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We present the most general (six-helicity) angular analysis of B0
s ! V1ð! P1P

0
1ÞV2ð! P2P

0
2Þ (Vi is a

vector meson, and Pi, P
0
i are pseudoscalars). We focus on final states accessible to both B0

s and �B0
s-these

are mainly �b ! �s penguin decays. We also derive the most general decay amplitude, and discuss the

differences between it and that used by LHCb in its analysis of B0
s ! ��. In the standard model, all CP

violation is predicted to be small, so that the simple measurement of a sizeable CP-violating observable

indicates the presence of new physics. A full fit to the data is not necessary. By determining which of the

CP-violating observables are nonzero, one can learn about the structure of the underlying new physics.

Finally, we apply the angular analysis to B0
s ! K�0 �K�0, and show that there are numerous CP-violating

observables that remain in the untagged data sample.
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I. INTRODUCTION

B ! V1V2 decays (Vi is a vector meson) are really three
separate decays—one for each polarization of the final state
(one longitudinal, two transverse). Here it is useful to use the
linear polarization basis, where one decomposes the decay
amplitude into components in which the polarizations of the
final-state vector mesons are either longitudinal (A0) or
transverse to their directions of motion and parallel (Ak)
or perpendicular (A?) to one another. Many years ago it was
shown that one can separate these three helicities by per-
forming an angular analysis of the decay [1].

Recently, it was pointed out that, under certain circum-
stances, modifications must be made to the angular analy-
sis. In particular, when a neutral vector meson is detected
via its decay V ! PP0 (P, P0 are pseudoscalars), there is
usually a background coming from the decay of a scalar
resonance S ! PP0, or from the scalar nonresonant PP0
production [2]. As such, it is necessary to add another
(scalar) helicity to the angular analysis. The LHCb
Collaboration performed this addition in their studies of
the decays B0

s ! J=c� [3] and B0
s ! �� [4]. In both

cases the � is detected through its decay to KþK�, and
there is a resonant (f0) or nonresonant scalar background.
Thus, the angular analyses in Refs. [3,4] were performed
with four and five helicities, respectively.

However, in the experimental analysis of B0
s ! �� [4],

the most general B0
s ! �� amplitude was not used.1

Rather, simplifications were made based on approxima-
tions that hold only within the standard model (SM).
This then implied that certain new-physics (NP) signals
were absent from the angular analysis. But since the goal
is to seek signals of NP, it does not make sense to do
only an SM-based angular analysis.2 Furthermore, not
all the SM assumptions were physically well motivated.
We must stress that the main result of Ref. [4]—that
there is a potential disagreement with the predictions of
the SM—is not in question. Our point is simply that it
was not sufficiently precise what this disagreement is,
and what further NP signals are possible.
In addition, we were informed that LHCb is studying the

decay B0
s ! K�0ð892Þ �K�0ð892Þ, and that each of these

vector mesons has a background coming from the scalar
resonance K�0ð1430Þ [8]. It is therefore necessary to per-
form an angular analysis that takes this background into
account. In this case, as one does not have identical parti-
cles in the final state (in contrast to B0

s ! ��), six
helicities must be considered.
In light of all of this, we feel it is useful to present the

most general angular analysis of B0
s ! V1ð! P1P

0
1ÞV2

ð! P2P
0
2Þ. We focus on final states accessible to both

B0
s and �B0

s , which are mainly �b ! �s penguin decays. Our
analysis allows for the presence of NP, and we discuss
the possible NP signals. Given the LHCb constraints on
NP in B0

s- �B
0
s mixing [3], there is little sensitivity to NP

of this type. However, B0
s ! V1V2 decays can probe NP

in the decay. In particular, since �b ! �s penguin decays
are dominated by a single contributing amplitude in the
SM, all CP-violating observables are predicted to be
small. The observation of sizeable CP violation would
then be a smoking-gun signal of NP in the decay. In
fact, although experiments aim to search for NP via a
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1In the study of B0

s ! J=c� [3], the most general angular
analysis was also not performed. Rather, simplifying assump-
tions were imposed. The importance of including the most
general amplitude was stressed in Ref. [5], and in Ref. [6] it
was pointed out that the penguin pollution can be reduced if the
assumptions are not made, and the full angular analysis done.

2A first attempt at a theoretical analysis of B0
s ! �� with the

general amplitude including NP was presented in Ref. [7].
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complete fit to the data, such a fit is not really necessary.
A more direct way to detect NP is simply to measure a
large CP-violating observable. In addition, one can get
an idea about the structure of the underlying NP from
the pattern of the measurements (i.e., determining which
of the CP-violating observables are nonzero).

We apply these ideas to the decays B0
s ! �� and

B0
s ! K�0 �K�0. For B0

s ! ��, we compare the ampli-
tude used in Ref. [4] with the exact amplitude, and
examine how the differences can affect the fit. For
B0
s ! K�0 �K�0, we use the full (six-helicity) angular

analysis to detail which CP-violating observables
remain in the untagged data sample. This decay is
particularly interesting since, in addition to triple prod-
ucts, certain direct and indirect CP asymmetries can be
observed in untagged decays.

In Sec. II, we present the full six-helicity angular dis-
trinution. We address the question of new physics in
Sec. III. Here we point out that the best way to search for
NP is to measure CP-violating observables, and we discuss
the four types of observables. In Secs. IV and V, we apply
the formalism to the decays B0

s ! �� and B0
s ! K�0 �K�0.

We examine a particular model of NP in Sec. VI. Here we
show that different NP operators lead to different patterns
of nonzero CP-violating observables. We conclude in
Sec. VII.

II. GENERAL ANGULAR DISTRIBUTION

We consider the decay B0
s ! V1V2. As discussed in the

Introduction, when either vector meson decays to two
pseudoscalar mesons, there is generally a background
due to the (resonant or nonresonant) scalar production of
the two pseudoscalars. We therefore focus on the decay
B0
s ! V1=S1ð! P1P

0
1ÞV2=S2ð! P2P

0
2Þ, concentrating on

final states to which both B0
s and �B0

s can decay.
In general, there are six helicities: h ¼ VV (three), VS,

SV, and SS, each with a corresponding amplitude Ah.
Thus, when the full amplitude is squared, there are 21
terms. Due to B0

s- �B
0
s mixing, the amplitude is time

dependent. The angular distribution can be written

d4�ðtÞ
dtd cos �1d cos �2d�

¼ 9

8�

X21
i¼1

KiðtÞXið�1; �2; �Þ; (1)

where �1, �2 and � are the helicity angles, �1 (�2) is the
angle between the directions of motion of the P1 (P2) in the
V1 (V2) rest frame and the V1 (V2) in the B rest frame, and
� is the angle between the normals to the planes defined by
P1P

0
1 and P2P

0
2 in the B rest frame.

A. t ¼ 0

Much can be learned by studying the behavior
at t ¼ 0. The individual amplitudes are constructed as
follows:

AVV ¼ N
X1
j¼�1

AVV
j Y�j

1 ð�1;��ÞYj
1ð�� �2; 0Þ;

AVS ¼ NAVS
0 Y0

1ð�1;��ÞY0
0ð�� �2; 0Þ;

ASV ¼ NASV
0 Y0

0ð�1;��ÞY0
1ð�� �2; 0Þ;

ASS ¼ NASS
0 Y0

0ð�1;��ÞY0
0ð�� �2; 0Þ:

(2)

N is a normalization constant and the Ym
l are spherical

harmonics. Using the standard expressions for the Ym
l , as

well as Ak ¼ ðAþ þ A�Þ=
ffiffiffi
2

p
and A? ¼ ðAþ � A�Þ=

ffiffiffi
2

p
,

we have

AVV þAVS þASV þASS

¼ � 3N

4�

�
A0 cos�1 cos �2 � AS

3
� AVSffiffiffi

3
p cos�1

þ ASVffiffiffi
3

p cos�2 þ Akffiffiffi
2

p sin �1 sin�2 cos�

þ i
A?ffiffiffi
2

p sin �1 sin �2 sin�

�
: (3)

It is convenient to choose a different notation for the VS
modes. We introduce the following amplitude coefficients:

AðVSÞ
þ � AVS þ ASVffiffiffi

2
p ; AðVSÞ� � AVS � ASVffiffiffi

2
p : (4)

Using this notation, Eq. (3) can be rewritten as follows:

AVV þAVS þASV þASS

¼ � 3N

4�

�
A0 cos�1 cos �2 � AS

3

� AðVSÞ
þffiffiffi
6

p ðcos �1 � cos �2Þ � AðVSÞ�ffiffiffi
6

p ðcos �1 þ cos�2Þ

þ Akffiffiffi
2

p sin �1 sin�2 cos�þ i
A?ffiffiffi
2

p sin �1 sin�2 sin�

�
:

(5)

We can now construct the t ¼ 0 differential decay rate,

d4�

dtdcos�1dcos�2d�
¼ 9

8�
jAVV þAVSþASV þASSj2

¼ 9

8�

X21
n¼1

KnXnð�1;�2;�Þ: (6)

In Table I we list the individual K’s and X’s. The normal-
ization constant N has been chosen such that the integra-
tion of Eq. (6) over the entire phase space gives

d�

dt
¼ X

h

jAhj2

¼ jA0j2 þ jAkj2 þ jA?j2
þ jAðVSÞ

þ j2 þ jAðVSÞ� j2 þ jASj2: (7)
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The various angular functions can be isolated by
performing asymmetric integrals over the three angles [9].

For example, consider n ¼ 5: X5¼�ð1=2 ffiffiffi
2

p Þsin2�1
sin2�2sin�. If one integrates over 0 � � � � with a þ
sign, and � � � � 2� with a � sign, one eliminates all
the other Xn except those proportional to sin� (n ¼ 12,
17, 19). These can be eliminated by integrating asymmet-
rically over each of �1;2: 0 � �1;2 � �=2 with a þ sign,

and �=2 � �1;2 � � with a � sign. The other Xn can be

isolated similarly. The one exception involves n¼7, 13, 20.
The difference X7 � X13 is proportional to cos �1 cos�2,
as is X20. These two can therefore not be differentiated.
However, apart from this lone exception, all the Xn can be
isolated experimentally.

B. Time-dependent angular distribution

Due to B0
s- �B

0
s mixing, the time evolution of the states

jB0
sðtÞi and j �B0

sðtÞi can be described by the relations

jB0
sðtÞi ¼ gþðtÞjB0

si þ q

p
g�ðtÞj �B0

si;

j �B0
sðtÞi ¼ p

q
g�ðtÞjB0

si þ gþðtÞj �B0
si;

(8)

where q=p ¼ ðV�
tbVtsÞ=ðVtbV

�
tsÞ � e�i�M . (Here we follow

the notation of LHCb:�M is the theoretical phase of B0
s- �B

0
s

mixing, while �s is its experimentally measured value.)
In the above, we have

gþðtÞ ¼ 1

2
ðe�ðiMLþ�L=2Þt þ e�ðiMHþ�H=2ÞtÞ;

g�ðtÞ ¼ 1

2
ðe�ðiMLþ�L=2Þt � e�ðiMHþ�H=2ÞtÞ;

(9)

where L and H indicate the light and heavy states, respec-
tively. The average mass and width arem ¼ ðMH þMLÞ=2
and � ¼ ð�L þ �HÞ=2, while the mass and width differ-
ences of the B0

s-meson eigenstates are defined as �m �
MH �ML and �� � �L � �H. �m is positive by defini-
tion. For B0

s mesons, ��s is reasonably large, and is
positive in our convention.
Now, the time dependence of the transversity amplitudes

Ah is due to B0
s- �B

0
s mixing. Their precise form depends on

the specific final state. The different helicities of the VV
and the SS final states are all CP eigenstates. On the other
hand, the VS and SV states are not CP eigenstates.

However, their linear combinations, defined as j�iVS �
ðjVSi � jSViÞ= ffiffiffi

2
p

, are CP eigenstates. Working only with
CP eigenstates, the time-dependent amplitudes are given
as [10]

AhðtÞ¼hfjHW jB0
sðtÞih¼½gþðtÞAhþ�hq=pg�ðtÞ �Ah�;

�AhðtÞ¼hfjHW j �B0
sðtÞih¼½p=qg�ðtÞAhþ�hgþðtÞ �Ah�; (10)

where Ah ¼ hfjHW jB0
sih, �Ah ¼ hfjHW j �B0

sih, and h �fj ¼
�hhfj, with �h ¼ þ1 for h ¼ 0, k , VS�, SS and �h ¼
�1 for h ¼ VSþ, ? . These values for the CP eigenvalue
�h can be understood in terms of the total angular momen-
tum of the final state. States with l ¼ 0 (SS, VS�, a
combination of 0, k ) and l ¼ 2 (another combination of
0, k ) are CP even, while those with l ¼ 1 (VSþ, ? ) are
CP odd. It is also important to point out the CP properties
of the helicity amplitudes Ah and �Ah,

CPAh ¼ CPhfjHW jB0
sih ¼ h �fjHW j �B0

sih
¼ �hhfj �B0

sih ¼ �h
�Ah;

CP �Ah ¼ CPhfjHW j �B0
sih ¼ h �fjHW jB0

sih
¼ �hhfjB0

sih ¼ �hAh: (11)

Thus, in order to go from the B0
s decay to the �B0

s decay, one
simply needs to switch Ah $ �h

�Ah.
It is useful to discuss the origin of the �h factors in

Eq. (10) since, naively, such factors are not present. This is
understood most easily by considering B0

s ! K�0 �K�0. As
noted above, in the decay B0

s ! V1V2, the helicity angles
are defined with respect to the momenta of V1 and V2. In
B0
s ! K�0 �K�0, V1 ¼ K�0 and V2 ¼ �K�0. On the other hand,

in theCP-conjugate decay �B0
s ! �K�0K�0 we have V1¼ �K�0

and V2 ¼ K�0. That is, we have V1 $ V2 compared to the
B0
s decay. The effect of this on the helicity angles is to

change �1 $ �2 and � ! ��. Looking at Table I, we see
that the Xn change sign for n ¼ 5, 6, 8–12, 19, i.e., when

TABLE I. Individual K’s and X’s listed in Eq. (6).

n Kn Xn

1 jA0j2 cos 2�1cos
2�2

2 jAkj2 1
2 sin

2�1sin
2�2cos

2�

3 jA?j2 1
2 sin

2�1sin
2�2sin

2�

4 Re½AkA�
0� 1

2
ffiffi
2

p sin 2�1 sin 2�2 cos�

5 Im½A?A�
0� � 1

2
ffiffi
2

p sin 2�1 sin 2�2 sin�

6 Im½A?A�
k� � 1

2 sin
2�1sin

2�2 sin 2�

7 jAðVSÞ
þ j2 1

6 ðcos�1 � cos�2Þ2
8 Re½AðVSÞ

þ A�
S�

ffiffi
2

p
3
ffiffi
3

p ðcos�1 � cos�2Þ
9 Re½AðVSÞ

þ AðVSÞ�� � 1
3 ðcos 2�1 � cos 2�2Þ

10 Re½AðVSÞ
þ A�

0� �
ffiffi
2

pffiffi
3

p cos�1 cos �2ðcos�1 � cos�2Þ
11 Re½AðVSÞ

þ A�
k� � 1ffiffi

3
p sin�1 sin �2 cos�ðcos �1 � cos�2Þ

12 Im½A?A
ðVSÞ�
þ � 1ffiffi

3
p sin�1 sin�2 sin�ðcos�1 � cos�2Þ

13 jAðVSÞ� j2 1
6 ðcos�1 þ cos�2Þ2

14 Re½AðVSÞ� A�
S�

ffiffi
2

p
3
ffiffi
3

p ðcos�1 þ cos�2Þ
15 Re½AðVSÞ� A�

0� �
ffiffi
2

pffiffi
3

p cos�1 cos �2ðcos�1 þ cos�2Þ
16 Re½AðVSÞ� A�

k� � 1ffiffi
3

p sin�1 sin �2 cos�ðcos �1 þ cos�2Þ
17 Im½A?AðVSÞ�� � 1ffiffi

3
p sin�1 sin�2 sin�ðcos�1 þ cos�2Þ

18 Re½ASA
�
k� �

ffiffi
2

p
3 sin �1 sin�2 cos�

19 Im½A?A�
S�

ffiffi
2

p
3 sin�1 sin �2 sin�

20 Re½ASA
�
0� � 2

3 cos�1 cos�2
21 jASj2 1

9
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only one CP-odd state is involved in the Kn. This sign
change can be transferred to the AhðtÞ by adding the �h

factors in Eq. (10). That is, by using this definition for the
AhðtÞ, the angular functions are the same for B0

s and �B0
s

decays, which makes it easy to compute what is measured
in untagged samples.
The expressions for the time-dependent wave functions

for the various terms are

jAiðtÞj2 ¼ 1

2
e��t½ðjAij2 þ j �Aij2Þ cosh ð��=2Þt� 2�i ReðA�

i
�Aie

�i�M Þ sinh ð��=2Þtþ ðjAij2 � j �Aij2Þ cos�mt

� 2�i ImðA�
i
�Aie

�i�M Þ sin�mt�;
ImðA?ðtÞA�

j ðtÞÞ ¼
1

2
e��t½ImðA?A�

j � �j
�A? �A�

j Þ cosh ð��=2Þtþ Im½ð �A?A�
j þ �jA

�
? �AjÞe�i�M � sinh ð��=2Þt

þ ImðA?A�
j þ �j

�A? �A�
j Þ cos�mt� Re½ð �A?A�

j þ �jA
�
? �AjÞe�i�M � sin�mt�;

ReðAkðtÞA�
l ðtÞÞ ¼

1

2
e��t½ReðAkA

�
l þ �k�l

�Ak
�A�
l Þ cosh ð��=2Þtþ ReðAkA

�
l � �k�l

�Ak
�A�
l Þ cos�mt

� Re½ð�k
�AkA

�
l þ �lA

�
k
�AlÞe�i�M � sinh ð��=2Þt� Im½ð�k

�AkA
�
l þ �lA

�
k
�AlÞe�i�M � sin�mt�: (12)

Using the above, it is possible to write down the time dependence of the functions Kn listed in Table I. In general, we have

KnðtÞ ¼ 1

2
e��t½an cosh ð��=2Þtþ bn sinh ð��=2Þtþ cn cos�mtþ dn sin�mt�; (13)

where the individual functions an, bn, cn, and dn for n ¼ 1; . . . ; 21 are time independent. In Tables II and III we present the
forms of the coefficients an-dn. These are exact and hold even in the presence of NP. Note that not all of the an-dn are
independent. There are 23 unknown parameters—12 magnitudes of Ah and �Ah, and 11 relative phases (�M can be absorbed
into the phases of the Ah and �Ah)—while there are 84 different an-dn. There are therefore many relations among the an-dn.

TABLE II. an’s and cn’s as defined in Eq. (13).

n KnðtÞ an cn

1 jA0ðtÞj2 jA0j2 þ j �A0j2 jA0j2 � j �A0j2
2 jAkðtÞj2 jAkj2 þ j �Akj2 jAkj2 � j �Akj2
3 jA?ðtÞj2 jA?j2 þ j �A?j2 jA?j2 � j �A?j2
4 Re½AkðtÞA�

0ðtÞ� Re½AkA�
0 þ �Ak �A�

0� Re½AkA�
0 � �Ak �A�

0�
5 Im½A?ðtÞA�

0ðtÞ� Im½A?A�
0 � �A? �A�

0� Im½A?A�
0 þ �A? �A�

0�
6 Im½A?ðtÞA�

kðtÞ� Im½A?A�
k � �A? �A�

k� Im½A?A�
k þ �A? �A�

k�
7 jAðVSÞ

þ ðtÞj2 jAðVSÞ
þ j2 þ j �AðVSÞ

þ j2 jAðVSÞ
þ j2 � j �AðVSÞ

þ j2
8 Re½AðVSÞ

þ ðtÞA�
SðtÞ� Re½AðVSÞ

þ A�
S � �AðVSÞ

þ �A�
S� Re½AðVSÞ

þ A�
S þ �AðVSÞ

þ �A�
S�

9 Re½AðVSÞ
þ ðtÞAðVSÞ�� ðtÞ� Re½AðVSÞ

þ AðVSÞ�� � �AðVSÞ
þ �AðVSÞ�� � Re½AðVSÞ

þ AðVSÞ�� þ �AðVSÞ
þ �AðVSÞ�� �

10 Re½AðVSÞ
þ ðtÞA�

0ðtÞ� Re½AðVSÞ
þ A�

0 � �AðVSÞ
þ �A�

0� Re½AðVSÞ
þ A�

0 þ �AðVSÞ
þ �A�

0�
11 Re½AðVSÞ

þ ðtÞA�
kðtÞ� Re½AðVSÞ

þ A�
k � �AðVSÞ

þ �A�
k� Re½AðVSÞ

þ A�
k þ �AðVSÞ

þ �A�
k�

12 Im½A?ðtÞAðVSÞ�
þ ðtÞ� Im½A?A

ðVSÞ�
þ þ �A? �AðVSÞ�

þ � Im½A?A
ðVSÞ�
þ � �A? �AðVSÞ

þ �
13 jAðVSÞ� ðtÞj2 jAðVSÞ� j2 þ j �AðVSÞ� j2 jAðVSÞ� j2 � j �AðVSÞ� j2
14 Re½AðVSÞ� ðtÞA�

SðtÞ� Re½AðVSÞ� A�
S þ �AðVSÞ� �A�

S� Re½AðVSÞ� A�
S � �AðVSÞ� �A�

S�
15 Re½AðVSÞ� ðtÞA�

0ðtÞ� Re½AðVSÞ� A�
0 þ �AðVSÞ� �A�

0� Re½AðVSÞ� A�
0 � �AðVSÞ� �A�

0�
16 Re½AðVSÞ� ðtÞA�

kðtÞ� Re½AðVSÞ� A�
k þ �AðVSÞ� �A�

k� Re½AðVSÞ� A�
k � �AðVSÞ� �A�

k�
17 Im½A?ðtÞAðVSÞ�� ðtÞ� Im½A?AðVSÞ�� � �A? �AðVSÞ� � Im½A?AðVSÞ�� þ �A? �AðVSÞ�� �
18 Re½ASðtÞA�

kðtÞ� Re½ASA
�
k þ �AS

�A�
k� Re½ASA

�
k � �AS

�A�
k�

19 Im½A?ðtÞA�
SðtÞ� Im½A?A�

S � �A? �A�
S� Im½A?A�

S þ �A? �A�
S�

20 Re½ASðtÞA�
0ðtÞ� Re½ASA

�
0 þ �AS

�A�
0� Re½ASA

�
0 � �AS

�A�
0�

21 jASðtÞj2 jASj2 þ j �ASj2 jASj2 � j �ASj2
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III. SEARCHING FOR NEW PHYSICS

The result of the previous section is quite theoretical.
In order to understand better how to use it to search for
NP,3 it is necessary to know what the SM predictions
are. Above we focused on final states to which both B0

s

and �B0
s can decay. This restricts the analysis to �b ! �s

transitions, so that the quark content of the final state is
s�ss�s (��), s�sd �d (K�0 �K�0), or s�su �u ðK�þK��; ��Þ.
Decays to �� and K�0 �K�0 are pure gluonic penguin
decays, and K�þK�� is dominated by the gluonic pen-
guin (there is a small tree contribution). The decay to
�� has no gluonic penguin component; it arises due to
electroweak penguin and tree diagrams. As such, its
branching ratio is quite a bit smaller than that of the
other decays, so that even if it is eventually measured, it
is not clear if an angular analysis can be done.

One quantity that is of interest in such decays is the
indirect (mixing-induced) CP-violating asymmetry
(CPA). For a given helicity h, the indirect CPA measures

Imðe�i�MA�
h
�AhÞ: (14)

Note that the above quantity, which corresponds to the dn
of Table III, is sensitive to the weak phases of both the
mixing and the decay. Now, in the SM the gluonic penguin
arises dominantly from the top loop at short distance.
Given that B0

s- �B
0
s mixing is also dominated by the box

diagram with an internal top quark, it is clear that the
e�i�M term in Eq. (14) cancels the weak phase in A�

h
�Ah,

so that the indirect CPA vanishes. This is a common
argument.
However, things are a bit more complicated. In particu-

lar, one also has to consider the new up- and charm-
penguin amplitudes that are generated at the b mass scale.
These contributions can arise from the tree-level operators
�b ! �cc�s and �b ! �uu�s that produce the final-state particles
through rescattering: �cc ! �qq and �uu ! �qq where q ¼ d,
s. For a given helicity h, the �b ! �s gluonic penguin
amplitude can be written

TABLE III. bn’s and dn’s as defined in Eq. (13).

n KnðtÞ bn dn

1 jA0ðtÞj2 �2Re½A�
0
�A0e

�i�M � �2Im½A�
0
�A0e

�i�M �
2 jAkðtÞj2 �2Re½A�

k �Ake�i�M � �2Im½A�
k �Ake�i�M �

3 jA?ðtÞj2 2Re½A�
? �A?e�i�M � 2Im½A�

? �A?e�i�M �
4 Re½AkðtÞA�

0ðtÞ� �Re½ð �AkA�
0 þ A�

k �A0Þe�i�M � �Im½ð �AkA�
0 þ A�

k �A0Þe�i�M �
5 Im½A?ðtÞA�

0ðtÞ� Im½ð �A?A�
0 þ A�

? �A0Þe�i�M � �Re½ð �A?A�
0 þ A�

? �A0Þe�i�M �
6 Im½A?ðtÞA�

kðtÞ� Im½ð �A?A�
k þ A�

? �AkÞe�i�M � �Re½ð �A?A�
k þ A�

? �AkÞe�i�M �
7 jAðVSÞ

þ ðtÞj2 2Re½AðVSÞ�
þ �AðVSÞ

þ e�i�M � 2Im½AðVSÞ�
þ AðVSÞ

þ e�i�M �
8 Re½AðVSÞ

þ ðtÞA�
SðtÞ� Re½ð �AðVSÞ

þ A�
S � AðVSÞ�

þ �ASÞe�i�M � Im½ð �AðVSÞ
þ A�

S � AðVSÞ�
þ �ASÞe�i�M �

9 Re½AðVSÞ
þ ðtÞAðVSÞ�� ðtÞ� Re½ð �AðVSÞ

þ AðVSÞ�� � AðVSÞ�
þ �AðVSÞ� Þe�i�M � Im½ð �AðVSÞ

þ AðVSÞ�
þ � AðVSÞ

þ �AðVSÞ
þ Þe�i�M �

10 Re½AðVSÞ
þ ðtÞA�

0ðtÞ� Re½ð �AðVSÞ
þ A�

0 � AðVSÞ�
þ �A0Þe�i�M � Im½ð �AðVSÞ

þ A�
0 � AðVSÞ�

þ �A0Þe�i�M �
11 Re½AðVSÞ

þ ðtÞA�
kðtÞ� Re½ð �AðVSÞ

þ A�
k � AðVSÞ�

þ �AkÞe�i�M � Im½ð �AðVSÞ
þ A�

k � AðVSÞ�
þ �AkÞe�i�M �

12 Im½A?ðtÞAðVSÞ�
þ ðtÞ� Im½ð �A?A

ðVSÞ�
þ � A�

? �AðVSÞ
þ Þe�i�M � �Re½ð �A?A

ðVSÞ�
þ � A�

? �AðVSÞ
þ Þe�i�M �

13 jAðVSÞ� ðtÞj2 �2Re½AðVSÞ�� �AðVSÞ� e�i�M � �2 Im½AðVSÞ�� �AðVSÞ� e�i�M �
14 Re½AðVSÞ� ðtÞA�

SðtÞ� �Re½ð �AðVSÞ� A�
S þ AðVSÞ�� �ASÞe�i�M � �Im½ð �AðVSÞ� A�

S þ AðVSÞ�� �ASÞe�i�M �
15 Re½AðVSÞ� ðtÞA�

0ðtÞ� �Re½ð �AðVSÞ� A�
0 þ AðVSÞ� �A0Þe�i�M � �Im½ð �AðVSÞ� A�

0 þ AðVSÞ�� �A0Þe�i�M �
16 Re½AðVSÞ� ðtÞA�

kðtÞ� �Re½ð �AðVSÞ� A�
k þ AðVSÞ�� �AkÞe�i�M � �Im½ð �AðVSÞ� A�

k þ AðVSÞ�� �AkÞe�i�M �
17 Im½A?ðtÞAðVSÞ�� ðtÞ� Im½ð �A?AðVSÞ�� þ A�

? �AðVSÞ� Þe�i�M � �Re½ð �A?AðVSÞ�� þ A�
? �AðVSÞ� Þe�i�M �

18 Re½ASðtÞA�
kðtÞ� �Re½ð �ASA

�
k þ A�

S
�AkÞe�i�M � �Im½ð �ASA

�
k þ A�

S
�AkÞe�i�M �

19 Im½A?ðtÞA�
SðtÞ� Im½ð �A?A�

S þ A�
? �ASÞe�i�M � �Re½ð �A?A�

S þ A�
? �ASÞe�i�M �

20 Re½ASðtÞA�
0ðtÞ� �Re½ð �ASA

�
0 þ A�

S
�A0Þe�i�M � �Im½ð �ASA

�
0 þ A�

S
�A0Þe�i�M �

21 jASðtÞj2 �2Re½A�
S
�ASe

�i�M � �2Im½A�
S
�ASe

�i�M �

3A different method for searching for NP in �b ! �s B0
s ! V1V2

penguin decays is discussed in Ref. [11]. Here the idea is to use
flavor SU(3) symmetry and obtain information from measure-
ments of the SU(3)-related �b ! �d B0 decays.
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Ah ¼ V�
tbVtsP

0
t;h þ V�

cbVcsP
0
c;h þ V�

ubVusP
0
u;h

¼ jV�
tbVtsje�i�M=2P0

tc;h þ jV�
ubVusjei�P0

uc;h: (15)

(As this is a �b ! �s transition, the diagrams are written
with primes.) In the second line, we have used the unitarity
of the Cabibbo-Kobayashi-Maskawa (CKM) matrix
(V�

tbVts þ V�
cbVcs þ V�

ubVus ¼ 0) to eliminate the c-quark
contribution: P0

tc;h � P0
t;h � P0

c;h, P
0
uc � P0

u;h � P0
c;h. We

have also explicitly written the weak-phase dependence,
while P0

tc;h and P0
uc;h contain strong phases.

Now, we know that jV�
tbVtsj and jV�

ubVusj are Oð�2Þ and
Oð�4Þ, respectively, where � ¼ 0:22 is the sine of the
Cabibbo angle. This implies that the jV�

ubVusjP0
uc;h term

is much smaller in magnitude than jV�
tbVtsjP0

tc;h. If

jV�
ubVusjP0

uc;h is neglected, then the e�i�M term in

Eq. (14) cancels the weak phase in A�
h
�Ah, so that the

indirect CPA vanishes. However, while the result (a van-
ishing indirect CPA) is correct, the argument leading to
it is not. The easiest way to see this is to use CKM unitarity
to eliminate the t-quark contribution in the first line of
Eq. (15). The amplitude now reads

Ah ¼ jV�
cbVcsjP0

ct;h þ jV�
ubVusjei�P0

ut;h; (16)

where P0
ct;h � P0

c;h � P0
t;h, P0

ut � P0
u;h � P0

t;h. Now if

jV�
ubVusjP0

ut;h is neglected, there is no cancellation of the

e�i�M term in Eq. (14), and the indirect CPA is (appar-
ently) nonzero. So there appears to be a contradiction.

What is really going on is the following. jV�
ubVusj is

Oð�4Þ. If it is neglected, for consistency one must neglect
all Oð�4Þ terms. One of these is ImðV�

tbVtsÞ, so that V�
tbVts

is real. And since �M / arg ðV�
tbVtsÞ, it too vanishes in the

limit that Oð�4Þ terms are neglected. So, at the end of the
day, we recover the result of a vanishing indirect CPA.
The difference is that here the up- and charm-penguin
contributions have been properly taken into account.

The weak phase of Ah is therefore generated by keeping
the jV�

ubVusj term. The amplitude can then be written

Ah ¼ jV�
tbVtsje�i�M=2P0

tc;h þ jV�
ubVusjei�P0

uc;h

¼ e�i�M=2½jV�
tbVtsjP0

tc;h þ jV�
ubVusjeið�þ�M=2ÞP0

uc;h�:
(17)

Writing the strong phases explicitly, we have

Ah ¼ e�i�M=2½P0
tc;he

i�tc;h þ P0
uc;he

ið�þ�M=2Þei�uc;h�: (18)

In the above, P0
tc;h and P0

uc;h have been redefined to absorb

jV�
tbVtsj and jV�

ubVusj, respectively, so that Rh �
P0
uc;h=P

0
tc;h ¼ Oð�2Þ.

The SM an-dn can be calculated using Tables II and III
with the above expression for Ah. These take the general
form P0

tc;hP
0
tc;h0 multiplied by either quantities of Oð1Þ or

Rh � P0
uc;h=P

0
tc;h. In the SM, those of the second type are

expected to be smaller than those of the first type since

Rh ¼ Oð�2Þ. In fact, the coefficients proportional to Rh are
all CP-violating observables: direct CP asymmetries, indi-
rect CP asymmetries, triple products, and mixing-induced
triple products. Physically, this makes sense—CP violation
is due to the interference of two amplitudes. But in the SM
one of the amplitudes (P0

uc;h) is quite small, so that all

CP-violating observables are also small. As shown below,
this is a key point in the search for new physics.
New physics can enter in two different places: in B0

s- �B
0
s

mixing or in the decay. We discuss these in turn below.

A. NP in the mixing

If there is NP inB0
s- �B

0
s mixing, this has two consequences.

First, �M, which is predicted to be ’ 0 in the SM, could be
large. Second, the weak phase associated with P0

tc;h will not,

in general, be equal to e�i�M=2, so a nonzero indirect CPA
could appear. However, LHCb has already measured the
phase of B0

s- �B
0
s mixing in B0

s ! J=c� [12]. They find

�s ¼ 0:07� 0:09ðstatÞ � 0:01ðsystÞ rad; (19)

in agreement with the SM. While the errors are large
enough that NP cannot be excluded, a very large deviation
from 0 is ruled out.
Given this, it appears that, at present, �b ! �s penguin

decays are not sensitive to NP in B0
s- �B

0
s mixing. Put another

way, it is probably best to search for such NP using the
decay mode B0

s ! J=c�.

B. NP in the decay

The second, more interesting possibility is that there is
NP in the decay. In this case the amplitude takes the form
(we neglect P0

uc;h and �M)

Ah ¼ P0
tc;he

i�tc;h þ P0
NP;he

i�NPei�NP;h : (20)

This has the same form as Eq. (18), with P0
uc;h ! P0

NP;h,

ð�þ�M=2Þ ! �NP and �uc;h ! �NP;h. As a result, the

expressions for the an-dn are the same as in the SM, with
these substitutions.
The signal for NP in the decay is then evident. In the

presence of NP, Rh is equal to P0
NP;h=P

0
tc;h, which can be

significantly larger than its SM value, Oð�2Þ. As noted
above, the an-dn proportional to Rh all correspond to
CP-violating observables. These can only be large in the
presence of a sizeable second amplitude, i.e., NP in the
decay.

C. Measuring CP-violating observables

The bottom line is that the angular analysis of B0
s !

V1=S1ð! P1P
0
1ÞV2=S2ð! P2P

0
2Þ is sensitive to NP in the

decay. In order to search for this NP, measurements must be
made of the CP-violating observables. Here we discuss
these in more detail, referring to Tables II and III.
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As noted above, there are four such observables. In
general, the direct CP asymmetries take the form
Re½AhA

�
h0 � �Ah

�A�
h0 � (for h ¼ h0, this becomes the familiar

jAhj2 � j �Ahj2). The indirect (mixing-induced) CP asym-
metries are Im½ðA�

h
�Ah0 þ �AhA

�
h0 Þe�i�M �.

The triple products (TPs) [13] are a little more compli-
cated. For a B0

s decay, the TP takes the form Im½A?A�
h�.

Now, the amplitudes possess both weak and strong phases.
However, the TP can be nonzero even in the absence of any
weak phases, as long as the strong-phase difference is
nonzero. Thus, a nonzero TP is not necessarily a signal
of CP violation. In order to obtain a true CP-violating
signal, one has to compare the TPs in B0

s and �B0
s decays.

This latter TP is given by Im½ �A? �A�
h�. One combination of

B0
s and �B0

s TPs is nonzero only if the weak phases are
nonzero, and so is called a true (CP-violating) TP. The
second combination can be nonzero even if the weak
phases are zero, and so it is not a signal of CP viola-
tion—it is called a fake TP. The true TP takes the
form Im½A?A�

h � �A? �A�
h�. One can also have TPs induced

by B0
s- �B

0
s mixing. The true mixing-induced TP is

Im½ð �A?A�
h þ A�

? �AhÞe�i�M �.
The coefficients corresponding to the four CP-violating

observables are the following.
(1) Direct CP asymmetries: cn (n ¼ 1–4, 7, 13–16, 18,

20, 21), an (n ¼ 8–11).
(2) Indirect CP asymmetries: dn (n ¼ 1–4, 7, 13–16,

18, 20, 21), bn (n ¼ 8–11).
(3) Triple products: an (n ¼ 5, 6, 17, 19), c12.
(4) Mixing-induced triple products: bn (n ¼ 5, 6, 17,

19), d12.
If any coefficient is measured to be significantly larger than
the SM prediction [Oð�2Þ], this would be a sign of NP in
the decay. Note that, in general, the directCP asymmetries,
indirect CP asymmetries, TPs, and mixing-induced TPs
are represented by the cn, dn, an and bn, respectively.
However, this pattern is broken for n ¼ 8–12. The reason

is that these observables involve AðVSÞ
þ , which is CP odd.

That is, in going from the B0
s to �B0

s decay, A
ðVSÞ
þ ! � �AðVSÞ

þ .
This additional minus sign leads to the pattern breaking
above.

As noted in Sec. II A, it is not necessary to do the full
angular analysis to measure these observables. Rather, by
performing asymmetric integrals over the three angles, one
can isolate (almost) any angular function, i.e., value of n.
Then one uses the time dependence of Eq. (13) to distin-
guish among the an-dn. Indeed, this has already been done
in Refs. [14,15] for the TPs a5 and a6 in the simpler case of
time-integrated untagged B0

s ! �� decays.
In fact, it should be stressed that at this stage there is no

point in trying to perform a full angular analysis. The aim of
such an analysis would be to determine the NP parameters.
However, unless an NP signal is found, this is irrelevant. We
therefore suggest that experiments concentrate on measur-
ing the an-dn that are expected to be small in the SM.

In the following two sections we discuss the above
formalism in the context of the specific decays B0

s ! ��
and B0

s ! K�0 �K�0.

IV. B0
s ! ��

The LHCb Collaboration studied B0
s ! �� in Ref. [4].

Their analysis uses the following logic. They argue that,
since B0

s ! �� proceeds via a gluonic �b ! �ss �s diagram
with a t quark in the loop, the mixing and decay weak
phases cancel identically. QCD factorization calculations,
which take into account the up- and charm-penguin con-
tributions, find an upper limit of 0.02 rad for j�sj [16],
where �s is the phase in the B0

s ! �� decay. Putting this
all together, LHCb writes each helicity amplitude as

Ah ¼ jAhjei�s=2ei�h ; (21)

where �h is the strong phase. Here �s is taken to be a weak
phase and is assumed to be helicity independent.
The angular analysis of B0

s ! �� is as given in Sec. II,
except that, for this final state, we have jVSi ¼ �jSVi so
that the VSþ state vanishes. This implies that the AðVSÞ

þ ðtÞ
amplitude is not present. The expressions for the coefficients
an-dn are found using the formulas in Tables II and III, in
which Ah is given in Eq. (21). These are listed in Table IV
for n ¼ 1–6 (in total, n goes to 15, but LHCb finds that the
VS and SS contributions are very small). We define �1 �
�? � �k, �2 � �? � �0, and �2;1 � �2 � �1. Table IV

agrees with Ref. [4].
Of course, the form assumed for the Ah [Eq. (21)] has

specific implications for the expressions for the an-dn. For
example, the fact that cn ¼ 0 (n ¼ 1–4) and an ¼ 0
(n ¼ 5, 6) is a direct consequence. In addition, the quantity
sin�s appears explicitly in a number of entries in Table IV,
so that sin �s ¼ �dn=an (n ¼ 1–4). Also, tan �s ¼ bn=dn
(n ¼ 5, 6). This allows LHCb to restrict the value of �s to
the interval of ½�2:46;�0:76� rad at 68% C.L. As ex-
plained above, �s is expected to be quite small in the
SM, so this result is an intriguing hint of NP.
The problem is that the logic leading to Eq. (21) is

somewhat faulty, and the form assumed for Ah is not the
most general. Indeed, a rather strong assumption has been
made, one that is not well-motivated physically. The exact
amplitude is given in Eq. (18). One can rephase it by

ei�M=2, giving

TABLE IV. an-dn’s (n ¼ 1–6) for B0
s ! ��. Ah takes the

form in Eq. (21).

n N an=N bn=N cn=N dn=N

1 2jA0j2 1 � cos�s 0 sin�s
2 2jAkj2 1 � cos�s 0 sin�s
3 2jA?j2 1 cos�s 0 � sin �s
4 2jA0jjAkj cos�2;1 � cos�2;1 cos�s 0 cos�2;1 sin�s
5 2jA0jjA?j 0 � cos�2 sin�s sin�2 � cos�2 cos �s
6 2jAkjjA?j 0 � cos�1 sin�s sin�1 � cos�1 cos �s
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Ah ¼ P0
tc;he

i�tc;h þ P0
uc;he

ið�þ�M=2Þei�uc;h

¼ P0
tc;he

i�tc;h½1þ Rhe
ið�þ�M=2Þei�h �; (22)

where �h ¼ �uc;h � �tc;h. If we assume that �h ¼ 0 and

that Rh is helicity independent, we can write the piece in

square brackets as Xei�s=2, which yields Eq. (21). Here we
see that �s is indeed small, Oð�2Þ, and this is due to the
smallness of Rh.

Unfortunately, the assumption that �h ¼ 0 is generally
false and is not supported by any computation. Given that
the starting point, Eq. (21), is questionable, this raises
serious warning signs about the result. Is the large
measured value of �s really a hint of NP, or is it just a
consequence of an incorrect assumption?

Still, one question remains: although Eq. (21) is not an
exact parametrization of the amplitude, could it be taken as
an approximation? And here the answer is yes. The key
point is that, even if �h ¼ 0 is not assumed, the piece in

square brackets in Eq. (22) can be written as Xei�s;h=2.
However, as �s;h is small in the SM, the assumptions that

it is helicity independent and purely a weak phase are
acceptable provided one is not measuring quantities of
the expected size of �s, Oð�2Þ. In other words, if a value
of �s is measured that is much larger than the SM expec-
tation, then this would be a sign of NP. However, if the
measured �s is small, then even if it deviates from the
SM expectation, one cannot reliably claim the presence
of NP.

But this then raises another question: if such large NP
effects are present, are they best detected by performing a
fit to the data? Here the answer is clearly no. The only way
one can find a large value of �s is if there are CP-violating
observables whose values are much larger than in the SM.
But in this case, the simple measurement of these observ-
ables will reveal the presence of NP—it is not necessary to
perform a full fit to the data.

The bottom line is that if one wishes to perform a fit,
it is best to do the analysis using the exact amplitude of
Eq. (18). This will be difficult, as there are considerably
more unknown parameters than in Eq. (21). However, as
stated previously, at this stage a full angular analysis is not
even warranted. Experiments measuring B0

s ! �� should
simply focus on measuring the CP-violating observables,
since these are expected to be small in the SM.

V. B0
s ! K�0 �K�0

As noted in the previous section, LHCb finds that the VS
and SS contributions to B0

s ! �� are very small. This is
not surprising. The resonant scalar background comes from
the decay f0 ! KþK�. However, the dominant f0 decay is
to ��—the Particle Data Group notes only that f0 ! K �K
has been ‘‘seen’’ [17]. The f0 ! �� decay is an important
background for decays in which a final-state �0 is pro-
duced. Indeed, measurements of the decay B0 ! �0�0 [18]

had to take this background into account. However, B0
s

decays to final states involving a �0 are rare.
One decay for which the scalar-background contribu-

tions are clearly significant is B0
s ! K�0 �K�0 [8]. Here the

final-state vector meson is the K�0ð892Þ, identified through
its decay to Kþ��. However, the scalar meson K�0ð1430Þ
decays almost exclusively to the same final state. And since
its width is ð270� 80Þ MeV [17], it constitutes an impor-
tant background. Finally, since the final state does not
involve identical particles, both additional amplitudes

AVS and ASV (or equivalently AðVSÞ
þ and AðVSÞ� [Eq. (4)])

must be considered.
When this angular analysis is done, the first step will be

to examine the untagged decays. In order to find which
observables are present in these decays, one proceeds as
follows. The time-dependent transversity amplitudes for
the �B0

s decay ( �Kn’s) can be obtained by interchanging
Ah $ �h

�Ah and changing the sign of the weak phase
�M. One can write an equation similar to Eq. (13) in the
�B0
s case as follows:

�KnðtÞ ¼ 1

2
e��t½ �an cosh ð��=2Þtþ �bn sinh ð��=2Þt

þ �cn cos�mtþ �dn sin�mt�; (23)

where once again �an, �bn, �cn, and �dn for n ¼ 1; . . . ; 21 are
time-independent functions of Ah and �Ah.
It is straightforward to show that

�an ¼an; �cn ¼�cn; �bn ¼bn; �dn ¼�dn: (24)

With these results the transversity amplitudes for the
untagged decay are

K
untagged
n ðtÞ ¼ KnðtÞ þ �KnðtÞ

¼ e��t½an cosh ð��=2Þtþ bn sinh ð��=2Þt�:
(25)

As stressed above, experiments should focus on measur-
ing the CP-violating observables. In the untagged case,
these are the following (see Sec. III C).
(1) Triple products: an (n ¼ 5, 6, 17, 19).
(2) Mixing-induced triple products: bn (n ¼ 5, 6, 17,

19).
(3) Direct CP asymmetries: an (n ¼ 8–11).
(4) Indirect CP asymmetries: bn (n ¼ 8–11).

As can be seen, all four types of CP-violating observables
are accessible in untagged B0

s ! K�0 �K�0 decays, given that
the scalar-background contributions are important.
It is perhaps surprising to find direct CP asymmetries in

the untagged sample. After all, we usually think that such
observables require tagging. However, their presence in the
above list can be understood as follows. As mentioned
earlier, the general form for a direct CP asymmetry is
Re½AhA

�
h0 � �Ah

�A�
h0 �. Now, the B-decay contribution is

Re½AhA
�
h0 �, while that for the �B is obtained by taking
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Ah;h0 ! �h;h0 �Ah;h0 , where �h;h0 ¼ þ1 (� 1) if Ah;h0 is CP
even (CP odd). The observable in untagged decays is then
the sum of the B and �B contributions,

Re½AhA
�
h0 þ �h�h0 �Ah

�A�
h0 �: (26)

Suppose first that both Ah and Ah0 are CP even. In this case
�h�h0 ¼ þ1 and the observable in Eq. (26) is not a direct
CP asymmetry. This is the case for n ¼ 4, for example. On
the other hand, suppose that one of Ah and Ah0 is CP odd.
Now we have �h�h0 ¼ �1 and the observable in Eq. (26)
is a direct CP asymmetry. This is what is occurring for

n ¼ 8–11. Here the CP-odd amplitude AðVSÞ
þ is involved,

and this leads to the direct CP asymmetries in the untagged
sample. A similar logic applies to the indirect CP
asymmetries.

VI. NEW PHYSICS

Above we have stressed that measurements should be
made of the CP-violating observables. Such measurements
are sensitive to NP in the decay. In this section we examine
a model of NP that can yield such effects. Although we
focus on a particular NP scenario, our analysis is easily
applicable to other NP models.

The recent discovery of a Higgs-like resonance at the
LHC [19], along with supporting evidence for its existence
from Fermilab [20], have renewed interest in models with
an extended Higgs sector. An accurate determination of
the couplings of the new state to quarks, including flavor-
changing neutral-current (FCNC) couplings, is clearly very
important. Constraints on possible FCNC couplings of this
state have recently been examined [21].

We consider a model with an extended Higgs sector
in which the neutral scalars have FCNC couplings. We
identify the lowest-mass state as the X particle, and assume
that X mediates the decay �b ! �sq �q, where q ¼ d, s.
(There may be contributions to the decay from heavier
states, but in order to retain predictive power, we assume
that the dominant contribution comes from the lowest-
lying state X.) X may be identified with the newly discov-
ered particle of mass �125 GeV, but this is not important
for our discussion. However, it should be pointed out that
the penguin B0

s ! V1V2 decays have the potential to ex-
plore the coupling of the new scalar state to light quarks,
which is not possible at collider experiments.

After integrating out the X state, we generate the effec-
tive Hamiltonian [22,23]

HNP ¼ 4GFffiffiffi
2

p X
A;B¼L;R

fABq �b�As �q�Bq; (27)

with a total of four contributing operators (A, B ¼ L, R,
q ¼ d, s). In order to determine the contribution of each
operator to the various observables, it is necessary to
calculate the hadronic matrix elements. However, instead
of computing these using a particular model, we prefer to

simply make some general observations. To do this, we
introduce two small parameters:
(1) We assume that the NP contribution to any

observable is smaller than that of the dominant
SM amplitude, but larger than the subdominant
SM amplitude of Oð�2Þ. This is reasonable since
larger NP contributions would likely have already
been seen in experiments. We therefore define 	 �
jNPj=jSMj, and take its value to be �20%.

(2) We introduce the heavy-quark expansion parameter
	b ��QCD=mb. Generically, we expect that 	b �
10–20%.

We also make the assumption that the NP matrix
elements can be estimated by naive factorization. This is
very reasonable since any correction to naive factorization
would typically beOð		bÞ. Note that, with this assumption,
the scalar operators cannot directly produce the VV or VS
final states—they can only do so after a Fierz transforma-
tion. Moreover, as the NP operators do not contain charm
quarks, possible large nonperturbative rescattering effects
are absent [24]. A consequence of this is that the NP
amplitudes have strong phases that are 0 or �. (This can
be justified on more general grounds [22,25].) Since we are
considering NP effects with large new weak phases, we can
neglect the small weak phases in the SM amplitudes.
Hence the SM and NP amplitudes, respectively sh and
nh, take the following forms:

sh ¼ �sh ¼ jshjei�h ; nh ¼ �n�h ¼ jnhjei�h ; (28)

where�h are the NP weak phases and �h are the SM strong
phases.
To simplify things we concentrate on one NP operator at

a time, and consider its effect on the process B0
s ! K�0 �K�0

(for this decay, a Fierz transformation is also needed to
produce the SS final state). The procedure is to obtain the
form of each helicity amplitude Ah in the presence of the
NP operator, and then to compute the CP-violating
observables that appear in the untagged distribution. We
focus on the triple products an (n ¼ 5, 6, 17, 19) and the
direct CP asymmetries an (n ¼ 8–11). Assuming the mix-
ing phase to be small, the mixing-induced triple products
bn (n ¼ 5, 6, 17, 19) do not provide additional information
over that already contained in the triple products, and so we
do not calculate them. Similarly, the indirect CP asymme-
tries bn (n ¼ 8–11) contain the same information as the an
(n ¼ 8–11) when the mixing phase is neglected. The triple
products arise from the interference of A? with the other
amplitudes, while the direct CP asymmetries arise from the

interference of AðVSÞ
þ with the other amplitudes. Note that,

while there are SM contributions to all the Ah, sk ¼ �s? in

the heavy-quark limit [26].
We consider the following three cases.
(i) Case a: We begin with the NP operator of �b ! �sd �d

whose coefficient is fRRd [Eq. (27)],
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4GFffiffiffi
2

p fRRd
�b�Rs �d�Rd: (29)

For this operator to contribute to the decay, we
perform a Fierz transformation (both fermions and
colors),

� 4

Nc

GFffiffiffi
2

p fRRd

�
1

2
�b�Rd �d�Rsþ1

8
�b
���Rd �d
���Rs

�
:

(30)

Under the factorization assumption the currents pro-
duce the final-state mesons, so that the scalar cur-
rents cannot produce vector mesons and the tensor
currents cannot produce scalar mesons. Thus the first
term contributes only to the SS state within factori-
zation and in the heavy-quark limit, while the second
term contributes only to the VV states. We will make
use of the following factorization results.

(a) To leading order in 1=mb we have

hVVj �b�Rd �d�RsjBi ¼ 0;

hðVSÞ�j �b�Rd �d�RsjBi ¼ 0:
(31)

The results above are due to hVj �b�RdjBi ¼ 0 [27]
and hVj �d�Rsj0i ¼ 0.

(b) The matrix element hVVj �b
���Rd �d
���RsjBiwas
worked out in Refs. [23,26], with the result that the
contribution to the longitudinal amplitude is�1=mb

while the transverse amplitudes are unsuppressed.
We also note that for the VS states, the amplitude in
which the scalar is produced from the vacuum van-
ishes as tensor operators cannot produce a scalar
meson from the vacuum. The amplitude in which the
vector state is produced from the vacuum can be
shown to be suppressed by�1=mb. It is also true for
reasons stated above that the tensor operators cannot
produce the SS state.

Using the results discussed above, and keeping terms up to
linear in 	 and 	b, we can write the amplitudes as

A0 ¼ s0; A? ¼ s? þ nRR? ;

Ak ¼ �s? þ nRR? þOð	bÞ;
AðVSÞ
þ ¼ sðVSÞþ ; AðVSÞ� ¼ sðVSÞ� ;

ASS ¼ sSS þ nRRSS :

(32)

The prediction for this operator is that one should observe
nonzero values for all the triple products while the direct
CP-violation terms a9 and a10 should be small.

(ii) Case b: Similar to the example above, for the fLLd
operator the amplitudes are

A0 ¼ s0; A? ¼ s? þ nLL? ;

Ak ¼ �s? � nLL? þOð	bÞ; AðVSÞ
þ ¼ sðVSÞþ ;

AðVSÞ� ¼ sðVSÞ� ; ASS ¼ sSS þ nLLSS : (33)

Hence the prediction is that all true triple products
have similar sizes, except for a6 which should
be small. As in the previous case, the direct
CP-violation terms a9 and a10 should be small.

(iii) Case c: Finally, we consider the case when we have
the operators fLRd and fRLd [Eq. (27)]. The Fierz

transformation produces ðV � AÞ � ðV þ AÞ and
ðV þ AÞ � ðV � AÞ operators. In this case the NP
transverse amplitudes are suppressed by 	b. We can
write the amplitudes as

A0 ¼ s0 þ nLR0 � nRL0 ;

A? ¼ s?;

Ak ¼ �s? þOð	bÞ;
AðVSÞ
þ ¼ sðVSÞþ þ nLR;VSþ � nRL;VSþ ;

AðVSÞ� ¼ sðVSÞ� þ nLR;VS� � nRL;VS� ;

ASS ¼ sSS þ nLRSS � nRLSS :

(34)

In this case the triple product a6 is small, but the
other TPs will generally be nonzero. This case is
different from Case b above as the direct
CP-violation terms a9 and a10 are not small.

We therefore see that the three cases make different
predictions for the CP-violating terms in the untagged
distribution. As a result, one can learn about the nature
of the underlying NP from the pattern of the measure-
ments. If the tagged measurements are also available,
then the additional CP-violating observables can be used
to further pinpoint the structure of the NP.

VII. CONCLUSIONS

It is well known that the amplitude for B ! V1V2 (Vi is a
vector meson) can be decomposed in terms of three
helicities—A0, Ak, A?—and that these can be separated

experimentally by performing an angular analysis of the
decay. Recently it was pointed out that if a neutral vector
meson is detected via its decay V ! PP0 (P, P0 are pseu-
doscalars), there is usually a background coming from
scalar resonant or nonresonant PP0 production. This can
be taken into account by adding another (scalar) helicity to
the angular analysis.
Since the � is detected through its decay to KþK�,

LHCb performed this addition in their studies of B0
s !

J=c� [3] and B0
s ! �� [4]. For the first decay there

were four helicities in the angular analysis, while in the
second there were five. LHCb is also examining B0

s !
K�0ð892Þ �K�0ð892Þ. In this case, the angular analysis
requires six helicities since there are no identical particles
in the final state.
Also, in its analysis of B0

s ! ��, LHCb did not use the
most general decay amplitude. This raises the question of
whether the result of the analysis (an intriguing hint of NP)
is due to the chosen form of the amplitude.
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In this paper, we addressed the above issues. We pre-

sented the most general (six-helicity) angular analysis of

B0
s ! V1ð! P1P

0
1ÞV2ð! P2P

0
2Þ. We focused on final states

to which both B0
s and �B0

s can decay. These are mainly
�b ! �s penguin transitions. We also derived the most

general decay amplitude. We showed that the amplitude

used by LHCb in Ref. [4] makes an assumption regarding

the strong phases that is not reproduced by direct

calculation.
One of the reasons that LHCb used its form of the decay

amplitude is that it contains a small number of unknown

parameters. This permits a search for NP via a full fit to the

data. However, the most general amplitude contains more

unknowns, so that a full fit is considerably more difficult.

Fortunately, a fit is not necessary to detect NP. Since �b ! �s
penguin decays are dominated by a single contributing

amplitude in the SM, all CP-violating observables are

predicted to be small. The presence of NP would then be

clearly indicated by the simple measurement of a sizeable

CP-violating observable. There are four such observ-

ables—direct CP asymmetries, indirect CP asymmetries,

triple products, and mixing-induced triple products—and

we discussed all of these in the context of the six-helicity

angular analysis.

We applied this analysis to the decay B0
s ! K�0 �K�0.

In particular, we examined which CP-violating observ-
ables remain in the untagged data sample. Triple products
and mixing-induced triple products are of course present.
In addition, because this decay has a CP-odd background,
certain direct and indirect CP asymmetries can be ob-
served in untagged decays. This is a particularly interesting
aspect of B0

s ! K�0 �K�0.
Finally, one can learn about the nature of the underlying

NP by determining which of the CP-violating observables
are nonzero. To demonstrate this, we considered a particu-
lar model of NP and have shown that different NP opera-
tors make different predictions for the pattern of sizeable
CP-violating observables.
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