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Trilinear gauge boson couplings in the standard model with one universal extra dimension
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One-loop effects of Standard Model (SM) extensions comprising universal extra dimensions are
essential as a consequence of Kaluza-Klein (KK) parity conservation, for they represent the very first
presumable virtual effects on low-energy observables. In this paper, we calculate the one-loop CP-even
contributions to the SM WW+y and WWZ gauge couplings produced by the KK excited modes that stand
for the dynamical variables of the effective theory emerged from a generalization of the SM to five
dimensions, in which the extra dimension is assumed to be universal, after compactification. The
employment of a covariant gauge-fixing procedure that removes gauge invariance associated to gauge
KK excited modes, while keeping electroweak gauge symmetry manifest, is a main feature of this
calculation, which is performed in the Feynman-’t Hooft gauge and yields finite results that consistently
decouple for a large compactification scale. After numerical evaluation, our results are comparable with

the one-loop SM contributions and well within the reach of a next linear collider.
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I. INTRODUCTION

The interesting idea that spacetime comprises a larger
number of spatial dimensions than those that we have been
able to detect, even with the aid of the most powerful
colliders running right now, inspires attractive extensions
of the Standard Model (SM) that pursue the fundamental
theory describing nature at high energies. The first models
involving extra spatial dimensions were conceived long
ago [1], but this sort of description gained notable attention
only a few years ago, when it was pointed out [2] that extra
dimensions could be found at the TeV scale. In the present
paper, we consider a generalization of the SM to five
dimensions under the assumption that the extra dimension
is universal [3], which means that all fields in the model
propagate in the bulk. Models involving universal extra
dimensions (UED) possess physical interest, as it is exhib-
ited in various works covering areas of high-energy phys-
ics, such as dark matter [4], neutrino physics [5], Higgs
physics [6], and flavor physics [7]. Up-to-date we have not
found any indication that extra dimensions actually exist,
yet a Kaluza-Klein type of effective theory is not in contra-
diction with current experimental data. Experimental con-
sistency of this sort of effective theories is ensured by the
assumption that spatial extra dimensions are compactified,
since compact extra dimensions would have remained so
far out of the reach of our most sensitive experiments if
they are small enough.
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A striking consequence of compact extra dimensions is
the inception of an infinite set of fields, defined on four-
dimensional Minkowski spacetime, in addition to the SM
ones. There are different compactification schemes, and
the consideration of more than one extra dimension comes
along with more options to do it. In the case of one extra
dimension, the orbifold compactification on S'/Z,, which
is the simplest approach that allows one to reproduce the
SM as the low-energy physical description, yields period-
icity and parity properties of the dynamical variables with
respect to the extra-dimensional coordinate. Then the
geometry of the orbifold opens the possibility of expanding
the “fundamental” fields in Fourier series, known as
Kaluza-Klein (KK) towers. Each term of these series
incorporates a field, a KK mode, propagating in the usual
four-dimensional spacetime. KK modes can be classified
into zero modes and excited modes, depending on whether
or not they are the zero mode in the Fourier expansion.
Zero modes are identified with light fields, that is, the SM’s
dynamical variables, and KK excited modes are associated
with new states whose presence has not been noticed by
experiments so far. In every Fourier expansion of funda-
mental fields the whole dependence on the extra dimension
is collected within trigonometric functions; integrating
out the extra-dimensional coordinate in the action provides
an effective four-dimensional Lagrangian where the KK
modes enter as effective dynamical variables. Gauge para-
meters defining the extra-dimensional gauge transforma-
tions are, according to the field-antifield formalism [8],
dynamical variables, as they are made to coincide with
ghost fields. Such parameters propagate in the bulk and can
be expanded into KK towers [9].
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After expanding gauge-covariant objects in the higher
dimensional theory, the integration of the compact extra
dimension provides an effective Lagrangian that is invar-
iant under the standard gauge transformations (SGT) and
the nonstandard gauge transformations (NSGT), both
with gauge parameters defined on the four-dimensional
Minkowski spacetime [9]. In a more recent work [10], it
was shown (using pure Yang-Mills theory) that the KK
expansions of extra-dimensional gauge fields define a point
transformation that connects the fundamental theory and the
effective one in such a way that objects with well-defined
transformation laws under the gauge group of the former are
mapped into objects with well-defined transformation laws
under the SGT present in the latter. At a phase space level,
this transformation can be lifted to a canonical transforma-
tion. Fourier expansions of gauge parameters that propagate
in the bulk show that this mapping sends the extra-
dimensional gauge group into two disjoint subsets. One of
them is the set of SGT, which forms a group exclusively
defined by the zero modes of the gauge parameters, and the
other is the set of NSGT, which in contrast does not form a
group. Itisin this sense that the full extra-dimensional gauge
symmetry is kept nontrivially hidden within the KK theory.

Employing the concepts of SGT and NSGT, the effective
KK theory obtained from the five-dimensional pure
SUs(N) Yang-Mills theory' was quantized within the
field-antifield framework [9]. In the same fashion, the
quantization of the whole five-dimensional Standard
Model (5DSM), in the UED context, was performed [11].
Each set of gauge transformations, the SGT and NSGT, are
characterized by gauge parameters independent of each
other; hence, the SGT and NSGT independently leave
invariant the SM with one UED. One may wish to fix a
gauge involving only the NSGT in a SGT invariant way,2 as
in Ref. [11] where such a covariant gauge-fixing procedure
was provided. The resulting tree-level structure of the
effective theory was examined, including a comprehensive
list of expressions of tree-level interactions and the appro-
priate definitions of all mass eigenstates.

As there exist high-energy phenomena not described by
the SM, the existence of extensions is well motivated. Away
in which new physics may manifest is through the WWV
interactions, with V representing a SM neutral gauge boson.
These trilinear gauge couplings (TGCs), which have been
studied in different contexts such as supersymmetry [12],
extra dimensions [13], and extensions to the SM gauge
group [14], offer the possibility of finding evidence of this
new physics at high energy through virtual effects on
SM observables. At this point, the following crucial feature
of UED plays a role: the very first contributions of this sort
of SM extension to low-energy Green’s functions is at the

'Also referred to as pure SU(N, M?) Yang-Mills [10].

2SGT can also be fixed, eliminating all gauge invariance
from the theory. However, the goals of the present paper do
not require it.
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one-loop level, as no tree-level effects on them exist [3].
This is an implication of the so-called KK-parity conserva-
tion, which is an exclusive attribute of models involving
UED that makes the bounds on the size of the involved extra
dimensions relatively weak. The importance of one-loop
corrections to SM observables from models with UED
relies not only on this issue, as the renormalizability
[9,15] of contributions at this order provides the possibility
of obtaining unambiguous results, even in spite of the
well-known nonrenormalizable comportment supplied by
the presence of dimensionful coupling constants in extra-
dimensional models.

In the present paper, we use the gauge-fixing procedure
and results reported in Ref. [11] to derive the CP-even
contributions to the TGC’s WWYV. The fact that the only
new parameter introduced by UED models is the size of the
extra dimension enhances the predictive power of these
kinds of models and simultaneously becomes an incentive
to perform this calculation. We take the W bosons on shell,
but leave the neutral gauge boson off shell. We derive, in the
Feynman-’t Hooft gauge, the anomalous contributions to
the form factors parametrizing these interactions and find
finite results. Then, as an interesting case, we consider the
heavy-compactification scenario, which we define by the
condition Q% <« 1/R?, where Q is the momentum of
the external neutral gauge boson and R is the radius of the
orbifold-compactified extra dimension. The new-physics
contributions, which we formerly expressed in terms of
the Passarino-Veltman scalar functions [16], are exhibited
as elementary functions of masses and the compactification
scale. The numerical evaluation of the derived expressions
then gives an estimation of extra-dimensional effects on the
TGCs of interest to the present paper for a linear collider

with a center-of-mass energy Ecy = JO? =500 GeV and
different compactification scales, ranging from 1 to 3 TeV.

The organization of this paper is as follows. In Sec. Il we
provide some necessary information about the SM with
one UED and the KK theory that it generates after com-
pactification has taken place. Then, in Sec. 111, we describe
our calculation of the CP-even anomalous contributions to
the WWV TGCs and consider the heavy-compactification
scenario. This section also includes a numerical estimation
of the extra-dimensional effects on this interaction and a
discussion of results. Our conclusions are presented in
Sec. IV. Finally, we include the Appendix, where the
Lagrangian terms contributing to the WWYV vertex at the
one-loop level are provided.

II. THE STANDARD MODEL WITH ONE
UNIVERSAL EXTRA DIMENSION

In this section we define our notation and provide a
general description of the context within which we shall
perform the phenomenological calculations. We define the
five-dimensional model and introduce the KK expansions
used in order to preserve gauge invariance in the transit
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from five to four dimensions. We then briefly discuss the
scheme to covariantly fix the gauge and supply the corre-
sponding gauge-fixing functions. Finally, we give the
appropriate transformations that set all mass eigenstates.
As all these ideas have been addressed extensively in
Refs. [9-11], our discussion is intended to be succinct.

A. The five-dimensional model

Consider a five-dimensional Minkowski spacetime, with
mostly negative metric, on which the following Lagrangian
is defined,

Lspsmx, y) = Lspg(x, y) + Lspu(x, y)
+ Lspc(x, y) + Lspy(x, y), (D

where all dynamical variables are defined on the
five-dimensional spacetime. Ordinary four-dimensional
coordinates have been denoted by x, whereas the fifth
dimension is labeled by y. This five-dimensional
Lagrangian, whose gauge group is SUs(3)c X SU5(2)y X
Us(1)y, is composed by the gauge (Ls5pg), Higgs (Lspn),
currents (Lspc) and Yukawa (Lspy) sectors.
The gauge sector is defined as

Lang(.3) = = 4 Gl (6 )G ()
_ %ijN(X’ y)WiMN(x, y)

1
1 Bun(x, y) BN (x, y). ()

In this expression and throughout the rest of the paper,
Lorentz indices are denoted by M, N, ... =0, 1,2,3,5 and
gauge indices corresponding to SUs(3)c and SUs(2)y,
are denoted by a,b,c,... and i, j, k, ..., respectively. In
addition, greek indices u,v,...=0,1,2,3 will label
four-dimensional Lorentz indices. Five-dimensional field
strengths, G5y, Wj'wv, and B,,y, are defined by

Gun(xy) = auGi(x y) — anGh(x, y)
+ gsfeGh (x, ) G4 (x, y), 3)

Wﬁva(x’ y) = GMW}'V(x, y) - anfw(xr y)
+ gs€ Wi (x, N WE(xy), @)

Bun(x,y) = 0y By(x,y) — dnBy(x, y), )

where G, t; and B, represent gauge fields for
SU5(3)c, SUs(2)w, and Us(1)y gauge groups, respectively.
In addition, g% and gs are the SUs(3)c and SUs(2)y
constant couplings, respectively, both with (mass)~!/2
units. Structure constants f“¢ define the Lie algebra of
SUs(3)c, whereas €'/* (Levi-Civita symbol) defines the Lie
algebra of SUs(2)yy. Notice that due to five-dimensional
Lorentz symmetry, all vectorial gauge fields are built from
five scalar fields.
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The gauge symmetry group SUs(3)c X SUs(2)y X
Us(1)y determines the following infinitesimal transforma-
tion laws:

3G (x,y) = Dy B (x, y), (6)
SWi,(x,y) = Diai(x, y), (7)
6By(x,y) = dyalx,y), (8)

where Dy = 839, — gif*°Gs, is the SUs(3)c cova-
riant derivative and D}, = §Ya,, — gs€/* W¥, plays the
analogous role for the SUs5(2)y, group. The most general
infinitesimal gauge transformations are defined by requir-
ing gauge parameters to propagate in the bulk. In the
field-antifield formalism [8], these gauge parameters are
recognized as ghost fields, which, in the UED framework,
also propagate in the extra dimension.
The Higgs sector is given by

Lspu(x, y) = (dy®)t (x, y) (@ P)(x, y)
— w2t (x, y)D(x, y)
— As[ DT (x, y)D(x, y) ]2, 9)

where u has units of mass, whereas the units of A5 are
(mass)~!. The covariant derivative acting on the Higgs
doublet ®(x, y), with hypercharge Y = 1, is given by

. Y
dy = Iy — 1857Wﬁ4 - 18/553114, (10)

with g% representing the Us(1)y coupling constant and o
standing for the Pauli matrices.
The currents sector reads

Lope(x,y) = > iL(x, y)IM(DyL)(x,y)
LoL,L,

b Y 00 )T(Dy 0, y)
04,05,0)

+ Z il(x, Y)TM(Dy,D)(x, y)
eu,T

+ 3 dia(x, y)IM(Dyu)(x, y)

u,c,t
+ D id(x, )M (Dyd)(x, y), (11)
d,s,b
where 'Y = y#_ ivs, so that the Clifford algebra T’T'V +
INTM = 20MN | with g,y = diag(1, —1, —1, —1, —1), is
satisfied. In this equation, / is an SUs(2)y singlet which
collectively denotes the five-dimensional leptonic fields e,
M, and 7. There are also up and down five-dimensional
quarks SU5(2)yy singlets, which are represented by u and d.
On the other hand, L and Q are fermionic SU5(2)y, dou-
blets corresponding to leptons and quarks, respectively.
These fermionic doublets are arranged as follows:

14 u
Lz=(l), 3=(d). (12)

016010-3



M. A. LOPEZ-OSORIO et al.

Finally, the covariant derivative, D, is defined as
. AY o :
- lg%jgfb - lgSTWM -

where A“ are the Gell-Mann matrices.
The term for the Yukawa sector is

D [ALL(x, y)i(x, y)P(x, y) + Hee]

families
+ Z [AZQZ()C, y)u(x, y)dD(x, y) + H.c.]
families

+ > [AQY(x, y)d(x, y)P(x, y) + He],

families

Y
Dy = dy lgISEBM» (13)

Lspy(x,y) =

(14)

in which the couplings Aé”’d are dimensionful with units
of (mass)~'/2. Besides, we have defined ®(x,y) =
i’ ®*(x, y).

We now proceed to compactify and integrate out the fifth
dimension in order to obtain a four-dimensional KK the-
ory. The effective theory so obtained comprises the four-
dimensional SM and a rich variety of new interactions.
In the compactification process the full-dimensional gauge
invariance will be hidden into the SGT and NSGT. As this
work is aimed to derive corrections to electroweak inter-
actions, henceforth those interactions involving SUs(3)c
gauge fields will be disregarded.

B. Compactification and the four-dimensional
dynamical variables

We will study the SDSM, where the extra dimension is
compactified on the S'/Z, orbifold. We denote the radius
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periodicity on the extra dimension that will allow us to
expand in Fourier series fields, covariant objects and gauge
parameters of the theory, all of which will collectively be
denoted by ¢(x, y). Therefore, one has ¢(x, y) = ¢(x, y +
27R) and the following expansion,
ny
0

(15)

(0)

\/2— Peven\X
7R

1w

\/ﬁ Podd\X

(n)

QDCVCH

W+

hIE
(x )(%)]

where superscripts within parentheses label Fourier
modes. This expansion is known as the KK tower. Four-

olx,y) = () cos(

+

dimensional object goeven (x) is known as the KK zero mode.
When ¢ represents a gauge field, this zero mode is
regarded as a low-energy dynamical variable. Each KK
tower also involves an infinite set of four-dimensional
functions denoted by o (x) and gog'é)d( ), which are
referred to as KK excited modes. For the case of funda-
mental fields, these correspond to heavy fields. Our
compactification choice on S'/Z, involves a Z, symmetry;
therefore, one may conveniently assume defined parity
properties on the dynamical variables with respect to
reflections y — —y. Note from Eq. (15) that even functions
with respect to y will only be mapped to four-dimensional
functions gofa%)en and goeven in contrast to the case of odd fun-
ctions with respect to y, which only yield four-dimensional
objects %dd We will assume that the fundamental gauge
fields and the Higgs doublet have the following parity
properties and KK expansions:

of S! as R. This compactification means that one has Gauge fields
|
W) = Wit = Wil = Wi + 3w wycos () (16)
Wil y) = = Wi, —y).,  Wilxy) Z—Wé")’( )sm( = ) (17)
Bue3) = Bl ), Buloy) = =Bl Z — 5 cos ('3 ) (18)
Bilay) = ~Bsls v Boley) = 3 ps >sn( =) (19)
Higgs doublet

- 1 ny)

= — —— 1 I Y] e
D(x, y) = O(x, —y), D(x, y) \/m(l) (x) + ’; HCD (%) COS(R : (20)

Notice that choosing either even or odd parity is arbitrary
and a matter of convenience. For instance, in gauge-Higgs
unification scenarios [17], it is customary to pick even
parity for gauge fields with M = 5 so that the resulting
KK towers contain KK zero modes. However, we eliminate

such four-dimensional degrees of freedom by choosing
five-dimensional gauge fields to be even for M = u but
odd for M = 5.

In five-dimensional frameworks, in which chirality is
absent, the S'/ Z,-orbifold compactification allows one to
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obtain four-dimensional fermionic chiral states and
to define SU4(2); gauge fields distinguishing chirality,
as it occurs in the SM. Five-dimensional Dirac fields,

Y (x, ), transform under parity with respect to the extra
|

Fay) =V = =fxy),  flxy)= \/:f(o)
Fermionic doublets
F(X,J’)—’?’SF(X: _)’):_F(x’)’), F(X:J’)——F(O)( )

L

where the KK towers are also shown. We have defined

O = (1/2)(1 = 99) f(O) and analogous definitions for
the KK excited modes fR), (n) f(") and fi") hold. These
transformation properties su1tably generate, at the four-
dimensional level, only right-handed singlets and left-
handed doublets.

C. Preserving gauge invariance in the
Kaluza-Klein theory

As one can appreciate in Eq. (15), all the dependence on
y of covariant objects and gauge parameters is situated in
trigonometric functions; hence, one can straightforwardly
integrate out the extra-dimensional coordinate in the fun-
damental action to obtain the effective action

Sett = fd4X£KK(X)- (23)

The gauge structure of the fundamental theory determines
the gauge structure of Lygk. As can be seen from Eq. (15),
at the four-dimensional level there is an infinite number
of gauge parameters, each one of them defining a gauge
transformation.

As was pointed out in Refs. [9,10], and implemented to
the whole SDSM in Ref. [11], one obtains a KK theory
invariant under an infinite number of gauge transformations
by expanding five-dimensional covariant objects. Such ex-
pansions engender four-dimensional structures that can be
fairly considered as gauge-covariant objects. As mentioned
in the Introduction, the gauge transformations of the effective
KK theory can be divided into two types. One of them, the
SGT, consistently coincides with the usual SM variations.
Explicitly, the KK modes supplied from the five-dimensional
gauge and Higgs sectors transform under the SGT as

5sW;(?)i — ng_g)ija(O)j, 3SW;(I')i - geijkWL’l)J'a(O)k,
SWI = gelkwin g Ok, (24)

8BY =9,a0,  SBY =0 8BY =0 (25)
Y
8,00 = —<1g 2 a(O)’ +ig' = 5 a(o))(b(o),
(26)

5.0 — _(,g T a0+ ig ga«n)@(m,
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dimension as #(x, y) = ¥ ¢/(x, —y), so we assume the
following transformation properties for SUs(2)y, singlets,
f(x,y), and SUs(2)yy doublets, F(x, y):

Fermionic singlets

+§_ 717_ [ (")(x)cos( y) F(x )Sm<r;y):|’ 21

Z I:F(")(x) cos ( R ) + F(")(x) sin ( I:) ], (22)

f
where the a© and a(©) represent, respectively, the KK zero
modes of the SU5(2)y, and Us(1)y gauge parameters, while g
and g’ are the dimensionless four-dimensional couplings
corresponding, respectively, to the SU4(2)p and U,(2)y
gauge groups. The relations linking the four-dimensional
couplings with the extra-dimensional ones are g+/27R = g5
and g'~/2mR = g{. We remark that this set of gauge trans-
formations is defined exclusively by zero modes of gauge
parameters. Note also that the zero modes W(O)i, Big) trans-
form as gauge fields, while the corresponding KK excited
modes W' and B, as well as the scalars Wé")i and Bg”),
transform as matter fields. There is an infinite number of
other gauge transformations, the NSGT, that possess an
involved structure,

8nsW/§))i — gEijkWEZl)ja(n)k, anW,ELn)i — D%m)ija(m)j’
5 W = DI g 0
6uB =0, 8, B =0,a, 5,8y = —Za®,

(28)
8, PO = (lg 5 a(”)’ +ig ga(o)>q>("),

8nscb(n) — _(igza(m)i + ig/za(m))(ﬁnm(D(O) + Ansmq)(s))
2 2 ’

(29)
where we have defined

D%m)ij = §nm Di?)ij _ geijkAnsleEf)k’ (30)

D(S"m)ij = —gnmm 51’/’% _ ge.ijkA/nsm Wés)k. (31)
The symbol A™™ is defined in terms of products and sums of
Kronecker deltas. However, the explicit form of this object is
not necessary to achieve the goals of this paper. Einstein’s
summation convention is also used for Fourier modes, with
each sum starting from 1. The NSGT are determined just by
excited modes of gauge parameters, in this case by @ and
a'™ which correspond to excited modes of SUs(2)y, and
Us(1)y gauge parameters. The form of these transformations

reveal a quite different nature of the KK excited modes W,(f)j
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when comparing them with the corresponding SGT;
these fields transform as gauge fields through the object

D(,,f"")’j . The excited modes Bﬁf) are clearly also gauge fields

with respect to the NSGT. The zero modes W, on the other
hand, have a transformation law under the NSGT that
resembles the variations of matter fields, but with a more
intricate functional form that contains an infinite sum
and indicates that they are not gauge fields under the

NSGT. The scalars W§”)’ and Bg”) play the interesting role
of pseudo-Goldstone bosons similar to those occurring in
the Higgs mechanism. However, in contrast with systems
where spontaneous symmetry breaking takes place, in the
compactification scenario there are not broken gauge gener-
ators [10]. There exists a gauge in which these type of
pseudo-Goldstone bosons are removed from the effective
theory, and simultaneously the KK excited modes of gauge
fields with four-dimensional spacetime indices become
massive [9]. This fact is remarkable and indicates that
some KK excited modes can be turn massive, no matter
whether they come from a massless five-dimensional field.

D. A covariant gauge-fixing procedure

The divergent behavior of path integrals involved in
the quantization of gauge systems arises because of the
existence of a set of physically equivalent configurations
connected to each other by gauge transformations. The
inclusion in path integrals of extra degrees of freedom
due to gauge invariance triggers such divergent comport-
ment, which must be removed by fixing the gauge. In the
literature [18], different schemes to fix the gauge in extra-
dimensional gauge theories have been proposed. In the
present paper, we use the gauge-fixing procedure, of
renormalizable type, that was propounded in Refs. [9,11].
This method is based on the covariant gauge-fixing scheme
given in Ref. [14], where it was applied to the so-called 331
models [19]; it shows an unconventional approach possess-
ing the spirit of other schemes such as the one introduced
by Fujikawa [20], the background-field method [21], and
the pinch technique [22]. The main feature of these
approaches is that they yield quantized theories in which
part of the gauge invariance still remains. Since the KK
theory discussed in this paper is separately invariant
under the SGT and NSGT, it gives us the possibility to
remove the gauge invariance part associated to the NSGT
and maintain SGT invariance of the quantum Lagrangian.
The approach followed in Refs. [9,11] to fix the gauge
in extra-dimensional gauge theories not only is interest-
ing from a theoretical perspective, but also implies
valuable simplifications in phenomenological calcula-
tions [13]. This useful behavior has been also pointed out
and exploited in contexts other than extra-dimensional
theories [14].

A complete discussion on the quantization of the KK
theory conceived in the SDSM can be found in Ref. [11],
where the derivation of the quantum Lagrangian, L, is

PHYSICAL REVIEW D 88, 016010 (2013)

carried out within the framework of Becchi-Rouet-Stora-
Tyutin symmetry [23], and the result is expressed as

L= Lxx + Lor + Lrpa, (32)

where Lgp represents the gauge-fixing term and Lppg
stands for the Faddeev-Popov ghost term. The gauge fixing
term is given by

1
2¢

with gauge-fixing functions f(fn)i defined as

Lop = =518+ 101, (33)

n)i ijyir(n)i n n)i
£ — DO in f(E)Wg )
n ig§<q>(n)f T O _ pOt Z’q;(n)) (34)
2 2

introduced in the W,(f)i sector, and gauge-fixing
functions f(g") ,

700 = o, 500 — (2}
. Y Y
N lg/§<¢,<n>f Y o0 — ot X q)(n)> (35)
2 2 ’

supplied for the Bﬁf) sector. These functions, which trans-
form covariantly under the SGT, incorporate gauge depen-
dence through the gauge-fixing parameter, denoted by ¢£.
It is worth mentioning that these gauge functions introduce

modifications to some vertices of the theory, among which
one finds the elimination of the unphysical bilinear and
trilinear couplings Wi W and W Wik Wik as well
as the couplings B%)Bg"). The gauge-fixing functions also
enter the Faddeev-Popov ghost sector, which then inherits
gauge dependence. This covariant gauge-fixing procedure
introduces simplifications on phenomenological calcula-
tions which involve pseudo-Goldstone bosons and ghost
fields; to be more explicit, the contributions from the ghost
sector are equal to minus twice the contributions produced
by the pseudo-Goldstone bosons.

E. Definitions of mass eigenstates

In this section, we provide the definitions of mass eigen-
states of KK excited modes. The mass eigenstates of SM
fields are defined as usual. Recall that at tree level all
masses of KK excited modes come from both compactifi-
cation and spontaneous symmetry breaking. Through the
rest of this paper, we will use the definition m, = n/R =
nM,., where M, represents the compactification scale.

The mass of a KK zero-mode field ¢, which is a SM
dynamical variable, is denoted by m . The mass eigen-

states for the KK excited gauge modes W,(f)i and Bﬁf) are
defined, in an analogous way to the SM fields, as
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(m+ _ 1 (n)1 ()2

Wit — —(wi — iw?), (36)
u NG w 7
- _ L mt 2

W™ = (w4 w2y, 37)
M \/z M 2 (
i) = e Wi = s,ByY, (38)
AW =5 W3+ ¢ B, (39)

where s,, and c,, denote the sine and cosine of the weak
mixing angle, respectively. Notice that we make use of the
same rotation matrix that defines the SM photon and the Z
boson to define their KK-excited-modes replicas. Masses
of these KK excited modes are

My = ymyq + m2  for W=, (40)

My = mZg +m2  for Z\, (41)
myw =m, for AW 42)

The KK excited modes of the Higgs doublet are

arranged as
(n)+
Pl = ? (43)
H" +ig )

where H™ and g{)](:]) are real scalar fields, whereas ¢+ is
a charged field that is related to the non-self-conjugate field
"W~ by ¢~ = (¢™*)T. The mass of the neutral-scalar
H™ is related to that of the SM Higgs boson, so that it is
given by

My = mi[(o) + m2. 44)

We define now the charged unphysical scalars Wé”)i =
J%(Wé”“ + iWé")z), and they will be combined with the

charged scalars ¢™* to define the charged physical scalars
H™=* with mass My, and the pseudo-Goldstone bosons
Gﬁ,m) as follows,

H™* = cos (ny,0)p™* + isin (nW«.))Wg””, (45)
H(”)7 = COS (nWlO))¢(n)7 - iSln (nw(O))Wén)i) (46)

G, = sin(ny0)p™* —icos (nW(o>)W§")+, 47)

+
wn

Gy = sin (ny0) ™~ + icos (nyo)W" ™,  (48)

won
where the mixing angle nye is determined by the
relation
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M yy(0) M0
tan nyo = W= =_W

/R m, 49

Concerning neutral scalars, we perform the rotation

W(n)3 Co Sy 2(n)3
B(Sn) - SW cW GA(H)
which defines the pseudo-Goldstone boson

Gy = sy W + ¢, BY, (51)

associated to the gauge boson Aﬁf). The scalar W(S")S plays a
role in the definition of neutral-boson mass eigenstates as it

is merged by a rotation with the neutral scalar d)fgl) to give
rise to

A" = cos (n40)p\") — sin (n40) W, (52)

G, = sin (nz(()))(ﬁ;:;) + cos (nZ<0))W(5n)3, (53)

where the mixing angle 7. is obtained from

n ()
tann,o = Z . (54)
m

n

The KK-excited field A is a physical neutral scalar® with
mass m., whereas G, is the pseudo-Goldstone boson

associated with the KK-excited mode ZZ‘).

The definition of fermionic mass eigenstates of KK
excited modes is more intricate, as it involves two rota-
tions, the first of which is performed in flavor space.
This first step is accomplished similarly to that of the SM
fields. In flavor space, one defines

e 1
Er={n"] . NER=|W]
7 LR V(rn) LR
()
En=1a"] . (55)
) LR
(dm) (Mm)\
pp=(en | . =] .
Kb(n) LR \1(”))L,R
( qm (ﬁ(n) \ (56)
(s | -]
5 ) ik \# )

and uses the unitary transformations,

*In Ref. [11], the scalar A" was denoted by A™. We have
changed this notation in order to avoid confusion involving the
KK modes A"
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Em =veel, Bl = V&M (57)
DR =viD" DR = ViDL (58)

(n) __ (n) _
U;_, R UL}E

for flavor triplets of charged leptons and quarks. Unitary
matrices V¢, V¥, and V{ are the same we used in order to
define the mass eigenstates of fermionic zero modes.

Neutrino flavor triplets, N i”l){ are demanded to transform
as their corresponding leptonic charged partners, so that

NR = VENTR (60)

These transformations allow us to define the mass eigen-
states of KK excited modes of neutrinos, which is not the
case of charged leptons and quarks, for they must be
subjected to a further stage. The idea is that these fermionic
fields can be fit into doublets associated to certain

KK-flavor space,

e/(n) u/(n) d/(n)

é/(rl) . Rs ﬁ/(n) 5 R) a/(”) . R) (61)
with /™ and &'™ collectively denoting charged leptons,
u'™ and 4™ denoting up-type quarks, and d'™ and d'"”
being down-type quarks. The final transformation that

completes the deduction of mass eigenstates uses the
unitary transformations

= ViU el (59)

( cos ( 2(0)) sin (@)
VL - »
\ s1n< /2< )) —cos (n’—z(ﬂ))
( cos (nf—z(m) — sin (@) 2
VR = ’
sin (@) 0s (@)

where the mixing angle n o is given by

m £

tan I/lf(o) = (63)

n

These matrices rotate left and right doublets as

1(n) f(n)
(Jj/(n) ) - VL'R( A(n) ) ’ (64)
S LR )R

in which the fermionic mass eigenstates are the F™ and

f(n) fields. These fields are degenerate as their masses are

given by
(65)

_ 2
M = 4fM 70 +m

Now that we have derived all proper mass eigenstates, we
simplify our notation by representing the fermionic mass
eigenstates from here on, simply, by ) and f(”).
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III. CONTRIBUTIONS TO THE WWV
INTERACTION FROM UNIVERSAL
EXTRA DIMENSIONS

Through this section, we sketch the calculation of the
CP-even contributions to the TGC’s WWV, with V = y(o),
79 from the SM with one UED. In Ref. [13], a calculation
of the extra-dimensional contributions from the gauge
sector of the SDSM to the TGC’s WWYV was performed.
In the present paper we extend that derivation by including
contributions from the rest of the extra-dimensional
sectors. We first provide such contributions in terms of
Passarino-Veltman scalar functions within a heavy-
compactification scenario in which the compactification
scale, M, = 1/R, is large enough to take the mass spec-
trum of the KK excited modes to be degenerate. In other
words, we assume that the mass m . of any KK excited
mode ¢ is given by m o = m,. Then, under such cir-
cumstances, we solve the scalar functions and express the
extra-dimensional contributions in terms of elementary
functions. The whole calculation is made in the covariant
gauge-fixing procedure of Ref. [11] within the nonlinear
Feynman-’t Hooft gauge, £ = 1. We take the W bosons on
shell but keep the neutral V bosons off shell.

A. Parametrization of new-physics effects
on the WWYV vertex

In general, the search for new physics can be carried out
either by directly producing new heavy states at colliders
or by investigating the heavy-physics virtual effects on SM
observables. Even if the production of KK modes could be
achieved at the Large Hadron Collider (LHC), their deter-
mination would be challenging [24-26]. The cleanest way
in which the LHC would determine the extra-dimensional
nature of the observed effects is the production of second
KK modes. The possibility of the lightest KK particle to
model [27] dark matter favors a mass scale for such particle
as large as 1.3 TeV [28], which makes it unlikely to
produce these second KK states at the LHC. The usage
of a linear collider to study the virtual effects of KK modes
on SM observables, on the other hand, would make [25,26]
the desired discrimination easier to reach, as an unambig-
uous measure of the spin of a first-stage KK particle could
be accomplished, and their interactions with SM particles
accurately quantified through the detailed examination of
virtual effects of KK modes on low-energy physics. In this
respect, the importance of analyses of TGCs rests on the
possibility that an ultraviolet completion could manifest as
contributions to such interactions. The calculation of cor-
rections from SM extensions to TGC’s is an option to study
high-energy physics by analyzing the outcomes generated
by virtual effects. From the perspective of effective field
theory, the effects of physics beyond the SM on TGC'’s
involving charged gauge bosons are expected to be more
important than the impact of such new physics on neutral
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TGC'’s, for the first new-physics effects on the former are
parametrized by nonrenormalizable operators of mass di-
mension six, while the less suppressed contributions to the
latter are produced by mass dimension eight operators [29].

In spacetime, the CP-even high-energy-physics contri-
butions to the WWYV interaction are parametrized [30] by
the Lagrangian

Lywy = —igv{gY(W,(?,)fW(O)_#V(O)V

_ W/(?I)/_ W(0)+,u v(O)V)
+ Ky W W Ty O

AT L N )
My,
where Wf?li =0 MW,(,O)i - a,,W,(?) * and V}?Z =9 #V(VO) —
a,,V,(?), while the couplings gy are given by 8,0 = Sy8
and g,0 = cyg. As we are interested in the contributions
from new physics, we are assuming that the parameters in
this Lagrangian do not include the SM part, so that they
only involve the extra-dimensional contributions. Notice
that, as we are parametrizing physics beyond the electro-
weak scale, the parameter Ay should be proportional to
m%,/M? for a large compactification scale. Another
parametrization, which we will use for our calculations,
is given [31] in the space of vertex functions. Following
the conventions of Fig. 1, the WWV vertex-function
parametrization reads

s = _igV{gY[2P,uga,B + 4qp8an — 9a8pu)]
+ 2Aky(968an — 9a8pu)
4A0y 1
+ — 48 |p 67
", pﬂ<qaqﬁ 24 gaB)} (67)

where only the transversal degrees of freedom of the
external neutral boson have been left. In the case where
the vertex-function parameters are constant, the relations

AKV = Ky + AV - gY, (68)
AQV = _2)lv, (69)

hold. When taking the external neutral boson to be an on-
shell photon, these form factors define the CP-even static
electromagnetic properties of the W boson by means of

V¥(2q)
W (p-q) W tp-q)
FIG. 1. The WWYV vertex.
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py =5 — 2+ Ax,), (70)
\4
2
Qw = ——(1+ Ak, + AQ,), (71)
my

where wy is the magnetic dipole moment and Qyy is the
electric quadrupole moment.

B. Universal extra-dimension effects on the
anomalous WWYV form factors

After performing all KK expansions in the fashion
discussed in the last section, integrating out the extra
dimension in the effective action, carrying out quantization
with the covariant gauge-fixing procedure depicted, and
passing to the mass-eigenstates basis, one obtains a KK
quantum Lagrangian, L, that we split as

Ly = Loy + Ligd™ + Ligpvier, (72)

The Lg\ part represents the low-energy description, that

is, the SM, while the term £y includes all couplings
involving KK zero and excited modes that contribute to
SM Green’s functions at the one-loop level. The Ligavier
Lagrangian contains KK-mode couplings that introduce
corrections to low-energy Green’s functions at the two-
loop level and higher orders. The main objective of the
present paper is the calculation of one-loop contributions
from the 5SDSM to the TGC’s WWV, so we specifically
concentrate on the new-physics effects provided by

L£,:°°, which we subdivide into
-£11(_11(00p — £gloop + £é-loop + .EII;_IOOP 4+ (73)

where those terms that do not contribute to the one-loop
WWYV vertex have not been considered and their presence
has been only implicitly indicated thorough ellipsis. All the
terms shown do produce one-loop corrections to the WWV
interaction and have been labeled according to the extra-
dimensional sector that gave rise to them: the purely gauge
1-loop . .
term L involves couplings of gauge bosons, pseudo-
Goldstone bosons, and ghost field KK-excited modes to
gauge zero modes and comes from the five-dimensional

gauge sector; the scalar contributing term Lg °, which
is produced by the scalar sector of the 5DSM, comprises
tree-level vertices associated with interactions of scalar
and gauge KK-excited modes with gauge zero modes, and
interactions of scalar KK modes with gauge zero modes as

well; and the fermionic sector £ '°° comes in terms of KK
excited fermions coupled to gauge zero modes, whose
origin is the fermionic sectors of the extra-dimensional
description. The explicit expressions of these Lagrangians
can be found in the Appendix.

The one-loop extra-dimensional contributions to the
WWYV vertex are generated by the diagrams shown in
Figs. 2-5. We have found that the extra-dimensional con-
tributions to g% are, as expected in any renormalizable

016010-9



M. A. LOPEZ-OSORIO et al.

theory, divergent. The interaction associated with such
form factor appears in the SM classical action, so that it
must be renormalized. The form factor A ky is also related
to an interaction already present at the classical level, but
an anomalous contribution arises in this case. In what
follows, we concentrate only on the form factors Ay
and AQy. We classify the CP-even contributions from
the SDSM to such form factors according to whether or
not the contributing diagrams contain at least one pure-
gauge vertex. By pure-gauge vertex, we mean a tree-level
interaction involving only gauge KK zero and/or excited
modes. With this in mind, we express the Axy, and AQy
form factors as

Axy = AK?NBC + AKﬁGC, (74)

AQy = AQYNEC + AQYOC. (75)

The diagrams contributing to A«$NBC€ and A Q$NBC, which
we exhibit in Fig. 2, incorporate one or more pure-gauge
vertices. In the case of such diagrams, the external SM
neutral boson always couples to a pair of gauge KK excited
modes, although the SM W bosons can couple to a scalar,
as it occurs in diagrams (h) and (i). On the other hand, the
structure of any pure-gauge coupling involving SM bosons
and KK excited modes is not distorted by spontaneous

PHYSICAL REVIEW D 88, 016010 (2013)

symmetry breaking, which is a situation that particularly
occurs in the case in which a neutral SM boson is involved.
This suggests that the contributions from these diagrams
are governed by the SU4(2);, gauge group, so that we refer
to them as gauge neutral-boson contributions (GNBC).
For the A« and AQ}S€ form factors, whose contribut-
ing diagrams have been distributed in Figs. 3-5, we use
the name ‘“‘nongauge contributions” (NGC), because, con-
trasted with the GNBC, they are affected by electroweak
symmetry breaking. The diagrams associated with NGC
come from the five-dimensional scalar sector and from the
fermionic one, being different to each other in the way that
KK excited modes couple to SM gauge bosons. We have
separated the NGC into (i) those contributions, denoted
by Ax$S and AQS$S, generated by diagrams that include
three-level couplings of a SM neutral boson to scalars and
an internal line representing a gauge KK excited mode,
which we exhibit in Fig. 3, (ii) those coming from diagrams
incorporating scalar loops, shown in Fig. 4, and referred to
as Ak} and AQY, and (iii) those represented by Ax% and
A Q% and produced by diagrams involving fermionic loops,
given in Fig. 5. This is written as

AK‘I\,IGC = AKES + AK%, + AKI‘:/, (76)

AQNC = AQY + AQY +AQE. (7]

FIG. 2. Contributing one-loop diagrams that involve at least one pure-gauge vertex. Diagrams (a)—(g) only involve KK excited
modes that arise from the five-dimensional pure-gauge sector, whereas diagrams (h) and (i) also contain scalar KK excited modes that

originate in the five-dimensional Higgs sector.
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/ N\ / N\

N\ g+ HmE / N\ g=

\ / \
Wi W, mW;
(b)

FIG. 3. One-loop diagrams including an internal gauge KK
excited boson and couplings among KK scalar excitations to
SM gauge bosons.

Hn= 7
/
”,f’“} Z(n]
(a)

A distinctive feature of the UED framework, first pointed
out in Ref. [3], is the particular importance of one-loop
calculations in models incorporating this sort of extra
dimensions. The source of this meaningful property is
conservation of momentum in compact extra dimensions,
which, at the four-dimensional level, is translated into
KK-number conservation. The S'/Z, orbifold compactifi-
cation breaks conservation of KK number to conservation
of KK parity, which has the consequence that KK excited
modes cannot be single-produced at tree level. This means
that there are no tree-level contributions to low-energy
observables, but the very first corrections enter at the
one-loop level. Indeed, this is the reason behind the
relatively weak constraints on the compactification scale
associated with this sort of extra-dimensional model. The
ATLAS Collaboration performed [32] an analysis that
centered in searching for squarks and gluinos in events
containing jets, missing transverse momentum and no
electrons or muons. The results of such paper were reinter-
preted [33] in the context of UED, setting the bound
M. > 600 GeV under sensible assumptions related to
the energy scale associated with the higher-energy descrip-
tion lying beyond extra-dimensional physics. A recent

PHYSICAL REVIEW D 88, 016010 (2013)

investigation [34], which combined the latest LHC data
provided by the ATLAS and CMS Collaborations, con-
strained the compactification scale, finding that M, >
500 GeV is still allowed within a very narrow region
around a value for the mass of the Higgs boson amounting
to mpyo = 125 GeV, while around myo = 118 GeV
only a compactification scale as large as M, > 1000 GeV
would be still consistent. We then consider the heavy-
compactification scenario, which we define by the relation
Q*> < M2, with Q =2q standing for the incoming
momentum of the neutral gauge boson V. This framework
allows us to take the compactification scale to be large
enough so that the mass spectrum of the KK modes is
degenerate. In other words, we take the approximation that
the mass of any KK excited mode is given by m, = n/R.
All the results that we show below are given in terms of the
dimensionless variables y, = qua“”/ m2 and y, = Q/m.
The degenerate mass spectrum of KK modes greatly sim-
plifies all results, which can be written in terms of only
four Passarino-Veltman scalar functions. In order not to
clutter up the notation, we define B(1) = B (0, m2, m2),
BO(2) = BO(m%;V(O)’ m%l’ mgz)’ BO(3) = BO(Qz’ m%l’ m%), and
Co(m‘zwm, m%}vm), Q% m2, m2, m2). All results are shown in
such a way that the cancelation of ultraviolet divergences
is explicit.

As we noticed, the GNBC are supplied by the one-loop
diagrams shown in Fig. 2. It is important to stress that in
addition to these diagrams, the contributions from pseudo-
Goldstone bosons and ghost fields are taken into account,
even when the corresponding diagrams are not shown in
Fig. 2. The diagrams incorporating pseudo-Goldstone
bosons and ghosts are similar to the diagrams solely con-
taining gauge bosons, and all of them, but the triangular
ones, vanish. The expressions for the GNBC read

FIG. 4. One-loop diagrams without pure-gauge vertices and involving scalar interactions. The amplitude associated with each

diagram (c)—(g) vanishes identically.
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FIG. 5. One-loop diagrams without pure-gauge vertices and involving fermionic currents. Diagrams (a)—(h) are composed of
interactions of KK excited modes of five-dimensional quarks with zero modes of extra-dimensional gauge fields. KK excited modes
involved in diagrams (i)—(l) are generated exclusively by five-dimensional leptons.

GNBC _
Aky

o 3 o BB - 28 ¢ B0 - 12805 B1) ~ 3802 + 280)

(=96y5(yw + 1) + 2y5yw(554yy + 581) — 8oy (617yy + 671)

— 803 [By(1) — Bo(2)] + ywl—H

+ 2883, (20yy + 23)[Bo(2) — By(3)] + sm"y W

(—12yo(yw(yw + 15) + 20)yy
W

+ 393 (v By +25) +20) + 16(Ayy — 5)y})Co + 20y (vp — 4yw)Byg + 8yw>}, (78)

2560y3, [B,

AQENEC — 967T2 Z ot 1 — {16onyW[BO(1) +2B,y(2) — 3By(3)] + > 1) = By(3)]
12803 [Bol1) + Bo(2) — 2By(3)] + 2w VoY %V;Q Yo W)y o) 3]
N 240m2yw (= 2y5(vw — 3yw + 4yow = 3y — vg — 40w — 4y ¢,
Yo
| 40yw(65pyw — 200y — ¥ + 48y€v)}. 79
Yo

The diagrams of Fig. 3 produce NGC given by
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Ay = 9677% Zl ( 43;’;”?;1);1 5+)yyWW) {2[B(2) — By(3)] — m2(yp — 2yw)Co} (80)
AQSS =0 (81)

with the definitions
Gy = Gy = (11 = 32 + O (82)

The NGC from scalar KK excited modes through diagrams with scalar loops, which we provide in Fig. 4, contribute to
the Aky and AQy form factors as

g Gyldey(cyyw +1) — 1)

Axy = 96 P Z Ay — o) (1 + y)? {32y0y%[Bo(1) — 2By(2) + By(3)] — 64y3,[Bo(1) — 3B,(2) + 2B,(3)]
— 4y2 yw[Bo(1) — By(2)] = yw(yQQyw + 26yoyi)[Bo(2) — BO(3)]
- 6m121yW(_y2QyW(yW +3) = yolw — 12)y%)Co — yw(@yoyiy — 3)’%2)’W + 32y3)} (83)

g’ Gyldey(cyyw +1) — 1
A S _ \4 w\btw)yw
0} = 5oz Z Ay — o) (L T y)?

){—64y%/[30(1) + By(2) — 2By(3)] + 8y yol[Bo(1) + 2By (2) — 3By(3)]

ey e e T Ak 28NS Sy
Yo Yo
~ 2may vy ow — 3w — 4vow — 3y + vp + 4w — Dyiy) ¢,
Yo
 2y3(=6ypyw + 20yoyy + yp — 48yiv)}. )
Yo

The NGC from fermionic KK excited modes come from the diagrams shown in Fig. 5. Notice that diagrams (k) and (1)
involve charged currents characterized by a sort of KK flavor mixing among leptonic KK excited states e(") and é A(")
Each of these couplings incorporates a y> matrix, but, as there are two of such KK-flavor-changing charged currents in
each of these diagrams, the > matrices cancel, and the resulting expression is CP even. The NGC from all diagrams to the
Aky and AQy form factors are then

Axy = g 5 i Fr 3{_128)’Qyw[30(1) — 2By(2) + By(3)] + 256y%,[Bo(1) — 3By(2) + 2B,(3)]
967T dyw — )

+16y[Bo(1) — Bo(2)] + 4(vgyw + 26y0y3)[Bo(2) — Bo(3)] — 24m;(ypywyw + 3) + yolyw — 12)y3)Co

F
— 4(—4yoy} + 3)’2))’W = 32y3)} + %{_128)@)%[30(1) + 4By(2) — 5By(3)]
9

(dyw —
+256y3,[Bo(1) + 3By(2) — 4By (3)] + 16y5[Bo(1) + 5By(2) — 6By(3)] + 4(ypyw + 26y0y3)[Bo(2) — Bo(3)]
- 24m3(y%2yw(yw = 5)+ vy +yolw + Hyi)Co — 4(—4yoyiy + 3ypyw — 32yiv)}], (85)

a0 =5, Z (Z;:V i . {32300 [Bu(1) + 280(2) — 360311 + 25653 [Bo(1) + By(2) — 284(3)]

512y3 32yw(=5yoyiy — ypyw + 6yiy)

= 22 IR (1) - By(3)] + e V2[By(2) = By(3)]
0
N 48m5yw 2y (vw = 3yw — 4yoyw — 3y + yh + 40w — 4)yiy) c
0
Yo

8yw(—6y5yw + 20yoyi, + y5 — 48y;

N yw(=6ypyw VoY T Yo yw)}’ (86)
Yo

with the Fy ; overall factors given by
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Fyy= f Zl (K> =1+ 0@,)] (87)
Fyo =er O(y.), (88)
Fz, = f Zl [1+ Oy ya ye)) (89)
Fz,zzfzr O(y.). (90)

In performing this calculation, we have neglected the con-
tributions involving off-diagonal entries of the Kobayashi-
Maskawa matrix. So, in these expressions, K, is an entry
of the Kobayashi-Maskawa matrix diagonal, whose labels
are u (standing for a zero-mode up-type quark) and d
(representing a zero-mode down-type quark).

Within the heavy-compactification scenario, the
Passarino-Velman scalar functions involved in the results
can be easily solved through the Feynman-parameters
technique to obtain expansions suppressed by powers of
the compactification scale. Besides yielding simpler forms
of the contributions, this procedure allows one to perform
the infinite KK sums in an exact way. The terms comprised
by the resulting expressions are all suppressed by powers
of the compactification scale. The higher the power of the
compactification scale in a given term, the greater the
suppression of its contributions, so that we keep terms
involving factors 1/M? and disregard those involving
higher powers of the compactification scale. With this in
mind, we write the A«{NBC and AQYNBC form factors as

A KGNBC — 1 il

v MZ4325%(Q% — 4m?,)*

+ m%/v(o) (2myy0 (—6460%my0 + 504’”3‘/(0)

—45(0)%) +527(0*) | + 0(1/MD),  O1)

[-48(0%)°

1 Samm?,,
AQENBC — W [_3(Q2)5/2
Y MZ 108220202 — 4md,)?

+ myo (mem) + '\’ Q2 )(mW(o)<—8v szw(o)

+ 62, + Q2) ; 3(Q2)3/2)] +O(1/M),
(92)

where a denotes the fine-structure constant. The A«$S and
AQ$S NGC are given by

AKGS — 1 am(2sy — S)nym3,
as =

4
W sl T OW/M 93

AQSS =0, (94)

for which we have defined
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1
Ny = N0 70y = (1, 1 - —) (95)
(»y?,2) ZC%,V
The contributions from KK scalar-loop diagrams, A} and
AQ3, can be expressed as

Ak = O(1/M?), (96)

AQS = O(1/M?). 97)

The latest NGC are the fermionic ones, for which we have
separated the cases V = y® and V = Z©. The corre-
sponding expressions are

AKTy = O(1/M7), (98)
AQ];(O) =0, 99)
1 aWQQmév(o)

AKF, = —
20 T M2 728307 — am2,,

X <9J—Q—Emw(o) + ZM%V(O) - 8Q2> + (9(1/M§),

(100)
Az = # 36\/@:(#;iv—(m4m2 )
W WO
(0 2+
X (mW<o)<—8\/EmW<o> +6ml, + QZ)
+ 3(Q2)3/2)) + O(1/M?). (101)

C. Discussion

The presence of couplings with inverse-mass dimen-
sions in extra-dimensional models indicates that these
physical descriptions are not renormalizable. In the context
of UED, it was recently shown [9,15] that, in spite of this
general property, one-loop contributions calculated from
models with only one extra dimension are renormalizable.
Nonrenormalizability of extra-dimensional theories is not
an issue, as it only means that they do not model funda-
mental descriptions, but are valid below certain energy
scale that marks the beginning of a new physical picture.
However, the possibility of obtaining finite results, inde-
pendent of higher-energy scales, is a nice feature that is
indeed observed in the contributions to the gauge coupling
WWYV that we just exhibited. In general, the way through
which the nonrenormalizability of extra-dimensional theo-
ries manifests, after compactification and integration of the
extra dimensions, are the KK sums. To this respect, the
final step in the derivation of Egs. (91) to (101) consisted in
performing the KK infinite sums, which were found to be
known convergent series, namely, Riemann zeta functions.
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This proves that presumable sources of ultraviolet diver-
gences associated to discrete sums are eliminated. In the
results written in terms of Passarino-Veltman scalar func-
tions the disposition of the two-point scalar functions, B,
shows that continuous ultraviolet divergences are exactly
cancelled. This feature is even more explicit in the series
suppressed by powers of the compactification scale, for not
even a track of divergences remain. Thus our results show
explicitly that the ultraviolet divergences generated by
continuous sums also vanish, so that the final expressions
are finite and cutoff independent. Our low-energy physical
picture is the SM, which is a renormalizable description
where a linear realization of electroweak symmetry break-
ing takes place. This context sets the conditions under
which the decoupling theorem [35] is fulfilled. Note that
all our results consistently decouple in the limit M, — oo,
which can be better appreciated in Egs. (91) to (101), since
the suppression provided by the compactification scale
makes it explicit in them. We divided the contributions to
the TGCs in order to emphasize their behavior with respect
to gauge symmetry dictated by the SU,(2); group. The
general parametrization of the new-physics effects on the
WWYV interactions arises, from the viewpoint of effective
field theory, from gauge invariant effective terms, both
renormalizable and nonrenormalizable, whose building
blocks are the SM gauge symmetry and dynamic variables.
The physical states associated to the photon and Z boson
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. . . LM,
1500 2000 2500 3000
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. . . LM,
1500 2000 2500 3000
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are then innately related to each other through the W,(?)3

field, due to electroweak gauge symmetry. It is through
such link that the new-physics contributions to the TGC’s
WWYV parametrization that are governed by the SU4(2)..
gauge group are expected to distinguish the cases V = y©
and V = Z© only through the couplings gy. In the case of
the GNBC, notice that there is no difference between the
form factors corresponding to the case V = y© and those
arising for V= 7 which indicates, according to the above
discussion, that SU4(2);, gauge symmetry is maintained at
the one-loop level by such contributions. Contrastingly, the
NGC distinguish the cases V = y© and V = Z©, which
leads to the conclusion that they are not governed by the
SU,(2);, gauge group. The reason behind such different
comportment lies on the role played by electroweak gauge
symmetry, which is innocuous to the sources of GNBC, but
strikes the couplings of KK excited and zero modes origi-
nated in the five-dimensional scalar and fermionic sectors,
whose subsequent yields are the NGC.

The determination of the existence of UED could be
achieved at the LHC through direct production of the light-
est KK particle, which is neutral and, as a consequence of
KK-parity conservation, stable, so that its production at
colliders would result in generic missing-energy signals.
The detection of such KK excited mode would be
challenging, for the high degeneracy of the mass spectrum

M,

1500 2000 2500 3000
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-0.0020
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AQ,
M,

1500 2000 2500 3000
-5.x107°

—-0.00001
—-0.000015
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—-0.000025

-0.00003

—-0.000035

FIG. 6. Behavior of the Ak, and AQ, with respect to compactification scale, M, at 4/Q? = 500 GeV. All extra-dimensional

contributions decouple in the limit M, — oo.
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TABLE 1. Values of the Ak, and AQ, parameters for fixed /Q? = 500 GeV.

A K0 Ak 0 AQ 4O AQ,0
M, = 1000 GeV —2.5x 1073 —-2.6% 1073 -9.0X 1073 —3.6 X107
M, = 2000 GeV —6.3 X 107* —6.5 % 107* —22X107° —8.8 X 107°
M, = 3000 GeV -2.8x107* —-29x107* —9.7 X 107° -3.9%x107°

of KK excited modes of the same KK level leads to
small missing-energy signals. Direct production of
second-level KK states, which would be a way to reliably
determine the UED nature of the observed new physics
effects, could be out of the reach of the LHC, as KK excited
modes are exclusively pair-produced at tree level. The study
of virtual effects, such as those associated with TGCs, could
then provide useful tools for the search and determination
of UED. The TGC’s WWYV can be studied through the LHC
and the ILC as well, but it has been pointed out [26] that the
sensitivity of the latter to this gauge interaction is much
better than that corresponding to the former. While the LHC
is expected [26] to constrain AQy up to @(1073) and to set
a bound as restrictive as @(10~2) on Aky, the sensitivity of
ILC should reach [26] bounds of @(107%) on all these
parameters. The SM one-loop contributions to the AK,y(O)
and AQYW) form factors have been already calculated by
employing conventional [36] and unconventional [37]
gauge-fixing approaches. The gauge-invariant scheme
followed in Ref. [37] leaded to a SM contribution to
Ak, varying from 107 to 107* for energies in the range

200 GeV < \/@ <1000 GeV, while, for the same energy
values, the AQW) form factor is found [36] to lie between
10~* and 107°. In Fig. 6, one can appreciate the behavior
of the extra-dimensional contributions to all form factors
as larger compactification energy scales are considered

within a scenario in which \/Q2 = 500 GeV. Also, in
Table I, we provide a summary of numerical results on all

these parameters for \/@ = 500 GeV combined with
compactification scales M, = 1000 G, M, = 2000, and
M. = 3000 GeV. These numerical estimations were all
made by employing the expansions of the form factors with
terms suppressed by powers of the compactification scale
M. Our results indicate that the Ak, range from
Axy~—1073to —10~4, for compactification scales within
M. =1 TeV and 3 TeV, which means that ILC would be
sensitive at Ecy; = 500 GeV in these scenarios. In the case
of AKy(m, note that the one-loop extra-dimensional contri-
butions are about the same order of magnitude than those
from the SM. On the other hand, we find the AQy, parame-

ters to be out of the reach of ILC, as for \/—Q_f = 500 GeV
we estimate their values to be between O(107°) and
0O(107°) for 1 TeV < M, < 3 TeV. This loop contribution
is minor than the one emerging from the SM by about one
order of magnitude.

As we performed all numerical estimations in a
heavy-compactification scenario, for which the mass

spectrum of the KK excited modes was taken to be degen-
erate, one might wonder whether the impact of the top
quark mass on the TGC’s could have been minimized by
this assumption and actually play an important role in the
nondegenerate framework. We evaluated the contributions
involving the KK excited modes of the top quark in an
exact way, that is, by taking their mass as given by mim) =
m%, + my, and found that the total fermionic contributions
to the AQy form factors do not experience appreciable
changes, while the corresponding contributions to the Axy,
are highly sensitive to quarks’ heavy masses. We have
verified that the same pattern occurs in the one-loop
fermionic contributions from the SM, which exceed the
importance of the extra-dimensional contributions by
about one or two orders of magnitude in all cases. In spite
of the enhancement observed in this calculation, the total
numerical results are not notoriously modified, so that the
leading extra-dimensional contributions to these from
factors are still engendered by the gauge sector of the
five-dimensional high-energy description. The only case
in which the order of magnitude of such contributions is
matched by another source is the A Q0 form factor, which
also receives a large contribution, between ~107° and
~107°% from the extra-dimensional fermionic sector;
although, as already mentioned, such form factor is not
very sensitive to the top quark mass, and the extra-
dimensional pure-gauge contribution is still the most
important. In all cases, contributions from the five-
dimensional gauge sector are negative, so that the total
contributions to all form factors are negative as well.* This
can be observed in the plots of Fig. 6 and in the data of
Table I. There exists the possibility of including effects on
the TGC’s WWYV from an extra-dimensional effective the-
ory parametrizing the impact of the high-energy descrip-
tion lying beyond the cutoff of the SDSM. Under
reasonable assumptions, it has been estimated [15] that
the effects of such presumable higher-energy theory
amount to a small percentage of those generated by the
SM in five dimensions, for which we have omitted a
comparison in the present paper.

“The SM one-loop contributions to the WW'y vertex reported
in Ref. [38] consistently have the same signs as our results, as
expected since the SM couplings and those involving KK excited
modes are similar. At the first glance, there seems to be discrep-
ancies between the signs of our results and the ones derived in
this reference, but all differences are caused by the conventions
taken in that work and the ones used in the present paper for the
general WWYV parametrization.
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IV. CONCLUSIONS

The main purpose of the present paper was the study
of the one-loop effects conceived by an extra-dimensional
generalization of the SM on the parameters characterizing
the charged TGC’s WWV. Motivated by the importance of
one-loop calculations in extra-dimensional extensions of
the SM in which the extra dimensions are assumed to be
universal, we considered the case of one UED. The inter-
esting gauge structure of the KK theory obtained after
compactification of the extra dimension was emphasized.
Two sorts of gauge transformations arise at the four
dimensional level, one of which contains the low-energy
SM gauge symmetry, whereas the other corresponds to the
gauge nature of some heavy degrees of freedom, that is, KK
excited modes. In order to perform phenomenological cal-
culations, it was adequate to remove the gauge symmetry
characterized by the latter set of gauge transformations,
which we accomplished through an interesting covariant
gauge-fixing procedure that gave rise to a quantum theory
that is still invariant under the electroweak gauge group. By
virtue of the importance of W* W~ production in linear
colliders, which is a window to study TGCs, we took the
external SM W bosons on-shell, but kept the SM neutral
gauge boson off shell. We then performed the calculation, in
the Feynman-'t Hooft gauge, in a context in which the
compactification scale was supposed to be large. Within
this heavy-compactification scenario, we set the masses
of the KK excited modes to be all the same, for such a
degenerate mass spectrum yields valuable simplifications.
All ultraviolet divergences associated to continuous sums
were found to vanish and the results behaved in a decou-
pling way. The heavy-compactification scenario then made
it possible to express all results as series with terms sup-
pressed by the powers of the compactification scale, where
it was emphasized that divergences associated to discrete
|

PHYSICAL REVIEW D 88, 016010 (2013)

infinite KK sums as well lead to finite results, from which
we concluded that the final expressions are finite and inde-
pendent of higher-energy scales. Each contribution to the
WWYV form factors was subdivided into two parts, one of
which is unaffected by electroweak symmetry breaking and
consequently shows manifest invariance with respect to the
SU,(2); gauge group. The other part in each contribution,
emerged from the extra-dimensional scalar and fermionic
sectors, did not exhibit such a comportment, which is related
to the sensitivity of its extra-dimensional originating source
to spontaneous breaking of the electroweak group. Our
numerical estimations produced dominating contributions
from the extra-dimensional gauge sector, which were not
even exceeded by those associated with fermionic excited
modes. Form factors were found to be comparable to the SM
one-loop corrections and well within the reach of a linear
collider with a center-of-mass energy amounting to 500 GeV
and compactification scales ranging from 1000 to 3000 GeV.
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APPENDIX: LAGRANGIANS CONTRIBUTING
TO WWV AT THE ONE-LOOP LEVEL

In this section, we provide the Lagrangian terms con-
tributing to the WWYV vertex at the one-loop level.

1. Pure-gauge contributions

The part of the KK Lagrangian generated by the extra-
dimensional gauge sector that yields one-loop contribu-
tions to the TGC’s WWV can be expressed as

1-1oo
‘EG P = £W(o)3w(n)—w(n)+ + .EW(O)I wm=pms T .EW(O)—W(OH wmsyms + .£W(o): W= wospms + £W(0)3W(n)—w(,,)+
5 Ws

T Lyosyoewer T Lyo- oy T Lyosyosyosyen Lyocnen + Lyoyococn, (A1)
where
Lyonpo-wos = — ig[ (W;L"I)}Jr ww—v _ W’%* W+ )O3 4 W’E?’)} Wy )+
1
_ E W,E?)S (W(n)ﬂL P ,,W(")_ v _ wm—ngy VW(n)+ ) ]’ (A2)
Loz oo = —ig [(Wffz_ W3y — WSy —ryyO+u 4 WOF ymsupyn-»
— (WIEZLIZJr w3y — W;(LHIP wm+ I/)W(O)—,u, _ W;?,): W3n ) +y
_ é W’E?H(W(n)—uavw(n)% _ W(n)3'“8,,W(”)_V)
1 _
i Wi (Wit g, windr — W<">3Mayw<”>*”)], (A3)
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2
Lw(o)fw(0)+w(n)fw(n)+ = %[(W}(BH I(In)* _ 1(}0)+ W;L")f)(W(O)—VW(nHM — W(O)—MW(n)v)
+ (W%)7W£”)+ _ S}”)*Wff)+)(W(O)—uw(0)+V _ W(O)_VW(O)+’U“)
- % W wi W(")‘“W(")+”], (Ad)

2
L0 s sy = — %[(W%)—WLOB _ W}(}n)—WIEP)3)(W(O)+MW(n)3V — WO+ m3p)

+ (W,Ex(,))+ W£0)3 _ W,(,O)+ W;?B)(W(n)*u W(n)3V _ W(n)*uw(n)SM)

- §w<n>wwi°>3w<n>—vvv§?)+ + He. ] (AS)

L = igWP (W arwt — wi T gr W), (A6)

w3 Wén)f Wg””

Loy o yor = —iglW ™~ (WP arwg™ — wit amwi™) — Wil (W anws™ — Wi anwg™), (A7)
L WO - o+ W;,,)— W;n)+ = g2 W,(LO)7 W(0)+ H ngi Wgn) * s (AS)
I o= = s yios = — g2 W/(i))3 Wgn)3 (WO+a Wgn)_ + wO-n Wén) ), (A9)

£W<°)C(">C(") = —ig[WLOB(C(")Jr grCi— — guc+ - — o= gud+ 4 auc(n—)c"(nH)
WO (B ga i — g BG4 gu = G3 — Cln- gu )
+ Wif))*(c(nﬂaué(nﬂ — QRCIBCIT 4 grew+ 3 — c+ grcm3y] (A10)

.EW(O) WO Em = gz[W,E?)_ WO+p (C(")+ Cm= 4 c=cw+ 4 o3 C("B)
_ WS))‘F WO+ )= ch)— W/(?)_ WO —u )+ S+ _ W,(?B w03k c(m)3GHn)3

— WOBWO+a(Cn= w3 4 c3Em =) 4 WO-w(Ch+Em3 4 c3Em+)y] (A11)
for which we have defined
1
CW= = —(c' x ic?2), Al2
ﬁ( ) (A12)
_ 1 - i,
CW* = —(C' x iC2), Al3
\/5( ) (A13)

2. KK-excited-scalar contributions
The contributing term containing couplings of scalar KK excitations to gauge KK zero and excited modes reads
g g pling gaug
1-1
L™ = Lyoxx) + Lzoxomk) T Laoxkxe T Lwowo xxk) (AlD
with
Lo = gmyo HOWD T Wo s + W= wse)
+ %(ZCWSQS‘B + cacﬁ)[h(”)(Wﬁ)Ha”H(”)_ + W}?)féf‘H("H)
_ 3 _
= (WTHO + WDTHO a0 + Zigewegmyo KOWOTHWET = wO W)
— igzca [H(”)(W,E?HGMH(”)_ — WE?)’G#H("H) - (W;?HH(")_ — W;?)iH(")Jr)G”H(")]

1+ 252 _
+ gca[mW@sWAz’) - mZ(m(TW)ZE’})](WfPHH(”)’ + WO gy, (A15)
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2
. ca 0 — _
L 0xxxx) = —zch<1 3 )ZL)(HWWMH(") — HW=grpm+)

_ gcamZm)ZE?)(H(”)_W("H'“ + Hm+Ww—n)

4 8 Zsi))(h(n)auH(n) — HWyrpmy 4+ 8Mzo ZQ)Z(”)“H(”),
2¢cy Cw

£A(0)(KK)(KK) = —leAfB)(H(n)_'—a“H(")_ - H(n)_aMH(")+),

2
Lyowoxkk) = %{W}?)‘W@W[z(l +sHHWTHWY + HOH + (¢} + 4t s3)hWh™)]
+ 2S%1(W§?)+ wO+u - gm- 4 Wl(?)* WO —u g+ prim+yy

3. Fermionic contributions
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(Al6)

(A17)

(A18)

The contributions generated by fermionic KK excited modes coupling to a zero-mode gauge boson come from the

Lagrangian

1-loop __
LF - -EW(O) ) p(n) + Lz(o)e(n)e(n) + ‘EA(U)e(’”e(”) + LW(O)M(’”d(”) + LZ(O)q(”)q(”) + LA(O)q(lz)q("),

where we have defined the lepton-gauge interaction terms

e T
Lopormm = 5= I:COST(N(n)»y,U« EW) = sin & (N0t E(n))jlWM +He,

V2

_ 2 V4 Z.r \[ E™
Ly mgm = =o—| N0y N 4 (EWEM)yu( ZFE “EE - | 122
2ew Zig Zpp J\E"

£A(O)e(n)e(n) = —e(E(")y“E(") + é(”)y“E(”))Aﬁf),
along with the definitions

n n
— cog2 e _ 52
Zgg = cos 5 28y,

. o N
= qin2e” 92
Zpp = sin 5 285,
. n,w n,m
— R j— e e
Zpp = Zgp = sin 5 >

On the other hand, the quark-gauge couplings are produced by

o= 1% W5 \[ D™
Lo, mgm = £ (U(”)U(n))K’y’“ up up R WLOH + H.c,,
“ 2 Wop Wop J\ D"

q q .5 q q .5
L0 0,0 = iZ;?){(U(") E](fl))yﬂ( Zyy  Zyp? )( UE"?) n (D_(")B(n))y“( Zpp  ZppY )(Dinz
q"q q 5 q Fr(n q 5 q Ay (n
w ZoyY  Zoo J\U ZppY Zpp J\DP

Lyogngn =€ Y. Q@ y"q"™ + Gy gAY,
q=u,d,...

where

n,m o UF0!
2 2’

Wyp = cos
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nu(n) nd(n)

Wy p = sin=2 i (A30)

Wy, = —sin ";‘"’ ”2” (A31)

Wop = — sin% cos "g”), (A32)

z4, = (% - Qu)cosz% - Qus%vsinz%, (A33)
zZl, = <% - Qu)sinz% - Qus@cosz%, (A34)

(1]
(2]

(3]
(4]

(5]

q
ZDD -

AN

q _— 79
ZDﬁ ZéD

PHYSICAL REVIEW D 88, 016010 (2013)
_(1 _
2
nd(n)

1 n .
(5 + Qd)cosz% + Qgs%,sin? o

nu(n) nu(n)

2cos2,

Quc%v) sin (A35)

(A36)

1 n n
(E + Qd)sin2% + st%vcosz%, (A37)

(1
—(=+
2

DD

nd(n)

Qdc%,) sin—— cos
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