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Revisiting the phase diagram of the three-flavor quark system
in the Nambu-Jona-Lasinio model

Li-jia Jiang (ZZFN{E), Xian-yin Xin (FFI4R), Kun-lun Wang (FE2£), and Si-xue Qin (% & 2%)*

Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China

T

Yu-xin Liu (X £%)

Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China

and Center for High Energy Physics, Peking University, Beijing 100871, China
(Received 22 March 2013; published 19 July 2013)

We propose the 2 + 1 flavor chiral susceptibility criterion to identify the chiral phase transition of the
2 + 1 flavor quark system and take it to determine the phase boundary and the critical end point (CEP) in
the Nambu-Jona-Lasinio model. We give explicitly the phase diagram of the 2 + 1 flavor quark system in
terms of the temperature, quark chemical potential and strange quark mass and that in terms of the
temperature, quark chemical potential, and flavor-mixing interaction strength. We locate the CEP of the
2 + 1 quark system with physical masses at (ug, Tr) = (316.2 MeV, 68.1 MeV). We show that increas-
ing the mass of the strange quark lowers the temperature and enhances the chemical potential of the CEP if
the mass is not quite large, and there exists a critical flavor-mixing interaction strength (KA>), =~ 6.05 for
the crossover to turn into a first order phase transition. Increasing the flavor-mixing strength beyond the
critical one induces the temperature of the CEP to increase drastically and raises slightly at first and then

descends the chemical potential.
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I. INTRODUCTION

The properties of strong interaction matter at finite
temperature and baryon density have gotten both theoreti-
cal and experimental attention for decades [1-9], while
determining the QCD phase diagram is one of the main
subjects [7-9], since an exact depiction of the phase
diagram will provide fundamental understanding of the
origin of mass, the mechanism of color confinement
(hadronization), and the evolution of early universe matter.
However, the phase diagram of QCD is proved to be
complicated, because it is governed by not only the
medium effects of temperature, density (or chemical
potential), and finite size, but also the intrinsic effects of
current quark mass, isospin, interaction strength, color-
flavor structure, and so forth. Intensive searches on high
energy heavy-ion collisions have been performed at labo-
ratories such as the RHIC and LHC, and a promising
observation of signatures of the phase diagram is being
looked forward to. Observation of the properties of com-
pact stars provides a natural laboratory for exploring the
properties of very dense strong interaction matter. At the
same time, kinds of quantum field theory approaches and
phenomenological models have been developed to try to
get close to the essence of the phase transitions, mainly the
chiral phase transition and deconfinement-confinement
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phase transition. Lattice gauge theory is quite successful in
the nonperturbative region of QCD [10-12], except the so-
called fermion sign problem which obstructs its application
on nonzero chemical potential circumstance. Efforts have
been made to overcome such a problem and great progress
has been made (see, for example, Refs. [13-23]). On the
continuous field theory side, besides that the Dyson-
Schwinger equation approach [24-28] has been applied
to explore the QCD phase transitions (see, for instance,
Refs. [29-40]), the Nambu-Jona-Lasinio (NJL) model
[41,42], the chiral quark model [43,44], the quark meson
coupling (QM) model [45], and other effective models and
their improvement to taking into account the confinement
effect (for instance, Polyakov-loop improved NJL (PNJL)
model, Polyakov-loop improved QM model, etc.) [46-52]
have also been implemented to study the QCD phase
transitions. Then not only the general features of the
phase diagram but also the critical end point (CEP) of
the transitions have been proposed (see for example,
Refs. [13-18,33,34,37,38,47-49,53-69]). Especially, the
variation behaviors of the phase boundaries and the
CEP’s location with respect to the interaction strength,
the flavor-mixing strength, the u- (and d-)quark mass,
and the strange quark mass have been given in some sense
(see, for instance, Refs. [17,37,47,49,55,56,59,61,64,69])
Moreover, with the interactions being extended to include
the diquark related channels, in particular, the six-point
diquark chiral coupling which is a type of U, (1) anomaly, a
new critical point and some other interesting phenomena
are proposed [70-73]. However, whether the QCD critical
end point really exists or not is still an open question
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(see, for instance, Refs. [74,75]). We revisit then the phase
diagram of the 2 + 1 flavor quark system in the NJL. model
with a newly proposed criterion to determine the phase
boundary and the CEP in this paper.

In this paper, we investigate the chiral phase transition of
the 2 + 1 flavor quark system in the NJL model by extend-
ing the recently proposed chiral susceptibility criterion to
determine the phase boundary and the location of the CEP
for a one-flavor (or two symmetric flavor) quark system
[35,37,76] to a three-flavor one. With the new criterion, we
give the phase diagram of the 2 + 1 flavor quark system in
terms of the temperature, quark chemical potential, and
strange quark mass and that in terms of the temperature,
quark chemical potential and flavor-mixing interaction
strength. We locate the CEP of the 2 + 1 flavor quark
system with physical masses and discuss the current quark
mass and the flavor-mixing six-point interaction [another
type of U, (1) anomaly] effects on the phase diagram and,
especially the location of the CEP.

The paper is organized as follows. In Sec. II, we describe
briefly the NJL model of the 2 + 1 flavor quark system at
finite temperature and finite quark chemical potential and
extend the chiral susceptibility criterion for a one-flavor
system to a three-flavor system. In Sec. III, we present the
numerical results and discuss the chiral phase transition of
the 2 + 1 flavor quark system and the effects of the strange
quark mass and the flavor-mixing interaction strength on
the phase boundary and the CEP. In Sec. IV, we give a brief
summary and remark.

II. THE MODEL

The Lagrangian of the three-flavor NJL model at finite
chemical potential is written as

Ly = iy o+ yop — M)
8
+ G' [(prip)? + (Piystip)*]

i=0
— Kldet ;((1 + ys)ip) + det (¢ (1 = y5) )]

(M

where ¢ ={u,d,s} is the three-flavor quark field;
A = diag{u,, wg p ) is the chemical potential matrix;
m = diag{m,, m,, m,} is the current quark mass matrix;
T = J—27—§I3X3, while 7;., are the eight Gell-Mann
matrices in flavor SU(3) space; and G and K are the
coupling constants of four-point and six-point interaction
(flavor-mixing) strength separately. Note that the t’Hooft
six-point interaction (i.e., the triple chiral coupling) breaks
the U, (1) symmetry, it is then referred to as a type of U, (1)
anomaly. Usually, m, = m,; # m, is taken, which breaks
the SU(3) symmetry explicitly, but reserves the isospin
symmetry at the Lagrangian level. In principle, the chemi-
cal potential of each flavor can then differ from each other,
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ie., u, ¥ my * p,. For simplicity, an identical chemical
potential for the three flavors is set herein.

Treating the field with chiral quark condensate as a
global mean field, we have the thermodynamical potential
of the system,

Q= 2G(¢ﬁ + ¢?1 + (:b?) - 4K¢u¢d¢s
—2N.T Z / 7 [0(A* — p*)BE;

i=u,d,s (277-)%

+In(1 + e PETW) +1n(1 + e AE-HW)] (2)

where the coefficient 2 is the spin degrees of freedom,
N, =3 is the number of colors, u is the chemical
potential, 7 is the temperature and B8 = 1/T, ¢; =
(Yip); (i=u, d, s) is the chiral condensate of quarks
with flavor i, and E; (i = u, d, s) is the quasiparticle

energy, which reads E; = 4/p> + M2, with the constituent
quark mass of flavor i expressed as

M; =m; —4G¢p; + 2K ;py, i#j+k. 3)

Since the NJL model is nonrenormalizable, an ultra-
violet cutoff is introduced to eliminate the divergence of
the integral. In practical calculations, the parameter set
established in Ref. [77] is commonly adopted: m, = m,; =
5.5 MeV, m, = 140.7 MeV, A = 602.3 MeV, GA? =
1.835, and KA’ = 12.36, which are fixed by fitting
m, = 135.0 MeV, mg = 497.7 MeV, m,, =957.8MeV,
fﬂ. =924 MeV, and (bu’d’o = <q(’I>M,d,0 = _(242 MeV)B.
The equations of motion can be obtained from minimizing
the thermodynamical potential in Eq. (2) with respect to

d)u’ d)d’ and ¢s’

T AT @
As the same current mass is taken to u and d quarks, they
behave in the same way, thus light quark is adopted to
represent both u- and d-quark hereafter. This set of equa-
tions can be solved as functions of temperature 7 and
chemical potential x. One can then obtain the property
of the stable phase by analyzing the configurations of the
fields corresponding to the minimum (or minima) of the
thermodynamical potential. Furthermore, one can identify
a phase transition as the global minimum of the ) shifts
from one to another. More directly, one usually takes the
derivative of the chiral quark condensate with respect to the
temperature or chemical potential,
__ 99

_9¢ _

’ ) 5
oT Xu I (%)

Xt =
to identify a phase transition.

Current lattice QCD simulations have provided a strong
implication that the phase transition of chiral symmetry at
vanishing chemical potential is a continuous, nonsingular
but rapid crossover [10,19] when physical masses are
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taken. Because of the nonsingularity of the crossover, the
value of pseudocritical temperature (7,.) is different,
depending on the choice of the signatures (observables)
identifying the phase evolution. However, when it comes to
first order phase transition, the choice does not influence
the value of the transition temperature and chemical
potential. In another point of view, if the thermodynamical
potential is available, the sign of the second order deriva-
tive of the potential with respect to the order parameter(s)
is an excellent measure identifying the stability of the
phase. More explicitly, the phase changes from stable to
unstable if the sign shifts from positive to negative. In the
Nambu-Jona-Lasinio model, it has been shown that the
sign of the second order derivative of the potential is
exactly the same as that of the chiral susceptibility [76],

(6)

where M is the constituent quark mass which identifies the
chiral symmetry breaking and m, is the current quark
mass. Or equivalently,

__¥aq)
amo

(7)

c

my=0

where (Gq) = ¢ is the chiral quark condensate. Because of
the nonperturbative nature, it is impossible for us to have
explicitly the thermodynamical potential when taking the
sophisticated nonperturbative approaches of QCD. The
traditional criterion of analyzing the effective thermody-
namical potential should then be replaced by other ones.
Considering the above-mentioned equivalence of the sign
of the second order derivative of the thermodynamical
potential and that of the chiral susceptibility, one can
naturally take the chiral susceptibility as a criterion.
Practical calculations for a one-flavor quark system indi-
cate that the criterion of chiral susceptibility works still
well in the chiral limit when one takes the nonperturbative
nature, such as with sophisticated models for the Dyson-
Schwinger equations of QCD [37]. We then, in this paper,
extend the one-flavor chiral susceptibility to a three-flavor
chiral susceptibility and take it to locate the transition point
for both crossover and first order phase transition. Along
the line of the one-flavor chiral susceptibility, the chiral
susceptibility of the three-flavor quark system is defined as

Xij= 5 (®)

which is a 3 X 3 matrix (with i = u, d, s). Because of the
flavor-mixing interaction, the off-diagonal elements are
nonvanishing. After some calculations, one can obtain
the relation of the second order derivative of the thermo-
dynamical potential 20 and the chiral susceptibility

Igid;
X” as
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where C(M;) is a function of constituent quark mass M;
which has the form

E [y P A%
(M) ,[(277)3{ ( )E§ ( )<Ei (10
with
36—(E[—,u,)/T 36_(E1+M)/T
AlE) =~ ~E~w]T ~E+p)]T
1+ e ik 1+ e Eime
+ 360(A? — p?),
3 e (E—w)T 3 e~ E~mw)/T N2
B(E;) = T —E-w)/T T —(E;—
1+ e E—p T\l + ¢ E~—w/T

3 o (EFw/T 3 <

e*(E,-er,)/T 2
T1+e Er/T T )

1 + e (Etw)/T

It is apparent that B(E;) is positive definite. We have
carefully checked that A(E;) is also positive in the relevant
region we are interested in. Meanwhile the diagonal
element (—4G) always has a higher magnitude than the
off-diagonal elements 2K ¢b;. Then, the determinant of the
matrix in the right-hand side of Eq. (9) would be negative
definite. Labeling the matrix in the right-hand side as M,
and taking the determinant on both sides of Eq. (9), we can
express the relation simply as

det M
o n (1D

det (x;;) = —
' det (3¢j¢i)

It is evident that the sign of det (y) is in accord with the

sign of det (ai%.) in the region with which we are
jPi

concerned.

As mentioned above, the concavo-convexity of thermo-
dynamical potential is determined by the second order
derivative of itself, one can then identify the stability of a
phase by the sign of the second order derivative. As a
consequence, one can take the shift of the sign of the chiral
susceptibility as a signature of the phase transition of the
one-flavor quark system [35,37,76]. In the case of the
three-flavor NJL model, it is a little more complicated.
We have to judge the positive definiteness of the upper
matrix. For a concavo or convexity case, a mere determi-
nant of the matrix is enough for us, as the rank of the
matrix is odd, and the determinant is positive or negative,
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respectively. However, for a saddle type, it can give rise to
both a positive or a negative situation depending on the
number of negative eigenvalues, thus each sign of the
eigenvalues have to be checked exactly. To be more effec-
tive, we redefine the chiral susceptibility by multiplying
the absolute value of Eq. (11) by a sign factor as

X' = Agldet (), (12)

where /io stands for the sign of matrix }’s minimal eigen-
value and carries a dimension of GeV™® to make y’
dimensionless. Although this expression is not complete
to distinguish whether a unstable state is at a saddle point
or at a local maximum, it is enough for us to identify a
stable state. The numerical results of chiral susceptibilities
we show in the next section are just that in such an
expression and are rewritten as y for simplicity.

With the above and previous results in mind, we know
that the chiral susceptibilities of the two phases diverge or
hump at the same point (state) if the evolution between
them is a second order phase transition or a crossover
(if the Wigner solution corresponding to the chiral
symmetric phase exists) but at different locations for a
first-order phase transition typically. Then the point which
separates the regions in which the chiral susceptibilities of
the two phases diverge at different states or at the same
state is just the CEP. It follows that simultaneous analysis
of the chiral susceptibilities of the two phases can chart the
phase diagram, and hence establish the existence and
location of the CEP.

III. NUMERICAL RESULTS AND DISCUSSION
A. In the chiral limit

As a starting point, we discuss the case in the chiral
limit, in which the current masses of the three kinds of
quarks are set to be zero, i.e., m, = my; = my; = 0, while
other variables ¢; (i = u, d, s) are distinguishable.

The calculated results (with the interaction strength and
the cutoff parameters established in Ref. [77] and listed
explicitly in last section) of the temperature dependence of
the relative chiral quark condensates (or normalized quark
condensates) ¢;/ ¢, at zero chemical potential, u = 0,
are shown in Fig. 1. It is evident that there exists always a
zero definite solution, which is just the conventionally
denoted “Wigner” solution, corresponding to the chiral
symmetry phase. Besides, there exist nonzero solutions at
low temperature, which are the conventionally denoted
“Nambu” solutions, corresponding to the chiral symmetry
broken phase. Different from the one-flavor case, the
positive-negative symmetry of the Nambu phase(s) is
violated due to the flavor-mixing interaction (the term
4K ¢, p ¢, in thermodynamical potential). In addition,
there exists a region of temperature for multisolutions. To
be more explicit, we refer to them as ‘“Nambu + ,”
“Nambu — ,” “Nambu Int” (a part of the multisolutions
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FIG. 1 (color online). Calculated temperature dependence of
the relative chiral quark condensate in the chiral limit at zero
chemical potential.

shown in red in the figure, i.e., the intermediate part),
respectively.

In Fig. 2, we display the calculated temperature
dependence of the thermodynamical potential density
UT) = Q¢ (T), p4(T), ¢5(T); T; u = 0]. It is apparent
that, at low temperature, the ()(T) of the Nambu+ phase,
Nambu —, Wigner phase, is the global minimum, local
minimum (in fact a saddle point when considering other
effects), global maximum, respectively, while, at high
temperature, the Q(7) of the Wigner phase is the global
minimum (in fact, the unique minimum). More detailed
data show that the Nambu— phase coalesces with the
Nambu intermediate at temperature 7 = 107.1 MeV, and
the Q(T) of the Wigner phase becomes the local minimum
simultaneously. As the temperature goes up, that of the
Nambu+ phase maintains the global minimum to
T = 125.8 MeV, at which the Nambu+ phase and the
Wigner phase have the equivalent thermodynamical poten-
tial (displayed in the inset). As the temperature increases
further, the (T) of the Wigner phase is always the global
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\
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FIG. 2 (color online). Calculated temperature dependence of
the thermodynamical potential in the chiral limit at zero chemi-
cal potential.
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minimum, and those of the Nambu+ phase and Nambu
intermediate phase vanish at 7 = 128.2 MeV. It manifests
that there exists a temperature driven first order phase
transition from the chiral symmetry broken to the chiral
symmetric, T € (107.1,128.2) MeV is the coexisting
region. In Fig. 3, we show the variation behaviors of the
chiral susceptibilities corresponding to the three solutions.
It is quite easy to recognize from the figure that the
chiral susceptibility of the Nambu+ phase is always posi-
tive before it diverges at temperature 7 = 128.2 MeV, the
susceptibilities corresponding to the Nambu— and Nambu
intermediate solutions are negative definite even though
there involves a divergent point at 7 = 107.1 MeV, while
the susceptibility of the Wigner solution diverges at
T = 107.1 MeV and changes from negative to positive.
Such a variation feature of the chiral susceptibility indi-
cates also a temperature driven first order phase transition
from the chiral symmetry broken to the chiral symmetric.
It is remarkable that such a temperature driven phase
evolution characteristic of a three-flavor quark system
in the chiral limit is completely different from that in the
one-flavor case where it is in second order or crossover
(see, for example, Refs. [6,53]).

0.6 : - : :
04t § ]
< ;
02+ § i
0.0 ! ‘ ‘ ]
0 60 120 180 240 300

100 150 200 250 300

T T T T T

-250 | § ]

-500 | § ]
0 50 100 150 200 250 300
T [MeV]

FIG. 3. Calculated temperature dependence of the chiral sus-
ceptibilities at zero chemical potential: upper panel for Nambu+
phase; middle panel for Nambu intermediate and Nambu— state;
lower panel for Wigner phase.
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FIG. 4 (color online). Calculated chemical potential depen-
dence of the relative chiral quark condensate of the three-flavor
quark system in the chiral limit at zero temperature.

Next, we discuss the case of the three-flavor quark
system in the chiral limit at finite chemical potential but
zero temperature. The calculated variation behavior of the
relative chiral quark condensate with respect to the chemi-
cal potential is shown in Fig. 4, while the corresponding
thermodynamical potential density and chiral susceptibil-
ity are displayed in Figs. 5 and 6, respectively. It is appar-
ent that the variation behaviors of the three quantities are
qualitatively the same as that of the corresponding one at
finite temperature and zero chemical potential. We can
reach then that increasing the quark chemical potential
also drives a first order phase transition from the chiral
symmetry broken to the chiral symmetric for the three-
flavor quark system in the chiral limit, which is the same as
that for the one-flavor case. Moreover, the phase coexis-
tence region is u € (195.4,320.4) MeV, and the tradi-
tional way of analyzing the thermodynamical potential
gives the critical chemical potential w. = 281.8 MeV.

To discuss the phase evolution behavior of the system at
both finite temperature and finite chemical potential, we
present the temperature dependence of the relative chiral

300 ==~=~=-- - .
.\\
— ‘\-\
< -30.3¢ S 1
[} N
o~§ \\ .
- \
= -30.6f+ \ b
G — Nambu+ AN
-----Nambu Int \
- — Wigner \
-30.97 Nambu- \\ 1
0 70 140 210 280 350

1 [MeV]

FIG. 5 (color online). Calculated chemical potential depen-
dence of the thermodynamical potential of the three-flavor quark
system in the chiral limit at zero temperature.
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FIG. 6. Calculated chemical potential dependence of the chiral
susceptibility of the three-flavor quark system in the chiral limit
at zero temperature: upper panel, the Nambu+ phase; middle
panel, the Nambu— and Nambu intermediate state; lower panel,
the Wigner phase.

quark condensates at several values of chemical potential
in Fig. 7 and those of the chiral susceptibilities of Nambu
and Wigner solutions in Fig. 8. It is obvious that the Wigner
phase whose chiral quark condensate is always zero exists
at all the values of chemical potential, and the Nambu—
phase with negative relative chiral condensate exists only

T T T

% 1.0 ——u=0 MeV 7

[77] ——p=193.8 MeV|

S 0.8¢ —— =250 MeV_| |
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=
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FIG. 7 (color online). Calculated temperature dependence of
the relative chiral quark condensate at several values of chemical
potential.
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FIG. 8 (color online). Calculated temperature dependence of
the chiral susceptibility at several values of chemical potential.

as chemical potential is less than 193.8 MeV. It is man-
ifested in Fig. 8 that the susceptibility of the Nambu
intermediate phase and that of the Nambu— phase are
always negative if u < 193.8 MeV. It indicates that the
Nambu intermediate phase and the Nambu— phase
(if exists) are unstable phase(s). Meanwhile the chiral
susceptibility of the Nambu+ phase is always positive
before it diverges at the temperature at which the corre-
sponding solution ¢ coalesces with that of the unstable
Nambu intermediate phase. Furthermore, the susceptibility
of the Wigner phase is positive at high temperature and
high chemical potential and it takes negative value in the
temperature region where the Nambu— phase exists. Such
features of the susceptibilities of the Nambu+ phase and
the Wigner phase indicate that only the Nambu+ phase
(chiral symmetry broken phase) is stable in low tempera-
ture and low chemical potential region in which the sus-
ceptibility of the Nambu+ phase takes positive value and
that of the Wigner phase is negative, only the Wigner phase
(chiral symmetric phase) is stable in the high temperature
and the high chemical potential region in which the sus-
ceptibility of the Wigner phase is positive and there does
not exist Nambu solutions. Besides, there exists a region in
which both the Nambu+ and the Wigner phase are stable
in which both susceptibilities take positive values.

Based on the above analyses we come to the phase
diagram of the system composed of three-flavor quarks
in the chiral limit. The obtained result is displayed in
Fig. 9, in which the upper dot-dashed line (in black) is
the boundary beyond which the Nambu phase disappears,
the lower dashed line (in red) is the boundary where the
Wigner phase becomes (meta)stable, the region between
them is that for both the Nambu phase and the Wigner
phase to coexist. In the figure, the solid line (in blue) in the
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FIG. 9 (color online). Calculated phase diagram of the system
consisting of three-flavor quarks in the chiral limit in tempera-
ture and chemical potential space.

middle represents the location where the thermodynamical
potentials of Nambu+ and Wigner phases equate to each
other. These features show apparently that the chiral sus-
ceptibility criterion to identify a chiral phase transition of
the 2 + 1 flavor system is equivalent to the thermodynam-
ical potential criterion, if the thermodynamical potential is
available. Such a phase diagram shows apparently that the
chiral phase transition of the system composed of three-
flavor quarks in the chiral limit is in first order, which is
definitely different from that of the one-flavor and two-
flavor systems of which the transition is in second order or
crossover [6,53]. Then there does not exist a critical end
point in the phase diagram. It implies that the number of
flavors affects the order of the chiral phase transition. This
is in accordance with the sketch of the Colombia diagram.

B. At physical mass

We now discuss the case with physical quark masses
m, = mgz =m; = 5.5 MeV, m; = 140.7 MeV. The cal-
culated results of the temperature dependence of the rela-
tive quark condensates of the light and the strange quarks
[normalized by ¢,y =—(242MeV)?, ¢, = —(258 MeV)?,
respectively] at zero quark chemical potential are shown in
Fig. 10. The calculated flavor-mixed chiral susceptibility is
shown in Fig. 11. In view of the susceptibility criterion of
the chiral phase evolution, we know that the location of the
peak corresponds to the pseudocritical point 7. of the
chiral phase change, and it gives 7, = 178.7 MeV. It is
apparent that such a value agrees with the lattice QCD
result 1757) MeV [20] excellently and is also very close
the more recent lattice QCD result 7, € [160, 170] MeV
[21] for 2 + 1 flavor system. In addition, the kurtosis but
nondivergent behavior of the susceptibility indicates that
the chiral phase evolution is a crossover but not a second
order phase transition.

The calculated results of chemical potential dependence
of the normalized light quark and strange quark conden-
sates at zero temperature are shown in Fig. 12. It is evident
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relative chiral condensate

0.0 .
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T [MeV]

FIG. 10 (color online). Calculated temperature dependence of
the relative chiral condensates at zero chemical potential of the
quark with physical mass, which are normalized by ¢, and ¢ .
The black solid line and red dashed line represent the light quark
and strange quark chiral condensates, respectively.
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FIG. 11. Calculated temperature dependence of the chiral sus-

ceptibility of the 2 + 1 flavor quark (with physical mass) system
at zero chemical potential.
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FIG. 12 (color online). Calculated chemical potential depen-
dence of the normalized quark condensates of the 2 + 1 flavor
quark (with physical mass) system at zero temperature: upper
lines, strange quark condensate; lower lines, light quark conden-
sate. The shadowed region denotes the phase of coexistence.
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FIG. 13 (color online). Calculated chemical potential depen-
dence of the thermodynamical potential of the 2 + 1 quark
(with physical mass) system at zero temperature.

that both the light quark and the strange quark condensates
vary with respect to chemical potential in the same way as
those in the chiral limit. The calculated variation behaviors
of the effective thermodynamical potential and the flavor-
mixed chiral susceptibility are illustrated in Figs. 13 and
14, respectively. The figures show apparently that there
exists a chemical potential © = 365.2 MeV, below which
the effective thermodynamical potential of the Nambu+
phase is the global minimum, and above which the poten-
tial of the Wigner phase becomes the global minimum. In
the chemical potential region u € (348.6,365.2) MeV,
the potential of the Wigner phase is in the local minimum;
and in the region u € (365.2,382.1) MeV, the potential
of the Nambu+ phase is in the local minimum.
Simultaneously, as the chemical potential takes value less
than 382.1 MeV, the susceptibility of the Nambu+ phase
takes positive value and it diverges to positive infinity at
382.1 MeV. As the chemical potential is smaller than
348.6 MeV, the Wigner phase does not exist; thereafter,
the Wigner phase appears and its chiral susceptibility
takes positive value and maintains forever. It means
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FIG. 14 (color online). Calculated chemical potential depen-
dence of the chiral susceptibility of the 2 + 1 flavor quark
(with physical mass) system at zero temperature.
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that there exists a chemical potential region w €
[348.6,382.1] MeV, in which the susceptibilities of both
the Nambu+ phase and the Wigner phase are positive.
These features manifest that the Nambu+ phase is stable
if the chemical potential is smaller than 348.6 MeV, and the
Wigner phase becomes the stable one as the chemical
potential is larger than 382.1 MeV. The nature of the phase
evolution driven by chemical potential is a first order phase
transition. The u € [348.6,382.1] MeV region is that for
both the two phases to coexist. Besides, the maximum
definiteness of the effective thermodynamical potential
and the negative definiteness of the chiral susceptibility
of the Nambu intermediate phase in the chemical potential
region (348.6, 382.1) MeV indicates that the Nambu inter-
mediate phase is always unstable. It is definite that such a
characteristic of the phase transition of the 2 + 1 flavor
quark system is just the same as that in the chiral limit.
Taking the above discussions into account at the same
time, one can get the chiral phase evolution behaviors in
the two extreme cases clearly. The temperature driven
phase evolution of the 2 + 1 quark system at zero chemical
potential is a crossover; while the chemical potential driven
one (for that at zero temperature) is a first order phase
transition. Thus, in the phase diagram there must exist a
critical end point (CEP) at which the crossover ends and a
first order phase transition region opens up. To get the
complete phase diagram and fix the position of the CEP,
we have performed calculations at both finite temperature
and finite quark chemical potential. The obtained tempera-
ture dependence of the light quark and strange quark con-
densates of the 2 + 1 quark system at several values of
chemical potential are plotted in Fig. 15, and that of the
corresponding chiral susceptibility in Fig. 16. From the
figures, one can easily read that, at low chemical potential,
there exists only one solution for the gap equations of the
quarks, which gets smaller and smaller with the increasing
of temperature. It means that the Nambu+ phase shifts, in
fact, to Wigner phase continuously with the increasing of
temperature. The feature of the condensates becomes more
abrupt and that of the hump of chiral susceptibility gets
more sharp and moves to low temperature with the increas-
ing of chemical potential indicates that the pseudocritical
temperature of the chiral phase evolution decreases with
the increasing of chemical potential and the crossover gets
more and more abrupt. The state for the chiral susceptibil-
ity to diverge is just that for the crossover region to
disappear. Such a state is the so-called CEP state.
Numerical data show that the critical end point locates at
(wp Tg) = (316.2 MeV, 63.1 MeV) in the case where the
masses of quarks take the corresponding physical values.
As the quark chemical potential gets higher, a zigzag
variation behavior appears for both the light and strange
quark condensates (the same as those in Fig. 12). It
means that multisolutions emerge for the condensates,
and in turn, multistates coexist. Such a feature of existing
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FIG. 15 (color online). Calculated temperature dependence of
the normalized light quark chiral condensate at several values of
the quark chemical potential (upper panel) and that of strange
quark in the same condition (lower panel).

multisolutions is consistent with that for the first order
transition in classical thermodynamics and also in the
analytical discussion in Ref. [78]. The zigzag behavior of
the condensates and the positivity of the chiral susceptibil-
ities of both the Nambu+ phase and the Wigner phase
thereafter indicate then that the phase evolution changes
from crossover to first order phase transition definitely in
the intermediate chemical potential region.

As the chemical potential grows much higher, the
Nambu phase disappears, but only the Wigner phase with
positive chiral susceptibility exists. It means that the chiral
symmetry has restored.

With the above results in mind, we can reach the phase
diagram of the 2 + 1 flavor quark system with physical
masses. The obtained result is illustrated as the blue lines in
Fig. 17. We now have had not only the phase boundaries
but also the position of the CEP. As mentioned above,
at physical masses, the CEP locates at (ug Tg) =
(316.2 MeV, 68.1 MeV). It is apparent that the value
ug/Tp = 4.643 is quite close to the results given by other
NJL model and PNJL(-like) calculations (see for example
Refs. [47,58-61]) but larger than that given in the Dyson-
Schwinger equation calculation [34,37,38] and those
in lattice QCD simulations [13-16]. As pointed out in
Ref. [37], such an inconsistency comes from the fact
that the confinement length in the NJL model is zero.
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FIG. 16 (color online). Calculated temperature dependence of
the chiral susceptibilities of the 2 + 1 flavor quark system with
physical mass at several values of chemical potential.

Comparing the appearance of the phase diagrams obtained
with different criteria, one can notice again that the chiral
susceptibility criterion for identifying a chiral phase
transition of the 2 + 1 flavor system is equivalent to the
thermodynamical potential criterion.

C. Phase diagram in 3D space

It has been known that the QCD phase diagram depends
on many aspects, such as the intrinsic parameters of current
quark masses and interaction strengths (see, for example,
Ref. [32]), the medium effects of temperature and chemical
potential. Then the complete QCD phase diagram should be
multidimensional. To be concise and simple, we consider in
this paper the three-dimensional (3D) one in terms of tem-
perature, quark chemical potential, and strange quark mass
with the above fixed interaction strength parameters and
that in terms of the temperature, quark chemical potential
and the U,(1) anomaly strength (the six-point flavor-
mixing interaction strength) K (or KA>) with the physical
quark masses.
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FIG. 17 (color online). Calculated phase diagrams in terms of
temperature and chemical potential at different values of current
strange quark mass. The right (in blue) is at physical masses, the
middle (in red) is at m; = 50 MeV, m; = 5.5 MeV, and the left
(in black) is at m; = m; = 5.5 MeV. In each case, the dotted
line stands for the set of states for the chiral susceptibility to take
the value at the top of hump, the dashed line is that of the states
for the chiral susceptibility of the Wigner phase to diverge and
become positive, the dot-dashed line represents the states for the
chiral susceptibility of the Nambu phase to diverge and then
disappear, and the filled circle labels the CEP. The dotted line
together with the solid line is the phase boundary determined
with the usual thermodynamical potential criterion.

After plenty of calculations, we get the phase diagrams
in the above-mentioned two cases. The obtained phase
diagram in the space of temperature, chemical potential,
and strange quark mass is illustrated in Fig. 18. The states

100 \
200

uiMevl > 55

FIG. 18 (color online). Calculated three-dimensional phase
diagram in terms of the strange quark mass, chemical potential,
and temperature (in m,-u-T space) of the 2 + 1 flavor quark
system. The thin solid black lines stand for the set of states for
the chiral susceptibility to take the value at the top of hump, the
solid blue lines are the set of states for the chiral susceptibility of
the Wigner phase to diverge and become positive, and the solid
red lines represent the states for the chiral susceptibility of the
Nambu phase to diverge and then disappear. The thick solid line
in black is the set of CEPs and the region between the red and
blue lines is the coexistence region. The thin solid black line
together with the dotted black line is the phase boundary
determined with the usual thermodynamical potential criterion.
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on the curved surface with boundary in the solid black lines
are the pseudocritical states of the crossover of chiral phase
evolution. The region between the camber with boundary
in the solid red lines and that in the blue lines is that for the
chiral symmetry broken and chiral symmetric phases to
coexist. The thick solid curve (in black) is just that repre-
senting the CEPs. Its variation behavior can be approxi-
mately written in a set of parametrized equations in terms
of the current strange quark mass as

ME o]

— =1—-g—, 13
Ho o (13
with ug = 331.7 MeV, rq = 3.032, and c; = 1.452;
T / !
_E=1_m.c1 / m C2/2’ (14)
T, s (% + rp)
with T, = 87.8 MeV, r,=9.686, ¢ =1139, and

ch =125.8.

From the diagram, we can notice that the region of the
coexistence opens up from a critical end point and grows
wider with the decrease of m,. However, the chiral phase
evolution is still a crossover at the low chemical potential
region even if the current strange quark mass goes down to
zero. To manifest such a feature more clearly, we display
the phase diagram (or that of the projection) in the 7-u
plane in case of m, = 50 MeV and m; = 5.5 MeV and
that with mg; = m; = 5.5 MeV in Fig. 17. The figure also
indicates that the location of the CEP depends on the
temperature, the chemical potential, and the strange quark
mass. For instance, as the strange quark mass changes from
50 MeV to 5.5 MeV, the location of the CEP moves
from (ug, Tg) = (292.8 MeV, 65.7 MeV) to (215.8 MeV,
87.7 MeV).

To demonstrate the variation feature of the CEP more
intuitively, we show the projection of CEP’s track on the
mg-p plane and that on the m-T plane in Fig. 19. It is
apparent that the quark chemical potential of the CEP
shows a generally upward tendency as the strange quark
mass increases in the region with small values and gets
almost saturated as the mass grows quite large. For
instance, it runs from 171.6 MeV at m, = 0 MeV to
316.2 MeV at m,; = 140.7 MeV, then to 328.5 MeV at
m, = 500.0 MeV, and further 331.7 MeV at very large
strange quark mass. While, contrary to the variation char-
acteristic of the chemical potential, the temperature of the
CEP behaves at a downward tendency as the strange quark
mass increases in the region with small values and turns to
be larger as the mass becomes very large. From the figure
and Eq. (14), one can read that the temperature of the CEP,
Tg, changes from 103.9 MeV at m; = 0 MeV to 68.1 MeV
at my; = 140.7 MeV, and 77.3 MeV at m; = 500.0 MeV,
then saturates at 87.9 MeV if the strange quark mass is
extremely large. These features indicate that for the quark
system with two light flavors and one very heavy flavor, the
CEP locates at (u3, T5) = (331.7 MeV, 87.9 MeV). Such
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FIG. 19. Calculated projection of the CEP’s track on the m-u
plane (upper panel) and on the m,-T plane (lower panel).

a characteristic of the CEP’s variation with respect to the
strange quark mass is qualitatively similar to that given in
Refs. [47,59] with other criterion.

The obtained phase diagram in terms of the U,(1)
anomaly strength, the temperature, and the chemical
potential (in the K-u-T space) is shown in Fig. 20.
Similar to that in Fig. 18, the region in which the chiral
phase evolution is in crossover is also demonstrated by a
curved surface with boundaries in solid black lines and the
thick part displays the track of the CEPs, and the region for
the chiral phase evolution to be a first order phase transition
by that with solid red lines and blue lines (the region

FIG. 20 (color online). Calculated three-dimensional phase
diagram in terms of the U, (1) anomaly (six-point flavor-mixing
interaction, or the triple chiral coupling) strength, temperature,
and chemical potential (in K-T-u space) of the 2 + 1 flavor
quark system with physical masses. The symbols of the lines are
the same as those in Fig. 18 correspondingly.
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between the red and the blue lines is the coexistence
region). The track of the CEPs within the region of our
concern can be approximately written in a set of parame-
trized equations in terms of the parameter KA> as

% = co + | (KA) + (KA, (15)

with ¢y = 0.4263, ¢; = 0.01493, and ¢, = —0.0005629;

Tg
A

with  ¢{, = —0.005998,
0.00008078.

To show the effect of the U, (1) anomaly on the phase
diagram more clearly, we demonstrate the projection of the
CEPs on the w-K plane and the T-K plane in Fig. 21 and
replot the phase diagram of the system with physical masses
in terms of temperature and chemical potential at three
different values of the K in Fig. 22, where the line in the
left (in blue) is the result at KA = 0, the middle (in red) is
that at KA> = 12.36, and the right (in black) illustrates that
at KA> = 28.Itis apparent that, different from the effect of
current strange quark mass (shown in Fig. 18), weak U, (1)
anomaly does not induce the property of the chiral phase
evolution from a crossover to a first order phase transition.
The critical strength for the phase evolution behavior to
change is KA> = 6.05. When the U,(1) anomaly strength
reaches the critical value (KA3),. = 6.05, a first order phase
transition appears and a critical end point emerges. With the
increasing of the value of K, the region of the first order
phase transition gets wider and wider and the temperature
of the CEP raises obviously. Looking over Figs. 21 and 22

= [ch + c}(KAY) + ch(KA)?]/2, (16)

¢ = 0.0005028, and ¢} =

350

300

e [MeV]

2501

200

150

100+

T [MeV]

50}

FIG. 21. Calculated projection of the CEP’s track on the K-u
plane (upper panel) and on the K-7" plane (lower panel).
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FIG. 22 (color online). Calculated phase diagrams in terms of
temperature and chemical potential at different values of the
U,(1) anomaly (six-point interaction) strength with m; =
5.5 MeV, m; = 140.7 MeV. The left (in blue) is at KA®> = 0,
the middle (in red) is at KA = 12.36, and the right (in black) is
at KA® =28. The symbol of each line is the same as the
corresponding one in Fig. 17.

more carefully, one can observe that, with the increasing of
the U, (1) anomaly strength, the temperature of the CEP
increases monotonically, but the chemical potential
increases first and then becomes smaller. For instance,
as the strength K A° increases from 6.05 to 12.36 and then
to 28, the critical end point runs from (KA>, ug, Tg) =
(6.05,297.9 MeV,0 MeV) to (1236, 3162 MeV,
68.1 MeV) and further (28, 243.6 MeV, 160.4 MeV). It
indicates that the triple chiral coupling K, a part of the
U, (1) anomaly, favors the first order phase transition and
pushes the CEP away from the chemical potential axes.
Such a feature of the effect of the triple chiral coupling
which induces the flavor mixing is obviously consistent
with the previous results [47,59,72]. However, the exact
phase structure might, in fact, be much more complicated
at high chemical potential and low temperature, since the
six-point interaction we take into account in the present
paper is only one type of the U,(1) anomaly, which
describes the triple chiral coupling. As the other type of
the U4 (1) anomaly, which demonstrates the chiral diquark
coupling, is taken into account simultaneously, previous
investigations [70-72] show that the first order phase tran-
sition in the high chemical potential region turns into a
BEC-BCS crossover and leads a new CEP to appear.

IV. SUMMARY AND REMARK

In summary, we have restudied the chiral phase tran-
sition of the 2 + 1 flavor quark system in the NJL model,
with emphasis on the current quark mass and the flavor-
mixing triple chiral coupling [a type of U,(1) anomaly]
effects on the phase diagram and, especially the location
of the critical end point. We extended the recently pro-
posed chiral susceptibility criterion to determine the phase
boundary and the location of the CEP for the one-flavor
(or two symmetric flavor) quark system to three-flavor

PHYSICAL REVIEW D 88, 016008 (2013)

system. With the new criterion, we gave the phase dia-
gram of the 2 + 1 quark system in terms of the tempera-
ture, quark chemical potential and strange quark mass and
that in terms of the temperature, quark chemical potential
and flavor-mixing triple chiral coupling strength. We
located the CEP of the 2 + 1 quark system with physical
masses at (ug, Tg) = (316.2 MeV, 68.1 MeV) (or with
ratio uy/Ty = 4.643) which is quite close to the previous
results given in the NJL model and PNJL(-like) calcula-
tions. We also show that the more massive the strange
quark much lower the temperature and much higher the
chemical potential of the CEP if the mass is not quite
large. For the effect of the flavor-mixing interaction
strength, there exists a critical value (KA3), = 6.05 for
the crossover to turn into a first order phase transition.
Increasing the flavor-mixing strength beyond the critical
one induces the temperature of the CEP to increase dras-
tically and enhances the chemical potential slightly if the
strength is not very large. These variation features are also
consistent with previous results. Such an investigation
provides, on one hand, further evidence that the chiral
susceptibility criterion is quite efficient in not only deter-
mining the phase boundary but also fixing the position of
the CEP. On the other hand, it indicates that the CEP of
QCD phase transition depends definitely not only on the
temperature and density (chemical potential) of the sys-
tem but also on the intrinsic parameters such as the current
quark mass and the interaction strengths. On the theory
side, even though plenty of calculations have been carried
out (besides those mentioned above, see also, for example,
Refs. [79-81]) and the newly proposed chiral susceptibil-
ity criterion is quite practical, really manageable methods
on the location of the CEP of QCD need still efforts to
develop. On the experiment side, one hopes that the low
energy scan of RHIC at BNL and the future FAIR experi-
ment at GSI (see, for instance, Refs. [82,83]) may shed
light on that. Concerning our present results, we would
propose that the signals of the CEP related to very heavy
flavor quark may be paid much attention since its position
is well fixed.

In addition, it is well known that the NJL model does not
take the confinement effect into account and considering
the Polyakov loop effect is practical to include the contri-
bution of the confinement. It has also been known that the
vector component of the interaction plays an important role
in the fluctuation behavior of the conserved charges [84]
and the structure of the QCD vacuum [85]. Furthermore, to
study the 2 + 1 flavor quark system practically, one needs
to consider the isospin chemical potential of light quarks or
the different chemical potential of strange quarks. The
relevant works are under progress. However, as a first
step to investigate both the quark mass and flavor-mixing
effects with a new criterion to identify the phase evolution
and the CEP, we have not yet taken these aspects into
account in this paper.
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