massless Dirac fermions
[11–13]. While some Monte Carlo calculations of the
critical exponents in models of graphene have emerged
recently, the results are neither consistent with each other
nor do they match theoretical predictions [14–16]. Thus,
further work is clearly necessary.

When the number of massless fermions at the phase
transition is small, there are no small parameters for a
perturbative expansion to be reliable. Hence, Monte Carlo
methods are essential to determine the properties of the
quantum phase transitions. However, these methods are
known to be notoriously difficult in the presence of fermi-
ons. In certain cases sign problems makes it even impos-
sible to solve the problem. Compared to the precision with
which three dimensional Ising and XY models have been
studied [17,18], critical exponents in models with similar
symmetry breaking patterns but in the presence of a small
number of massless fermions at the critical point have
remained largely unknown. This work presents the first
precision study of two such quantum phase transitions in
the presence of two four-component massless Dirac fermi-
ons in 2þ 1 dimensions. Hence, our study should be of
interest to the graphene community.

Relativistic four-fermion models have a long history
and are usually studied in the presence of either scalar

interactions (Gross-Neveu models) or vector interactions
(Thirring models) [19–24]. Their lattice formulations using
staggered fermions are popular, but due to fermion dou-
bling one flavor of staggered fermions in three dimensions
produces two flavors (Nf ¼ 2) of Dirac fermions [25,26].

Symmetries of the microscopic models play an important
role in determining the universality class of phase transi-
tions. Gross-Neveu models with a variety of symmetries
have been studied using large Nf expansions [27,28], �

expansions [29], renormalization-group (RG) flow meth-
ods [30–32], and lattice Monte Carlo calculations [33–35].
Although much has been understood, we discuss two puz-
zles in the existing literature and resolve them in this work.
The first puzzle is that the critical exponents in the

continuum Gross-Neveu model with a Uð4Þ � Z2 symme-
try computed with the RG-flow method [31] match those
calculated with lattice Monte Carlo methods in a model
with an SUð2Þ � Z2 symmetry [33]. Both models contain
two flavors of Dirac fermions and calculations give
� � 1:0 and � � 0:75. Why do models with two different
symmetries lead to the same critical behavior? Are sym-
metries dynamically enhanced in the lattice model at the
critical point? On the other hand, is it possible that the
results of Ref. [33] are incorrect since sign problems were
ignored [36,37]? In this work we show that another lattice
model with the same symmetries give different critical
exponents, suggesting that the results of Ref. [33] may
not be reliable.
The second puzzle concerns a comparison between cal-

culations of critical exponents in the continuum Thirring
model with Uð4Þ symmetry computed recently using
the RG-flow method [38], and those in a lattice Thirring
model with an SUð2Þ �Uð1Þ symmetry obtained with
Monte Carlo calculations that do not suffer from sign
problems [39–41]. While both models contain two flavors
of Dirac fermions, in the continuum one finds � � 2:4
and � � 1:4 while in the lattice one finds � � 0:85 and
� � 0:65. Although this disagreement can be attributed to
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the difference in the symmetries, it does raise the question
if lattice calculations have uncovered a new universality
class in Thirring models. Here we show that lattice
Gross-Neveu models defined in [25] and lattice Thirring
models defined in [39] have the same symmetries and
critical exponents.

While Thirring models could be studied reliably with
traditional methods due to lack of sign problems, until now
lattice Gross-Neveu models with one flavor of staggered
fermions could not be solved due to sign problems [36,37].
In fact it was believed that the two models may belong to
two different universality classes. Recently an alternative
method to solve fermion sign problems called the fermion
bag approach was introduced [42,43]. The basic idea
behind this new method is to collect fermion degrees of
freedom into groups called fermion bags so that integrating
over each group produces positive answers. Although it is
not guaranteed that all fermion sign problems are solvable
with this approach, it has been shown that sign problems in
the lattice Gross-Neveu models with staggered fermions
are solvable [36]. In this work we use this new method to
compute critical exponents in two types of lattice Gross-
Neveu models with staggered fermions invariant under
either a Z2 or a Uð1Þ chiral symmetry. The models also
have an additional SUð2Þ flavor symmetry which was
appreciated only recently. Since they naturally describe
two flavors of four-component Dirac fermions in the criti-
cal region, these models have many properties similar to
graphene including symmetries. They were formulated
originally with auxiliary fields that live at the center of
cubes and couple to fermions on the corners [25]. After
integrating over the auxiliary fields we obtain four-fermion
models that couple fermion fields within a hypercube.
Their action can be written as

S ¼ X

x;y

��xDxy�y �
X

hxyi
Uhxyi ��x�x ��y�y; (1)

where ��ðxÞ, �ðxÞ denote two Grassmann valued fermion
fields at the lattice site x and D is the free massless
staggered fermion matrix defined by

Dxy ¼ 1

2

X

�

�x;�½�xþ�;y � �x;yþ��; (2)

in which � labels the three directions and �x;� ¼ eði��a�xÞ,
�1 ¼ ð0; 0; 0Þ, �2 ¼ ð1; 0; 0Þ, �3 ¼ ð1; 1; 0Þ are the stag-
gered fermion phase factors [44]. The four-fermion inter-
action term involves the sum over three types of bonds
denoted by hxyi (see Fig. 1): (1) link bonds L (where x, y
are nearest neighbor sites), (2) face bonds F (where x, y are
sites diagonally across faces of squares), (3) body bonds B
(where x, y are sites diagonally across the bodies of cubes).

In a general lattice four-fermion model the three cou-
plings UL, UF and UB will be arbitrary. However, in our
study they are constrained since the action (1) is obtained
by integrating over auxiliary fields from a model that

contains a single coupling. In the Gross-Neveu model
with Z2 chiral symmetry, we find UL¼2UF¼4UB�U,
while with Uð1Þ chiral symmetry we find UL ¼ 4UB �
U, UF ¼ 0 [36]. In other words, face diagonal bonds break
the Uð1Þ symmetry to Z2. In addition to chiral symmetries,
models with action (1) have an SUð2Þ flavor symmetry
which is hidden in the auxiliary field approach and was not
appreciated earlier [45]. Indeed, when UF ¼ 0 it is easy to
verify that the action (1) is invariant under the following
SUð2Þ �Uð1Þ symmetry:

�e

�� e

 !
! ei	V

�e

�� e

 !
;

��o �o

� � ! ��o �o

� �
Vye�i	;

(3)

where the subscripts e and o refer to even and odd sites and
V is an SUð2Þ matrix. When UF � 0 the symmetry is
restricted to 	 ¼ �=2 and the action is invariant only under
an SUð2Þ � Z2 symmetry. Since four-fermion couplings
are perturbatively irrelevant in three dimensions, models
with action (1) have a massless fermion phase at small
couplings U. As the coupling increases, a second order
phase transition to a massive fermion phase accompanied
by spontaneous breaking of chiral symmetries [either Z2 or
Uð1Þ] occurs at a critical coupling Uc. The SUð2Þ flavor
symmetry remains unbroken. Our goal is to study the
critical exponents at this transition. However, before focus-
ing on the transition region, it is useful to understand
qualitatively the physics of the massive phase at large U.
There is an important difference between spontaneous

breaking of Z2 and Uð1Þ symmetries; the former does not
produce massless Goldstone bosons while the latter does. It
is important to distinguish this feature in our results. For
this purpose we have computed the chiral condensate
susceptibility,

� ¼ 1

L3

X

x;y

h ��x�x ��y�yi; (4)

as a function of the lattice size L at U ¼ 1. At infinite
coupling our models can be mapped into a statistical model
of closed packed dimers and can be updated efficiently
using worm algorithms [46]. Results obtained are shown in
Fig. 2. As expected, the chiral condensate susceptibility
scales with the volume showing that h ���i � 0 in the
thermodynamic limit. Note that ��� is invariant under

X Y

X X

Y
Y

FIG. 1 (color online). A pictorial representation of the bond
couplings UL (left), UF (center) and UB (right) discussed in the
text. Each bond refers to the four-fermion interaction term of the
form ��x�x ��y�y.
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SUð2Þ flavor symmetry, but not under Uð1Þ or Z2 chiral
symmetries, a nonzero value indicates the spontaneous
breaking of chiral symmetries. Further, finite size effects
are enhanced in the Uð1Þ invariant model due to the

presence of massless Goldstone bosons. Results for
L � 10 fit well to the leading order chiral perturbation
theory form [47]

�=L3 ¼ �2

2
ð1þ 0:224=ð
sLÞÞ; (5)

with �2 ¼ 0:844ð1Þ, 
s ¼ 0:381ð3Þ and �2=d:o:f ¼ 0:4.
In contrast, the Z2 model shows very small finite size
effects which indicates the absence of massless modes,
and the data for L � 16 fits the constant 0:971ð1Þ with a
�2=d:o:f ¼ 1:7.
In order to uncover the properties of the quantum critical

point we focus on the chiral susceptibility (4) and the
fermion correlation function ratio

Rf ¼ CFðL=2� 1Þ=CFð1Þ; (6a)

CFðdÞ ¼ 1

3

X3

�¼1

h�x ��xþd~�i; (6b)

where x is the origin or any translation of it by a multiple of
two lattice spacings in each direction, and �̂ is a unit vector
along each of the three directions. Since fermions are
exactly massless, in the vicinity of Uc we expect � and
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FIG. 2 (color online). Plot of the chiral susceptibility at
U ¼ 1 for the Z2 (top) and Uð1Þ (bottom) models. The solid
curve in the top graph is a fit to the constant for L � 16, while in
the bottom graph it is a fit to the finite size scaling form (5) for
L � 10 obtained from chiral perturbation theory.
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FIG. 3 (color online). Plots of �=L2�� and RfL
2þ�c as a function of U for L from 12 to 36. The solid lines show the combined fit

which gives Uc ¼ 0:0893ð1Þ, � ¼ 0:83ð1Þ, � ¼ 0:62ð1Þ and �c ¼ 0:38ð1Þ in the Z2 case (top row) and Uc ¼ 0:1558ð4Þ, v ¼ 0:82ð2Þ,
� ¼ 0:63ð2Þ, �c ¼ 0:37ð1Þ in the Uð1Þ case (bottom row).
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Rf to satisfy the following universal finite size scaling

relations:

�=L2�� ¼ X4

k¼0

fk½ðU�UcÞL1
��k; (7a)

RfL
2þ�c ¼ X4

k¼0

pk½ðU�UcÞL1
��k; (7b)

where we have kept the first five terms in the Taylor series
of the corresponding analytic functions. In order to com-
pute the critical exponents �, � and �c we perform a

single combined fit of the data in the critical region to
Eq. (7) with fourteen parameters. For the Z2 invariant
model the combined fit of the data using lattice sizes
ranging from 123 to 363 gives � ¼ 0:83ð1Þ, � ¼ 0:62ð1Þ,
�c ¼ 0:38ð1Þ and Uc ¼ 0:0893ð1Þ with a �2=d:o:f: ¼ 1:8.

For the Uð1Þ Gross-Neveu model, a similar combined fit
in the same range of lattice sizes gives � ¼ 0:82ð2Þ,
� ¼ 0:62ð2Þ, �c ¼ 0:37ð1Þ, Uc ¼ 0:1560ð4Þ with a

�2=d:o:f: ¼ 0:88. Plots of our data along with the fits are
shown in Fig. 3. The complete list of the fourteen fit
parameters are listed in Table I. From these results it
appears that the critical exponents do not change much
when chiral symmetries change from Z2 to Uð1Þ; the
differences are small and lie within error bars.

The critical exponents in the SUð2Þ �Uð1Þ symmetric
lattice Gross-Neveu model obtained here are also consis-
tent with the exponents in the lattice Thirring model, which
also has an action of the form (1) except that UL ¼ U,
UF ¼ UB ¼ 0 [41]. This is reassuring since the two mod-
els have the same lattice symmetries. Thus, calling one as
the lattice Gross-Neveu model and the other as the lattice
Thirring model is just a matter of taste. We can also study
other SUð2Þ �Uð1Þ invariant models by choosing a differ-
ent set of couplings. Recently, the model with UL ¼ UB ¼
U,UF ¼ 0was also studied and the critical exponents were
again found to be similar [48]. Thus, it is tempting to
combine all data from the three different studies and per-
form a single combined fit to extract a more accurate set of
critical exponents. Using such a fit we estimate the critical
exponents in the SUð2Þ �Uð1Þ symmetric lattice models
to be � ¼ 0:849ð8Þ, � ¼ 0:633ð8Þ and �c ¼ 0:373ð3Þ.

Interestingly, the model studied in Ref. [33] is also an
SUð2Þ � Z2 symmetric Gross-Neveu model. It is slightly
different from the model studied here since the auxiliary
fields in the definingmodel live on sites instead of centers of
hypercubes. Integration over the auxiliary fields, which
couple fermions on the six neighboring sites, produces
four-fermion couplings of the form given in the action (1)
withUL ¼ UB ¼ 0,UF ¼ U. However, in addition there is
a nonzero next-to-nearest-neighbor four-fermion coupling
along each direction, which is not present in our work.
Since no lattice symmetries change, it seems very unlikely
that these differences change the universality class of the
phase transition. Hence, we believe the critical exponents of
the model studied in Ref. [33] should have been identical to
our studies here. Unfortunately, this is not the case and we
think that ignoring the sign problem in the auxiliary field
approach could have distorted the results. It would be useful
to repeat the calculation with the fermion bag approach.
In this work we have been able to accurately compute the

critical exponents at phase transitions in a class of
SUð2Þ � Z2 and SUð2Þ �Uð1Þ symmetric four-fermion
models involving two massless Dirac fermions in three
dimensions. The critical exponents of the two models
match within errors and a more accurate calculation is
necessary to distinguish between them. Since the symme-
tries are different, we do not see any reason for the two
exponents to be the same, however we are unable to rule out
this possibility at the moment. As far as we can tell these
critical exponents have not been verified in continuum field
theory by the recently developed RG-flow method.
However, we note that the � expansion to second order in
a Gross-Neveu model does agree with our results for the
exponents � and�, but not for�c [29]. Finally, givenmany

similarities between graphene and staggered fermions, it
would be interesting if the critical behavior in graphene
falls in one of the universality classes studied here.
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in part by the Department of Energy Grants No. DE-FG02-
05ER41368 and No. DE-FG02-00ER41132.

TABLE I. Results of the combined fit of data in the critical region to Eq. (7) in the Z2 invariant model (top row) and Uð1Þ invariant
model (bottom row).

Uc � � �c f0 f1 f2 f3 f4 p0 p1 p2 p3 p4 �2=d:o:f

0.0893(1) 0.83(1) 0.62(1) 0.38(1) 2.54(7) 9.33(5) 27.3(3) 55.3(1) 48.67(3) 34.4(1) �18:2ð7Þ �51:2ð6Þ 7.4(4) 259.2(10) 1.8

0.1560(4) 0.82(2) 0.62(2) 0.37(1) 0.13(1) 0.09(1) 0.02(1) 0.004(1) 0.02(1) 34.0(1) �4:5ð3Þ �1:4ð3Þ �1:8ð8Þ �0:5ð2Þ 0.88
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