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The monodromy transform and corresponding integral equation method described here give rise to a

general systematic approach for solving integrable reductions of field equations for gravity coupled

bosonic dynamics in string gravity and supergravity as well as for pure vacuum gravity in four and higher

dimensions. For physically different types of fields in space-times of D � 4 dimensions with d ¼ D� 2

commuting isometries—stationary fields with spatial symmetries, interacting waves or evolution of

partially inhomogeneous cosmological models—the string gravity equations govern the dynamics of

interacting gravitational, dilaton, antisymmetric tensor, and any number n � 0 of Abelian vector gauge

fields (all depending only on two coordinates). The equivalent spectral problem constructed earlier allows

one to parametrize the entire infinite-dimensional space of (normalized) local solutions of these equations

by two pairs of arbitrary coordinate-independent holomorphic d� d- and d� n- matrix functions

fu�ðwÞ; v�ðwÞg of a spectral parameter w which constitute a complete set of monodromy data for a

normalized fundamental solution of this spectral problem. The ‘‘direct’’ and ‘‘inverse’’ problems of such

monodromy transform—calculating the monodromy data for any local solution and constructing the field

configurations for any chosen monodromy data—always admit unique solutions. We construct the linear

singular integral equations which solve this inverse problem. For any rational and analytically matched

[i.e. uþðwÞ � u�ðwÞ and vþðwÞ � v�ðwÞ] monodromy data the solution of these integral equations and

corresponding solution for string gravity equations can be found explicitly. Simple reductions of the space

of monodromy data leads to the similar constructions for solving of other integrable symmetry reduced

gravity models, e.g. 5D minimal supergravity or vacuum gravity in D � 4 dimensions.
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I. INTRODUCTION

Motivated by various physical reasons, numerous
modern studies of strong gravitational fields in different
gravity models—pure gravity as well as the bosonic
sectors of string gravity and supergravity in four and
higher dimensions—brought us many interesting discov-
eries concerning the existence and properties of a large
variety of higher-dimensional space-time structures—
black holes, black rings, black lens, etc. (see, for example,
[1]), the existence of which distinguishes these models in
higher dimensions from those in 4D space-times. It can be
expected that the same may concern also different types of
fields, e.g. interacting waves and cosmological solutions.
In all cases, an explicit construction of appropriate solu-
tions can play an even more crucial role than it was in
four dimensions, where our physical intuition is better
adapted.

The construction of solutions for different gravity mod-
els needs a generalization of methods developed earlier for
the 4D case to make these available for solving field
equations in higher dimensions and to include various
nongravitational fields. For these purposes, in particular,
it is very important to find the cases in which the symmetry
reduced dynamical equations occur to be completely

integrable. Such integrable reductions may arise if space-
times ofD dimensions admitD� 2 commuting isometries
and therefore, all field components and potentials depend
only on two space-time coordinates. Now we have a large
experience in development and application of various
solution generating methods for Einstein’s field equations
in 4D space-times with two commuting isometries (see,
e.g., the survey [2] and the references therein). In the 4D
case, the developed methods allow, in particular, one to
construct explicitly the hierarchies of solutions with an
arbitrary large number of free parameters. These are the
N-soliton solutions generated on (or, in other words,
interacting with) arbitrarily chosen backgrounds such as
Belinski and Zakharov vacuum solitons [3] and Einstein-
Maxwell solitons [4], as well as some classes of nonsoliton
solutions [5–7]. Besides that, for these equations one can
solve the (effectively, two-dimensional) boundary value
problems for stationary fields (see [8] and the references
there) and characteristic initial value problems [9–11].
However, a generalization of these methods for higher
dimensional gravity models is not trivial and it may need
to overcome some specific difficulties.
In the last two decades, many authors used the Belinski

and Zakharov soliton generating transformations for
constructing stationary axisymmetric solutions for pure
vacuum 5D gravity. This ‘‘dressing’’ method for generat-
ing solitons on arbitrary (vacuum) backgrounds can be*G.A.Alekseev@mi.ras.ru
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generalized directly from 4D to higher dimensions without
any essential changes of the procedure. Some attempts
were made also to apply the Belinski and Zakharov con-
struction of the spectral problem to other gravity models in
4D and to the bosonic sector of 5D minimal supergravity.
However, the constructed spectral problems had not been
equivalent to the dynamical equations. As a result, gener-
ating soliton solutions in general do not satisfy all neces-
sary conditions (see the discussion in [12]).

The spectral problem of another kind constructed in [13]
is equivalent to the dynamical equations of the bosonic
sector of heterotic string theory in D dimensions with
d ¼ D� 2 commuting isometries. Certain constraints
for the potentials reduce this system to the dynamical
equations and equivalent spectral problem for the bosonic
sector of 5D minimal supergravity.

The spectral problem [13] possesses the monodromy
preserving properties, which allow one to generalize for
this case the monodromy transform approach suggested in
[14] for symmetry reduced vacuum Einstein equations,
electrovacuum Einstein-Maxwell and Einstein-Maxwell-
Weyl equations in general relativity (see also [15,16]).

In this paper we present some sketch of the monodromy
transform for heterotic string gravity model in D dimen-
sions and 5D minimal supergravity which includes the
following:

(i) the solution of a ‘‘direct’’ problem—a parametriza-
tion of the whole space of local solutions of symme-
try reduced bosonic equations for heterotic string
gravity by two pairs of coordinate-independent
matrix valued holomorphic functions of spectral
parameter fud�d� ðwÞ; vd�n� ðwÞg which arise as the
monodromy data of the normalized fundamental
solution of the associated spectral problem;

(ii) the solution of the ‘‘inverse’’ problem—a construc-
tion of the local solutions for any given monodromy
data. For this we construct a system of linear sin-
gular integral equations the solution of which allows
us to calculate all field components in quadratures;

(iii) description of a special class of analytically
matched monodromy data determined by the con-
ditions uþðwÞ¼u�ðwÞ�uðwÞ, vþðwÞ¼v�ðwÞ�
vðwÞ. For any rational uðwÞ and vðwÞ the corre-
sponding solutions can be found explicitly.

The monodromy data defined above play the role of

‘‘coordinates’’ in the infinite-dimensional space of local

solutions of symmetry reduced dynamical equations.

Solving the inverse problem of our monodromy transform

for arbitrary rational analytically matched monodromy

data, we can construct explicitly infinite hierarchies of

solutions which include many physically interesting

known solutions and which give us their multiparametric

generalizations. For constructing solutions with more gen-

eral monodromy data describing, e.g., colliding waves or

cosmological models which are singular at � ¼ 0 see [7].

II. MASSLESS BOSONIC DYNAMICS
IN STRING GRAVITY

The massless bosonic part of string effective action in
space-times with D � 4 dimensions in string frame is

S ¼
Z

e��̂

�
R̂ðDÞ þ rM�̂rM�̂� 1

12
HMNPH

MNP

� 1

2

Xn
p¼1

FMN
ðpÞFMNðpÞ

� ffiffiffiffiffiffiffiffi
�Ĝ

p
dDx; (1)

where M;N; . . . ¼ 1; 2; . . . ; D and p ¼ 1; . . . n; ĜMN pos-

sesses the ‘‘most positive’’ Lorentz signature. Metric ĜMN

and dilaton field �̂ are related to the metric GMN and
dilaton � in the Einstein frame as

ĜMN ¼ e2�GMN; �̂ ¼ ðD� 2Þ�: (2)

The components of a three-form H and two-forms FðpÞ are
determined in terms of antisymmetric tensor field BMN and

Abelian gauge field vector potentials AM
ðpÞ:

HMNP ¼ 3

�
@½MBNP� �

Xn
p¼1

A½M
ðpÞFNP�

ðpÞ
�
;

FMN
ðpÞ ¼ 2@½MAN�

ðpÞ; BMN ¼ �BNM:

III. SPACE-TIME SYMMETRYANSATZ

We consider the space-times with D � 4 dimensions
which admit d ¼ D� 2 commuting Killing vector fields.
All field components and potentials are assumed to be
functions of only two coordinates x1 and x2, one of which
can be timelike or both are spacelike coordinates. We
assume also the following structure of metric components:

GMN ¼ g�� 0

0 Gab

 !
;

�; �; . . . ¼ 1; 2;

a; b; . . . ¼ 3; 4; . . .D;
(3)

while the components of field potentials take the forms

BMN ¼ 0 0

0 Bab

 !
; AM

ðpÞ ¼ 0

Aa
ðpÞ

 !
: (4)

We choose x1, x2 so that g�� takes a conformally flat form

g�� ¼ f���; ��� ¼ �1 0

0 �2

 !
;

�1 ¼ �1;

�2 ¼ �1;

where fðx�Þ> 0 and the sign symbols �1 and �2 allow us
to consider various types of fields. The field equations
imply that the function �ðx1; x2Þ> 0 is a ‘‘harmonic’’ one:

det kGabk � ��2; ���@�@�� ¼ 0; � ¼ ��1�2;

where ��� is inverse to ���, and therefore, the function

�ðx�Þ can be defined as ‘‘harmonically’’ conjugated to �:

@��¼ �"�
�@��; "�

�¼���"
��; "��¼ 0 1

�1 0

 !
:
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Using the functions ð�;�Þ, we construct a pair ð�;�Þ of
real null coordinates in the hyperbolic case or complex
conjugated to each other coordinates in the elliptic case:(
� ¼ �þ j�;

� ¼ �� j�;
j ¼

(
1; � ¼ 1 � hyperbolic case;

i; � ¼ �1 � elliptic case:

In particular, for stationary axisymmetric fields � ¼
zþ i	, � ¼ z� i	, whereas for plane waves or for cos-
mological solutions � ¼ �xþ t, � ¼ �x� t, or these
may have more complicated expressions in terms of x1, x2.

IV. DYNAMICAL EQUATIONS

The symmetry reduced dynamical equations for the ac-
tion (1) can be presented in the form of real matrix Ernst-
like equations for the string frame matrix variables—a
symmetric d� d-matrix G, antisymmetric d� d-matrix

B, a rectangular d� n-matrixA, the scalars �̂ and �:

G ¼ e2�kGabk; B ¼ kBabk; A ¼ kAa
ðpÞk;

which should satisfy the system of equations8>><
>>:
���@�ð�@�EÞ�����ð@�E�2@�AATÞG�1@�E¼0;

���@�ð�@�AÞ�����ð@�E�2@�AATÞG�1@�A¼0;

���@�@��¼0;

(5)

where T means a matrix transposition and

E ¼ G þBþAAT; detG ¼ ��2e2�̂: (6)

The equations in (5) imply the existence of antisymmetric

d� d potential ~B and d� n potential ~A defined as

@�
~B¼���"�

�G�1ð@�B�@�AATþA@�ATÞG�1;

@�
~A¼���"�

�G�1@�Aþ ~B@�A: (7)

The remaining (nondynamical) part of field equations
determines the conformal factor f in quadratures, provided
the solution of dynamical equations is found [13].

V. EQUIVALENT SPECTRAL PROBLEM

As it was described in [13], the dynamical equations (5)
admit an equivalent reformulation in terms of the spectral
problem for the four ð2dþ nÞ � ð2dþ nÞmatrix functions
depending on two real (in a hyperbolic case) or two com-
plex conjugated (in the elliptic case) coordinates � and �
and a free complex (‘‘spectral’’) parameter w 2 C

� ð�;�;wÞ; Uð�;�Þ; Vð�;�Þ; Wð�;�;wÞ; (8)

which should satisfy the following linear system for �
with algebraic constraints on its matrix coefficients(
2ðw��Þ@��¼Uð�;�Þ�
2ðw��Þ@��¼Vð�;�Þ� k U�U¼U; trU¼d

V �V¼V; trV¼d
(9)

The supplemental condition is that the system (9) should
admit a symmetric matrix integral WoðwÞ such that

(
�TW�¼WoðwÞ
WT

o ðwÞ¼WoðwÞ k @W

@w
¼�; �¼

0 Id 0

Id 0 0

0 0 0

0
BB@

1
CCA; (10)

where Id is a d�d unitmatrix and� is a ð2dþnÞ�ð2dþnÞ
matrix. We should impose also the reality conditions

�ð�;�; �wÞ¼�ð�;�;wÞ; Woð �wÞ¼WoðwÞ; Wð3Þð3Þ¼In;

(11)

whereWð3Þð3Þ is the lower right n� n block ofW which, in

accordancewith (8)–(10), is a constant matrix and therefore
the last condition in (11) is pure gauge.

VI. FIELD VARIABLES AND POTENTIALS

As it can be shown by direct calculations (the detail will
be published elsewhere), the conditions (8)–(10) imply, in
particular, that W possesses a special structure

W¼ðw��Þ�þG; where

G¼
��2G�1� ~BG ~Bþ ~A ~AT ~BGþ ~AAT ~A

�G ~BþA ~AT GþAAT A
~AT AT In

0
BB@

1
CCA
(12)

and � ¼ ð�� �Þ=2j, � ¼ ð�þ �Þ=2; d�d matrix blocks

G and ~B are symmetric and antisymmetric, respectively,

and, together with d� n matrices A and ~A, these satisfy
(5)–(7). This allows us to calculate all field components and
potentials for any solution (8) of our spectral problem.

VII. THE SPACE OF NORMALIZED
LOCAL SOLUTIONS

We consider now the space of all (normalized) local
solutions of (5) near a chosen regular ‘‘initial’’ point
ð�o;�oÞ and corresponding solutions of our spectral problem
(8)–(11) considered also locally in � and �, but ‘‘for all’’ w,

ð�;�Þ 2 ð��o
���o

Þ; w 2 �C;

where��o
, ��o

are local regions near �o, �o, respectively,

where U and V are holomorphic functions of ð�; �Þ.
Without any loss of generality we impose on the field

components and auxiliary matrix functions a set of nor-
malization conditions which provide unambiguous corre-
spondence between local solutions of (5) and (8)–(11):

MONODROMY TRANSFORM AND THE INTEGRAL EQUATION . . . PHYSICAL REVIEW D 88, 021503(R) (2013)

RAPID COMMUNICATIONS

021503-3



�ð�o; �o; wÞ ¼ I; WoðwÞ ¼ ðw� �oÞ�þGo;

Go ¼
��2

oG�1
o 0 0

0 Go 0

0 0 In

0
BB@

1
CCA;

Gð�o; �oÞ ¼ Go;

Bð�o; �oÞ ¼ 0;

Að�o; �oÞ ¼ 0;

~Að�o; �oÞ ¼ 0;

(13)

where �o ¼ ð�o � �oÞ=2j, �o ¼ ð�o þ �oÞ=2, and d� d
matrix Go¼diagf"1;...;"dg with Go � Go ¼ Id, which can
be achieved using the symmetries admitted by (8)–(11).

VIII. GENERAL ANALYTIC STRUCTURE
OF � ON w PLANE

A. Global structure of � on the spectral plane

The conditions (9) and (13) imply that the normalized
fundamental solution �ð�; �;wÞ of (9) possesses in gen-
eral only four singular (branching) points w ¼ �o, w ¼ �,
w ¼ �o,w ¼ �, respectively of the orders ( 12 ,� 1

2 ,
1
2 ,� 1

2 )

for �ð�; �;wÞ and opposite for its inverse. To construct a
holomorphic branch of�ð�; �;wÞ, we make two local cuts
on the w plane: Lþ goes from w ¼ �o to w ¼ � and L�;
from w ¼ �o to w ¼ � each belong to the corresponding
local region �þ ¼ fwjw ¼ � 2 ��o

g and �� ¼ fwjw ¼
� 2 ��o

g (see Fig. 1).
B. Local structure of � near the cuts

It can be shown (see [16]) that the normalized matrix
function � and its inverse possess near the cuts L� the
local structures

�¼
�

�1þ cþð�;�;wÞ�kþðwÞþMþð�;�;wÞ; w2�þ

�1� c�ð�;�;wÞ�k�ðwÞþM�ð�;�;wÞ; w2��

;

��1¼
�

þlþðwÞ�’þð�;�;wÞþNþð�;�;wÞ; w2�þ

�l�ðwÞ�’�ð�;�;wÞþN�ð�;�;wÞ; w2��

;

(14)

where ‘‘�’’ means matrix multiplication and the functions

� are defined by the expressions 
�ðw ¼ 1Þ ¼ 1 and


þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðw� �Þ=ðw� �0Þ

q
; 
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðw��Þ=ðw��0Þ

q
;

all other ‘‘fragments’’ of the local structures (14)
—d� ð2dþ nÞ matrix functions k�ðwÞ and ’�ð�; �;wÞ,
ð2dþ nÞ � d matrix functions l�ðwÞ and c�ð�; �;wÞ as
well as ð2dþ nÞ � ð2dþ nÞmatrix functionsM�ð�; �;wÞ
and N�ð�;�; wÞ—are holomorphic in �þ or ��, respec-
tively, and should satisfy there the algebraic relations

k �N¼0; N �c¼0; lðwÞ¼�2
oW

�1
o ðwÞ �kTðwÞ;

M � l¼0; ’ �M¼0; �2
o�ðw��oÞðw��oÞ:

(15)

Here and below we use instead of a pair of functions with
indices ‘‘þ’’ and ‘‘�’’ defined and holomorphic in�þ and
��, respectively, a one function defined in �þ [�� and
represented in�þ and�� by the corresponding functions
with the indices ‘‘þ’’ or ‘‘�’’.

IX. MONODROMY DATA

The coordinate-independent functions k�ðwÞ and l�ðwÞ
play a very important role in our construction. These
functions determine the monodromy of � on the cuts L�
because the analytical continuation of � along a simple
path which goes from one edge of a cut Lþ or L� to its
other edge leads [in accordance with (14)] to the linear
transformations � ! � � T�ðwÞ with
T�ðwÞ ¼ I� 2l�ðwÞ � ðk�ðwÞ � l�ðwÞÞ�1 � k�ðwÞ; (16)

where the upper and lower signs correspond to Lþ and L�,
respectively. Note also that T2�ðwÞ � I.
We are going to characterize unambiguously the solu-

tions of (5) by a complete set of independent functional
parameters in (16) which we call the monodromy data of a
solution. In view of (15), l�ðwÞ can be expressed in terms
of k�ðwÞ and therefore, T�ðwÞ are completely determined
by k�ðwÞ. On the other hand, it is easy to see, that �
remains unchanged after the transformations

k�ðwÞ!c�ðwÞ �k�ðwÞ; c�ðwÞ!c�ðwÞ �c�1� ðwÞ;
where c�ðwÞ are arbitrary nondegenerate d� d matrix
functions holomorphic in �þ and ��, respectively.
Thus, not all components of k�ðwÞ are important in (16),
and to reduce this ambiguity we should consider k�ðwÞ
taking the values in Grassmann manifold Gd;2dþnðCÞ. One
more restriction on k�ðwÞ arises from the reality condition

(11). It takes the form k�ð �wÞ ¼ k�ðwÞ in the hyperbolic

case (� ¼ 1) or k�ð �wÞ ¼ k�ðwÞ in the elliptic case
(� ¼ �1). Just such functions k�ðwÞ parametrize unam-
biguously the whole space of the local solutions of (5).
For k�ðwÞ, as the elements of Gd;2dþnðCÞ, it is conve-

nient to use an affine parametrization. Namely, in general,
there should exist d linear independent columns of kþðwÞ
such that the corresponding d columns of k�ðwÞ are also
linear independent. Using the global symmetries of our
spectral problem we can locate these columns at the first d
positions and choose c�ðwÞ so that the first d� d blocks of
k reduce to the unit matrix (the exceptional cases for which
this can not be done should be considered separately).
Thus, in general we obtain

k�ðwÞ ¼ fId;u�ðwÞ; v�ðwÞg; (17)

where d� d matrix functions u�ðwÞ and d� n matrix
functions v�ðwÞ holomorphic in ��, respectively, and
satisfying the reality conditions, play the role of ‘‘coordi-
nates’’ in the infinite-dimensional space of local solutions.

L L

oo

FIG. 1. Cuts on the w plane in the hyperbolic case (� ¼ 1). In
the elliptic case (� ¼ �1), the cuts are located symmetrically to
each other with respect to the real axis.
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X. LINEAR SINGULAR INTEGRAL EQUATIONS

In accordance with the well-known theorems of complex
analysis, the analytical structure of �ð�; �;wÞ allows one
to present it and its inverse as the Cauchy-type integrals

�¼Iþ 1

i�

Z
L

½���
��w

d�; ��1¼Iþ 1

i�

Z
L

½��1��
��w

d�;

(18)

where ½��� and ½��1�� denote the jumps (i.e. half of the

difference of left and right limits) of � and ��1 at the
points � 2 L. Then the ‘‘continuous parts’’ f�g� and

f��1g� (i.e. half of the sums of left and right limits) of

� and ��1 on L are determined by the integrals of the
form (18) in which, however, we put w ¼  2 L and the
singular integrals should be considered as the Cauchy
principal value integrals (Sokhotski-Plemelj formula)
[17]. From (14) we obtain at the point � 2 L ¼ Lþ [ L�,

½��� ¼ ½
�1��cð�;�;�Þ �kð�Þ; f�g� ¼Mð�;�;�Þ;
½��1�� ¼ ½
�� lð�Þ �’ð�;�;�Þ; f��1g� ¼Nð�;�;�Þ;

(19)

where we use that f
�g � 0 on L�. Using these expres-
sions for M and N as Cauchy principal value integrals in
the relations k �N ¼ 0, M � l ¼ 0, we obtain the relations

� 1

i�
⨏

L

½
�� ðkðÞ�lð�ÞÞ
��

�’ð�;�;�Þd�¼kðÞ; (20)

� 1

i�
⨏

L
cð�;�;�Þ�½


�1�� ðkð�Þ�lðÞÞ
��

d�¼ lðÞ; (21)

which are the linear singular integral equations for matri-
ces ’ and c, provided the monodromy data are given.

The matrix equations (20) and (21) are equivalent to
each other, and for constructing solutions it is enough to
solve only one of them. For pure technical reasons we
choose (20) as the basic one. The theory of such equations
is well developed [17], and it allows us to show that the
solution of this integral equation [at least, for ð�; �Þ close
enough to ð�o; �oÞ] always exists for any choice of the
monodromy data fuðwÞ; vðwÞg.

XI. CALCULATIONOFTHE FIELDCOMPONENTS

For any given monodromy data and for the correspond-
ing solution ’ð�;�; wÞ of the integral equation (20) the
field components can be determined in quadratures. In
accordance with (18) and (19), for w ! 1 we have

��1¼I�w�1Rþ��� ;
R¼ 1

i�

Z
L
½
�� lð�Þ �’ð�;�;�Þd�;

where the ð2dþnÞ�ð2dþnÞmatrixRð�; �Þ is determined
by the integral over Lþ[L�. Then we obtain from (8)–(11)

U¼2@�R; V¼2@�R; W¼WoðwÞ�� �R�RT ��:

Due to (12), all field components can be calculated alge-
braically in terms of the components of the matrix R.

XII. A CLASS OF ANALYTICALLY MATCHED
MONODROMY DATA

If the initial point ð�o; �oÞ is chosen on the boundary
� ¼ 0 (e.g., on the ‘‘axis of symmetry’’) and the monod-
romy data are ‘‘analytically matched,’’ i.e. such that

uþðwÞ ¼ u�ðwÞ � uðwÞ; vþðwÞ ¼ v�ðwÞ � vðwÞ;
(22)

the corresponding solutions are regular on this axis near the
initial point and these monodromy data can be expressed in
terms of the axis values of the Ernst potentials:

uð�Þ¼�Eð�Þ�Eð�oÞ
2ð���oÞ ; vð�Þ¼�Að�Þ�Að�oÞ

ð���oÞ ;

(23)

provided Go ¼ diagf"1; . . . ; "dg with Go � Go ¼ Id.
Besides that, for any choice of rational functions uðwÞ
and vðwÞ,

uðwÞ ¼ UNu
ðwÞ

QNq
ðwÞ ; vðwÞ ¼ VNv

ðwÞ
QNq

ðwÞ ;

where QNq
ðwÞ is any scalar and UNu

ðwÞ, VNv
ðwÞ are

arbitrary matrix polynomials, the integral equations (20)
reduce to an algebraic system, and the corresponding
infinite hierarchies of solutions can be found explicitly.

XIII. 5D MINIMAL SUPERGRAVITY

The equations for the bosonic fields in 5D minimal
supergravity determined by the action

Sð5Þ ¼
Z �

Rð5Þ 	 1� 2 	 F ^ Fþ 8

3
ffiffiffi
3

p F ^ F ^ A

�

coincide with D ¼ 5 and n ¼ 1 bosonic equations of het-
erotic string gravity (1) if we impose there the constraints
� ¼ 0 and HABC ¼ 	FABC with a subsequent rescaling

FAB ! ð2= ffiffiffi
3

p ÞFAB. In our present context, these con-
straints are equivalent to the relations

detG¼��2; ~Bab¼��abcAc; Bab¼��abc
~Ac; (24)

where �abc is the Levi-Civita symbol. Thus, the space of
solutions of 5D minimal supergravity is embedded into the
space of solutions of heterotic string gravity and to obtain
these solutions we have to impose the appropriate con-
straints on the choice of monodromy data. To find these
constraints for analytically matched data one can use (23);
however, a more general kind of monodromy data needs a
more complicated analysis.
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XIV. SOLUTIONS AND THEIR
MONODROMY DATA

We consider here some very simple examples of 5D
solutions. The first of them is the 5D Minkowski metric

ds2 ¼ �dt2 þ d	2
1 þ d	2

2 þ 	2
1d’

2 þ 	2
2dc

2 (25)

with � ¼ 	1	2, � ¼ z ¼ 1
2 ð	2

2 � 	2
1Þ. If the point of nor-

malization is on the ‘‘axis’’ 	2 ¼ 0 at 	1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi�2zo

p
, the

(analytically matched) monodromy data for (25) are

u ¼ diagf0;�ð2zoÞ�1; ð2zoÞ�1g; v ¼ 0:

The four-parametric solution for a charged rotating black
hole in 5D minimal supergravity [18] also possesses ana-
lytically matched monodromy data with one pole: uðwÞ ¼
u0 þ u1=ðw� hÞ and vðwÞ ¼ v1=ðw� hÞ where the
matrices u0 and u1, the vector v1, and the scalar h are
real and constant. For simplicity, we show their structure
for a nonrotating case, the 5D Reissner-Nordström
solution,

u ðwÞ ¼
a0

w�h 0 0
0 b0 c0
0 �c0 d0

0
@

1
A; vðwÞ ¼

p0

w�h

0
0

0
@

1
A;

where the parameters a0, b0, c0, d0, p0, and h depend on
the mass m and charge qð¼ smÞ of a black hole and on the
position z ¼ z0 of the point of normalization:

a0 ¼ m2 � 4z0h

4z20 �m2
; d0 ¼ ð2z0 �mÞ2 � 8ms2z0

2ðz0 � hÞð4z20 �m2Þ ;

b0 ¼ � 1

2ðz0 � hÞ ; c0 ¼ p0

z0 � h
;

p0 ¼ ms
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4z20 �m2

q ; h ¼ mð1þ 2s2Þ=2:

XV. CONCLUDING REMARKS

The infinite hierarchies of multiparametric families of
solutions which can be constructed explicitly using the
monodromy transform approach described above for pure
vacuum or heterotic string gravity in D dimensions as well
as 5D minimal supergravity include many physically
important solutions (such as, e.g., black holes in a 4D
case or black holes, black rings, etc. in a 5D case) as
well as various their generalizations.
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[18] M. Cvetič and D. Youm, Nucl. Phys. B476, 118
(1996).

G. A. ALEKSEEV PHYSICAL REVIEW D 88, 021503(R) (2013)

RAPID COMMUNICATIONS

021503-6

http://dx.doi.org/10.12942/lrr-2008-6
http://dx.doi.org/10.1103/PhysRevLett.84.5247
http://dx.doi.org/10.1103/PhysRevLett.84.5247
http://dx.doi.org/10.1023/A:1012822904758
http://dx.doi.org/10.1023/A:1012822904758
http://dx.doi.org/10.1103/PhysRevLett.87.221101
http://dx.doi.org/10.1103/PhysRevLett.87.221101
http://dx.doi.org/10.1088/0264-9381/21/23/021
http://dx.doi.org/10.1088/0264-9381/21/23/021
http://dx.doi.org/10.1088/0264-9381/27/13/135011
http://dx.doi.org/10.1103/PhysRevD.80.041901
http://dx.doi.org/10.1007/s11232-005-0101-2
http://dx.doi.org/10.1016/0550-3213(96)00355-0
http://dx.doi.org/10.1016/0550-3213(96)00355-0

