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We identify the recently observed charmoniumlike structure Z�
c ð3900Þ as the charged partner of the

Xð3872Þ state. Using standard techniques of QCD sum rules, we evaluate the three-point function and

extract the coupling constants of the Zþ
c J=c�þ, Zþ

c �c�
þ and Zþ

c D
þ �D�0 vertices and the corresponding

decay widths in these channels. The good agreement with the experimental data gives support to the

tetraquark picture of this state.
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I. INTRODUCTION

About ten years after the discovery of the Xð3872Þ, the
BESIII collaboration has just reported the observation of a
charged charmoniumlike structure in theMð��J=c Þ mass
spectrum of the Yð4260Þ ! J=c�þ�� decay channel [1].
This structure, called Zcð3900Þ, was also observed at the
same time by BELLE [2] and was confirmed by the authors
of Ref. [3] using CLEO-c data. During the past decade,
as other new nonconventional states were discovered,
their internal structure was the subject of intense debate.
Definite conclusions have not yet been reached, and some
models for these states are still under consideration: the
meson molecule [4], tetraquark [5], hadrocharmonium [6],
and charmonium-molecule mixture [7]. For a comprehen-
sive review of the theoretical and experimental statuses of
these states, we refer the reader to Ref. [8]. In most of these
models, it is relatively easy to reproduce the masses of the
states. It is, however, much more difficult to reproduce
their measured decay widths. In the present case, the
Zcð3900Þ decay width poses an additional challenge to
theorists. Its mass is very close to the Xð3872Þ, which
may be considered its neutral partner. However, while the
Zcð3900Þ decay width is in the range 40–60 MeV, the
Xð3872Þ width is smaller than 2.3 MeV. A possible reason
for this difference is the fact that theXð3872Þmay contain a
significant jc �ci component [7], which is absent in the
Zcð3900Þ. Probably for this same reason, the Zc was not
observed in B decays, as pointed out in Ref. [9].

In this work, we present a calculation of the Zcð3900Þ
decay width into J=c�þ, �c�

þ and Zþ
c D

þ �D�0.
If the Zc is a real D� � �D molecular state, its decay

into J=c�þ (or �c�
þ) must involve the exchange of a

charmed meson. Since the exchange of heavy mesons is a

short-range process, when the distance betweenD� and the
�D is large it, becomes more difficult to exchange mesons.
Using the expression of the decay width obtained with the
one boson exchange potential, we can relate the decay
width with the effective radius of the state. In Ref. [10],
it was shown that, in order to reproduce the measured
width, the effective radius must be hreffi ’ 0:4 fm. This
size scale is small and pushes the molecular picture to its
limit of validity. In another work [11], the new state was
again treated as a charged D� � �D molecule, in which the
interaction between the charm mesons is described by a
pionless effective field theory. Introducing electromagnetic
interactions through the minimal substitution in this theory,
the authors of Ref. [11] were able to study the electromag-
netic structure of the Zc and, in particular, its charge form
factor and charge radius, which turned out to be hr2i ’
0:11 fm2. Taking this radius as a measure of the spatial size
of the state, we conclude that it is more compact than a
J=c , for which hr2i ’ 0:16 fm2. We take the combined
results of Refs. [10,11] as an indication that the Zc is a
compact object, which may be better understood as a quark
cluster, such as a tetraquark. Therefore, in this work, we
explore this possibility.
As the number of new states increases, a new question

arises concerning their grouping in families: which ones
belong together? Which ones are ground states, and which
are excitations? A possible organization of the charmo-
nium and bottomonium new states was suggested in
Ref. [12], and it is summarized in Fig. 1. In the figure,
we compare the charm and bottom spectra in the mass
region of interest. On the left (right) we show the charm
(bottom) states with their mass differences in MeV. The
comparison between the two left lines with the two lines on
the right emphasizes the similarity between the spectra. In
the bottom of the second column, we have now the newly
found Zcð3900Þ. In Ref. [12], there was a question mark in
this position. In fact, the existence of a charged partner of
the Xð3872Þ was first proposed in Ref. [5]. A few years
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later [13], the same group proposed that the Zþð4430Þ,
observed by BELLE [14], would be the first radial excita-
tion of the charged partner of the Xð3872Þ. This suggestion
was based on the fact that the mass difference correspond-
ing to a radial excitation in the charmonium sector is
given by M�ð2SÞ �M�ð1SÞ ¼ 590 MeV. This number is

close to the mass difference MZþð4430Þ �MXþð3872Þ ¼
560 MeV. The very same connection between Zþð4430Þ
and Zcð3900Þwas found in the hadrocharmonium approach
[15], in which the former is essentially a �0 embedded in
light mesonic matter and the latter a J=c also embedded in
light mesonic matter. In a straightforward extension of this
reasoning to the bottom sector, in Ref. [12], it was con-
jectured that the Zþ

b ð10610Þ, observed by the BELLE

collaboration in Ref. [16], may be a radial excitation of a
yet unmeasured Xþ

b . The observation of Zþ
c ð3900Þ gives

support to this conjecture and should motivate new experi-
mental searches of this bottom charged state and its neutral
partner, the only missing states in the diagram.

There are also other suppositions according to which the
Zþ
c ð3900Þ should be the charmed partner of the Zþ

b ð10610Þ.
In this scheme, there should exist another charged state,
called Z0

c, that would be the charmed partner of the
Zþ
b ð10650Þ [15,17,18].
In this work, we use the method of QCD sum rules

(QCDSRs) [19–21] to study some hadronic decays of
Zcð3900Þ, considering Zc as a four-quark state.

II. Zþ
c ð3900Þ ! J=c�þ DECAY WIDTH

The QCDSRs were used in Ref. [22] to study the
Xð3872Þ meson considered as a IGðJPCÞ ¼ 0þð1þþÞ

four-quark state, and a good agreement with the experi-
mental mass was obtained. The Zcð3900Þ is interpreted
here as the isospin 1 partner of the Xð3872Þ. As in
Refs. [13,17], we assume the quantum numbers for the
neutral state in the isospin multiplet to be IGðJPCÞ ¼
1þð1þ�Þ. Therefore, the interpolating field for Zþ

c ð3900Þ
is given by

j� ¼ i�abc�decffiffiffi
2

p ½ðuTaC�5cbÞð �dd��C �cTe Þ

� ðuTaC��cbÞð �dd�5C �cTe Þ�; (1)

where a; b; c; . . . are color indices, and C is the charge
conjugation matrix. Considering SUð2Þ symmetry, the
mass obtained in QCDSRs for the Zc state is exactly the
same one obtained for the Xð3872Þ, as it happens in
the case of � and ! states. There are also QCDSRs
calculations for the Zc state considered as a �DD� molecular
state [23,24]. These calculations only confirm the results
presented in Refs. [22,25]. Therefore, here, we evaluate
only the decay width.
We start with the Zþ

c ð3900Þ ! J=c�þ decay. The
QCDSRs calculation of the vertex Zcð3900ÞJ=c� is based
on the three-point function, given by

����ðp; p0; qÞ ¼
Z

d4xd4yeip
0:xeiq:y����ðx; yÞ; (2)

with ����ðx; yÞ ¼ h0jT½jc�ðxÞj�5�ðyÞjy�ð0Þ�j0i, where p ¼
p0 þ q, and the interpolating fields for J=c and � are
given by

jc� ¼ �ca��ca; (3)

j�5� ¼ �da�5��ua: (4)

In order to evaluate the phenomenological side of the sum
rule, we insert intermediate states for Zc, J=c and � into
Eq. (2). We get

�ðphenÞ
��� ðp;p0;qÞ¼ 	Zc

mc fcF�gZcc�ðq2Þq�
ðp2�m2

Zc
Þðp02�m2

c Þðq2�m2
�Þ

�
�
�g�	þ

p0
�p

0
	

m2
c

��
�g	�þp�p

	

m2
Zc

�
þ���;

(5)

where the dots stand for the contribution of all possible
excited states. The form factor, gZcc�ðq2Þ, is defined as the
generalization of the on-mass-shell matrix element,
hJ=c�jZci, for an off-shell pion:

hJ=c ðp0Þ�ðqÞjZcðpÞi ¼ gZcc�ðq2Þ"�	ðp0Þ"	ðpÞ; (6)

where "�ðpÞ, "�ðp0Þ are the polarization vectors of the Zc

and J=c mesons, respectively. In deriving Eq. (5), we have
used the definitions

FIG. 1. Charm and bottom energy levels in the mass region of
interest. Masses are inMeV. On the two left columns, we show the
conjecture presented in Ref. [13]. The Zþ

c ð3900Þ is conjectured to
be the charged partner of the Xð3872Þ. On the two right columns,
we show the conjecture advanced in Ref. [12] for the bottom
sector, where the Xbð?Þ and Xþ

b ð?Þ are the proposed states.
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h0jjc� jJ=c ðp0Þi ¼ mc fc"�ðp0Þ;
h0jj�5�j�ðqÞi ¼ iq�F�;

hZcðpÞjj�j0i ¼ 	Zc
"��ðpÞ:

(7)

To extract directly the coupling constant, gZcc�, instead

of the form factor, we can write a sum rule at the pion pole
[26], valid only atQ2 ¼ 0, as suggested in Ref. [20] for the
pion-nucleon coupling constant. This method was also
applied to the nucleon-hyperon-kaon coupling constant
[27,28] and to the nucleon��c �D coupling constant
[29]. It consists of neglecting the pion mass in the denomi-
nator of Eq. (5) and working at q2 ¼ 0. In the operator
product expansion (OPE) side, only terms proportional to
1=q2 will contribute to the sum rule. Therefore, up to
dimension 5, the only diagrams that contribute are the
quark condensate and the mixed condensate.

As discussed in Refs. [30,31], large partial decay widths
are expected when the coupling constant is obtained from
QCDSRs in the case of multiquark states. By multiquark
states, we mean that the initial state contains the same
number of valence quarks as the number of valence quarks
in the final state. This happens because, although the initial
current, Eq. (1), has a nontrivial color structure, it can be
rewritten as a sum of molecular-type currents with trivial
color configuration through a Fierz transformation. To avoid
this problem, we follow Refs. [30,31] and consider in the
OPE side only the diagrams with nontrivial color structure,
which are called color-connected (CC) diagrams. In the
present case, the CC diagram that contributes to the OPE
side at the pion pole is shown inFig. 2. Possible permutations
(not shown) of the diagram in Fig. 2 also contribute.

The diagram in Fig. 2 contributes only to the structures
q�g�� and q�p

0
�p

0
� appearing in the phenomenological

side. Since structures with more momenta are supposed to
give better results, we choose to work with the q�p

0
�p

0
�

structure. Therefore, in the OPE side and in the q�p
0
�p

0
�

structure, we obtain

�ðOPEÞ ¼ h �qg
:Gqi
12

ffiffiffi
2

p
�2

1

q2

Z 1

0
d�

�ð1� �Þ
m2

c � �ð1� �Þp02 : (8)

Isolating the q�p
0
�p

0
� structure in Eq. (5) and making a

single Borel transformation to both P2 ¼ P02 ! M2, we
finally get the sum rule:

Aðe�m2
c =M

2 � e�m2
Zc
=M2Þ þ Be�s0=M

2

¼ h �qg
:Gqi
12

ffiffiffi
2

p
�2

Z 1

0
d�e

�m2
c

�ð1��ÞM2 ; (9)

where s0 is the continuum threshold parameter for Zc,

A ¼ gZcc�	Zc
fcF�ðm2

Zc
þm2

c Þ
2m2

Zc
mc ðm2

Zc
�m2

c Þ
; (10)

and B is a parameter introduced to take into account single
pole contributions associated with pole-continuum transi-
tions, which are not suppressed when only a single Borel
transformation is done in a three-point function sum rule
[30,32–34]. In the numerical analysis, we use the following
values for quark masses and QCD condensates [22,35]:

mcðmcÞ ¼ ð1:23� 0:05Þ GeV;
h �qqi ¼ �ð0:23� 0:03Þ3 GeV3;

h �qg
:Gqi ¼ m2
0h �qqi;

m2
0 ¼ 0:8 GeV2:

(11)

For the meson masses and decay constants, we use the
experimental values [36] mc ¼3:1GeV, m� ¼ 138 MeV,

fc ¼ 0:405 GeV, and F� ¼ 131:52 MeV. For the Zc

mass, we use the value measured in Ref. [1]: mZc
¼

ð3899� 6Þ MeV. The meson-current coupling, 	Zc
,

defined in Eq. (7), can be determined from the two-point
sum rule [22]: 	Zc

¼ ð1:5� 0:3Þ � 10�2 GeV5. For the

continuum threshold, we use s0 ¼ ðmZc
þ �s0Þ2, with

�s0 ¼ ð0:5� 0:1Þ GeV. We evaluate the sum rule in the
range 2:0 � M2 � 3:0 GeV2, which is the range in which
the two-point function for Xð3872Þ [which is the same for
Zcð3900Þ] shows good OPE convergence and in which the
pole contribution is bigger than the continuum contribution
[22]. In Fig. 3, we show, through the circles, the rhs of
Eq. (9), as a function of the Borel mass.
To determine the coupling constant gZcc�, we fit the

QCDSRs results with the analytical expression in the lhs
of Eq. (9) and find (using �s0 ¼ 0:5 GeV) A ¼ 1:46�
10�4 GeV5 and B ¼ �8:44� 10�4 GeV5. Using the defi-
nition of A in Eq. (10), the value obtained for the coupling
constant is gZcc� ¼ 3:89 GeV, which is in excellent

agreement with the estimate made in Ref. [17], based on
dimensional arguments. Considering the uncertainties
given above, we finally find

gZcc� ¼ ð3:89� 0:56Þ GeV: (12)

The decay width is given by [17]

�ðZþ
c ð3900Þ!J=c�þÞ

¼p�ðmZc
;mc ;m�Þ

8�m2
Zc

1

3
g2Zcc�

�
3þðp�ðmZc

;mc ;m�ÞÞ2
m2

c

�
;

(13)
FIG. 2. CC diagram, which contributes to the OPE side of the
sum rule.
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where

p�ða; b; cÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 þ b4 þ c4 � 2a2b2 � 2a2c2 � 2b2c2

p

2a
:

(14)

Therefore, we obtain

�ðZþ
c ð3900Þ ! J=c�þÞ ¼ ð29:1� 8:2Þ MeV: (15)

III. Zþ
c ð3900Þ ! �c�

þ DECAY WIDTH

Next, we consider the Zþ
c ð3900Þ ! �c�

þ decay. The
three-point function for the corresponding vertex is
obtained from Eq. (2) by using

���ðx; yÞ ¼ h0jT½j�c

5 ðxÞj��ðyÞjy�ð0Þ�j0i; (16)

with

j�c

5 ¼ i �ca�5ca; and j�� ¼ �da��ua: (17)

In this case, the phenomenological side is

�ðphenÞ
�� ðp;p0;qÞ¼ �i	Zc

m�f�f�c
m2

�c
gZc�c�ðq2Þ

2mcðp2�m2
Zc
Þðp02�m2

�c
Þðq2�m2

�Þ

�
�
�g�	þ

q�q	

m2
�

��
�g	�þp�p

	

m2
Zc

�
þ���;

(18)

where now we have used the definitions

h0jj��j�ðqÞi ¼ m�f�"�ðqÞ; h0jj�c

5 j�cðp0Þi ¼ f�c
m2

�c

2mc

:

(19)

In the OPE side, we consider the CC diagrams of the same
kind as the diagram in Fig. 2. In the p0

�q� structure, we

have

�ðOPEÞ ¼ �imch �qg
:Gqi
48

ffiffiffi
2

p
�2

1

q2

Z 1

0
d�

1

m2
c � �ð1� �Þp02 :

(20)

Remembering that p ¼ p0 þ q, isolating the q�p
0
� struc-

ture in Eq. (18), and making a single Borel transformation
on both P2 ¼ P02 ! M2, we finally get the sum rule:

Cðe�m2
�c =M

2 � e�m2
Zc
=M2Þ þDe�s0=M

2

¼ Q2 þm2
�

Q2

mch �qg
:Gqi
48

ffiffiffi
2

p
�2

Z 1

0
d�

e
�m2

c

�ð1��ÞM2

�ð1� �Þ ; (21)

with Q2 ¼ �q2 and

C ¼ gZc�c�ðQ2Þ	Zc
m�f�f�c

m2
�c

2mcm
2
Zc
ðm2

Zc
�m2

�c
Þ : (22)

We use the experimental values for m�, f� and m�c
[36],

and we extract f�c
from Ref. [37]:

m� ¼ 0:775 GeV; m�c
¼ 2:98 GeV;

f� ¼ 0:157 GeV; f�c
¼ 0:35 GeV:

(23)

One can use Eq. (21) and its derivative with respect to M2

to eliminate D from Eq. (21) and to isolate gZc�c�ðQ2Þ. In
Fig. 4, we show gZc�c�ðQ2Þ as a function of both M2 and

Q2. A good Borel window is determined when the parame-
ter to be extracted from the sum rule is as independent of
the Borel mass as possible. Therefore, from Fig. 4, we
notice that the Borel window in which the form factor is
independent of M2 is in the region of 4:0 � M2 �
10:0 GeV2. The squares in Fig. 5 show the Q2 dependence
of gZc�c�ðQ2Þ, obtained for M2 ¼ 5:0 GeV2. For other

values of the Borel mass, in the range of 4:0 � M2 �
10:0 GeV2, the results are equivalent. Since the coupling

2 2.2 2.4 2.6 2.8 3

M
2
(GeV

 2
)

−2×10−6

0

2×10−6

4×10−6

6×10−6

8×10−6

R
H

S
 X

  L
H

S
 (

G
eV

5 )

FIG. 3 (color online). Dots: the rhs of Eq. (9), as a function of
the Borel mass for �s0 ¼ 0:5 GeV. The solid line gives the fit of
the QCDSRs results through the lhs of Eq. (9).

FIG. 4 (color online). QCDSRs results for the form factor
gZc�c�ðQ2Þ as a function of Q2 and M2 for �s0 ¼ 0:5 GeV.
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constant is defined as the value of the form factor at the
meson pole, Q2 ¼ �m2

�, we need to extrapolate the form

factor for a region of Q2 in which the QCDSRs are not
valid. This extrapolation can be done by parametrizing the
QCDSRs results for gZc�c�ðQ2Þ with the help of an expo-

nential form:

gZc�c�ðQ2Þ ¼ g1e
�g2Q

2
; (24)

with g1 ¼ 4:83 GeV and g2 ¼ 5:6� 10�3 GeV�2. We
also show in Fig. 5, through the line, the fit of the
QCDSRs results for �s0 ¼ 0:5 GeV, using Eq. (24). The
value of the coupling constant, gZc�c�, is also shown in this

figure through the cross. We obtain

gZc�c� ¼ gZc�c�ð�m2
�Þ ¼ ð4:85� 0:81Þ GeV: (25)

The uncertainty in the coupling constant given above
comes from variations in s0, 	Zc

, and mc in the ranges

given above. This value for the coupling is bigger than the
estimate presented in Ref. [17]. Inserting this coupling and
the corresponding masses into Eq. (13), we find

�ðZþ
c ð3900Þ ! �c�

þÞ ¼ ð27:5� 8:5Þ MeV: (26)

IV. Zþ
c ð3900Þ ! Dþ �D�0 DECAY WIDTH

Finally, we consider the Zþ
c ð3900Þ ! Dþ �D�0 decay. In

this case, we use in Eq. (2)

���ðx; yÞ ¼ h0jT½jD�
� ðxÞjD5 ðyÞjy�ð0Þ�j0i; (27)

where

jD5 ¼ i �da�5ca; and jD
�

� ¼ �ca��ua: (28)

Using the definitions

h0jjD�
� jD�ðp0Þi ¼ mD�fD�"�ðp0Þ;

h0jjD5 jDðqÞi ¼ fDm
2
D

mc

;
(29)

the phenomenological side is given by

�ðphenÞ
�� ðp;p0;qÞ¼ �i	Zc

mD�fD�fDm
2
DgZcDD� ðq2Þ

mcðp2�m2
Zc
Þðp02�m2

D� Þðq2�m2
DÞ

�
�
�g�	þ

p0
�p

0
	

m2
D�

��
�g	�þp�p

	

m2
Zc

�
þ���

(30)

In the OPE side, we consider again only the CC dia-
grams. In the p0

�p
0
� structure, we have

�ðOPEÞ ¼�imch �qg
:Gqi
48

ffiffiffi
2

p
�2

�
1

m2
c�q2

Z 1

0
d�

�ð2þ�Þ
m2

c�ð1��Þp02

� 1

m2
c�p02

Z 1

0
d�

�ð2þ�Þ
m2

c�ð1��Þq2
�
: (31)

Isolating the p0
�p

0
� structure in Eq. (30) and making a

single Borel transformation on both P2 ¼ P02 ! M2,
we get

1

Q2 þm2
D

½Eðe�m2
D�=M2 � e�m2

Zc
=M2Þ þ Fe�s0=M

2�

¼ mch �qg
:Gqi
48

ffiffiffi
2

p
�2

�
1

m2
c þQ2

Z 1

0
d�

�ð2þ �Þ
1� �

e
�m2

c

�ð1��ÞM2

� e�m2
c=M

2
Z 1

0
d�

�ð2þ �Þ
m2

c þ ð1� �ÞQ2

�
; (32)

with

E ¼ gZcDD� ðQ2Þ	Zc
fD�fDm

2
D

mcmD� ðm2
Zc

�m2
D� Þ : (33)

We use the experimental values for mD and mD� [36], and
we extract fD and fD� from Ref. [26]:

mD ¼ 1:869 GeV; fD ¼ ð0:18� 0:02Þ GeV;
mD� ¼ 2:01 GeV; fD� ¼ ð0:24� 0:02Þ GeV:

(34)

In Fig. 6, we show gZcDD� ðQ2Þ, as a function of both M2

and Q2, from where we notice that we get a Borel stability
in the region of 2:2 � M2 � 2:8 GeV2.
Fixing M2 ¼ 2:6 GeV2, we show in Fig. 7, through

the squares, the Q2 dependence of the gZcDD� ðQ2Þ form
factor. Again, to extract the coupling constant, we fit the
QCDSRs results using the exponential form in Eq. (24)
with g1 ¼ 1:733 GeV and g2 ¼ 0:076 GeV�2. The line

FIG. 5 (color online). QCDSRs results for gZc�c�ðQ2Þ, as a
function of Q2, for �s0 ¼ 0:5 GeV (squares). The solid line
gives the parametrization of the QCDSRs results through
Eq. (24). The cross gives the value of the coupling constant.
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in Fig. 7 shows the fit of the QCDSRs results for
�s0 ¼ 0:5 GeV, using Eq. (24). We get for the coupling
constant

gZcDD� ¼ gZcDD� ð�m2
DÞ ¼ ð2:5� 0:3Þ GeV: (35)

The uncertainty in the coupling constant comes from var-
iations in s0, 	Zc

, fD, fD� , and mc. This value for this

coupling is again in excellent agreement with the estimate
presented in Ref. [17]. Using again Eq. (13) with this
coupling, the decay width in this channel is

�ðZþ
c ! Dþ �D�0Þ ¼ ð3:2� 0:7Þ MeV: (36)

V. CONCLUSIONS

In conclusion, we have used the three-point QCDSRs
to evaluate the coupling constants in the vertices
Zþ
c ð3900ÞJ=c�þ, Zþ

c ð3900Þ�c�
þ, and Zþ

c ð3900ÞDþ �D�0.
In the case of the Zþ

c ð3900ÞJ=c�þ vertex, we have used
the sum rule at the pion pole, and the coupling was
extracted directly from the sum rule. In the cases of
Zþ
c ð3900Þ�c�

þ and Zþ
c ð3900ÞDþ �D�0 vertices, we have

extracted the form factors, and the couplings were obtained
with a fit of the QCDSRs results. In the three cases, we
have only considered the color connected diagrams, since
we expect the Zcð3900Þ to be a genuine tetraquark state
with a nontrivial color structure. The obtained couplings,
with the respective decay widths, are given in Table I. We
have also included in this table the results for the vertex
Zþ
c ð3900Þ �D0D�þ, since it is exactly the same result as in

the Zþ
c ð3900ÞDþ �D�0 vertex.

Considering these four decay channels, we get a
total width � ¼ ð63:0� 18:1Þ GeV for Zcð3900Þ, which
is in agreement with the two experimental values: � ¼
ð46� 22Þ MeV from BESIII [1] and � ¼ ð63� 35Þ MeV
from BELLE [2].
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