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We introduce a four-dimensional cutoff in the scenario of gauge-Higgs unification to control the

ultraviolet behavior. A one-loop effective potential for a Higgs field and the Higgs mass are obtained with

the cutoff. We find an interrelation between the four-dimensional cutoff and the scale of extra dimensions,

which is concretized through the Higgs mass. Combining this interrelation and the recently discovered

Higgs boson at the LHC, we obtain an interesting constraint for the four-dimensional cutoff and the

extra-dimensional scale.
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I. INTRODUCTION

A higher-dimensional gauge theory is one of the attrac-
tive candidates for physics beyond the standard model.
Gauge-Higgs unification [1] is one such gauge theory,
where the gauge and Higgs fields are unified into a
higher-dimensional gauge field. Component gauge fields
for compactified extra directions behave like the Higgs
fields at low energy.

In the scenario of the gauge-Higgs unification, the gauge
symmetry is broken through quantum corrections [2], and
the Higgs mass—which is zero at the tree-level due to the
higher-dimensional gauge invariance—arises at the quan-
tum level. It has been said that the effective potential for the
Higgs field and theHiggsmass do not suffer fromultraviolet
divergences. Thanks to this property, the gauge-Higgs uni-
fication may solve the gauge hierarchy problem without
relying on supersymmetry [3]. The gauge-Higgs unification
has been an attractive alternative for the Higgs mechanism.
Many attempts to seek phenomenologically viable models
with the gauge-Higgs unification have been carried out in
the past [4–6]. In addition, various aspects of the gauge-
Higgs unification such as the finite-temperature phase tran-
sition have also been studied [7–10].

In the gauge-Higgs unification, one needs to evaluate the
effective potential for the Higgs field in order to discuss
the gauge symmetry-breaking patterns and to calculate the
Higgs mass, which is obtained by the second derivative
of the potential at the vacuum. In the past, one employed
the dimensional regularization for the momentum integra-
tion in evaluating the effective potential at the one-loop
level. The divergent terms that depend on the order
parameter (the Higgs field) do not appear in the effective
potential and the Higgs mass. But the dimensional
regularization essentially can not account for power
divergences.

As stated above, the Higgs mass arises through quantum
corrections in extra dimensions, say, Kaluza-Klein modes
in the gauge-Higgs unification. It is, however, difficult
to obtain the definite quantum effect of the higher-
dimensional gauge theory because of the nonrenormaliz-
ability. The detailed structure of the effective potential for
the Higgs field is unknown as long as one cannot solve the
dynamics in higher dimensions. At the moment, it remains
unclear how much one should take the quantum correction
in the extra dimension into account in order to determine
the low-energy physics.
The effective potential we shall compute has the Kaluza-

Klein modes and the four-dimensional momentum cutoff
which originates from the five-dimensional cutoff because
we start with the five-dimensional gauge theory in which
there are uncontrollable ultraviolet divergences due to
the nonrenormalizability. We would like to keep the shift
symmetry [11] which is a remnant of the original gauge
symmetry, so that one has to sum up all the Kaluza-Klein
modes.1 Then the five-dimensional ultraviolet divergence
reduces to the four-dimensional momentum cutoff.
In a theory like the gauge-Higgs unification—the five-

dimensional physics—the Kaluza-Klein mode determines
the low-energy physics, such as the Higgs mass. It is
important to have the parameter which tells us how much
the five-dimensional physics contributes to determining the
low-energy physics. Such a parameter can be constructed
by using the four-dimensional momentum cutoff and the
five-dimensional scale in our case. We shall refer to this
parameter as the interrelation. It should be noted that the
interrelation is not a phenomenological parameter, but it is
a theoretical one. It is interesting, however, that if one takes
account of the experimental value of a physical observable
such as the Higgs mass, one obtains a constraint on the
interrelation by which we understand how much the
Kaluza-Klein mode should contribute to the Higgs mass.
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1When we consider an effective theory of the five-dimensional
gauge theory with the cutoff, it is natural to respect the shift
symmetry as the four-dimensional theory.
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This paper is organized as follows. In the next section,
after a brief setup, we present the expression for the one-
loop effective potential for the Higgs field and the Higgs
mass with the four-dimensional cutoff. The interrelation,
which is a key notion, is also explained. We also find that
there is a remarkable combination between the periodicity
of the Higgs field and an exponential suppression with
respect to the interrelation. In Sec. III, we study the inter-
relation through the Higgs mass in some models with the
gauge-Higgs unification. We give a constraint on the four-
dimensional cutoff and the scale of the extra dimension by
taking account of the result on the Higgs mass at the LHC
[12,13]. The final section is devoted to the conclusions.
In the Appendix, important formulas used in the text are
derived.

II. EFFECTIVE POTENTIAL AND HIGGS MASS
WITH FOUR-DIMENSIONAL CUTOFF

Let us consider a nonsupersymmetric SU(3) gauge
theory on M4 � S1=Z2, where M

4 is the four-dimensional
Minkowski spacetime and S1=Z2 is an orbifold.

2 One must
specify the boundary conditions of fields for the S1 direc-
tion and the two orbifold fixed points at y ¼ 0, �R, where
R is the radius of the S1. They are defined by

A�̂ðx�; yþ 2�RÞ ¼ UA�̂ðx�; yÞUy; (1)

A�

Ay

 !
ðx�;yi� yÞ ¼Pi

A�

�Ay

 !
ðx�;yiþ yÞPy

i ði¼ 0;1Þ;

(2)

where U ¼ Uy, Py
i ¼ Pi ¼ P�1

i , and y0 ¼ 0, y1 ¼ �R.
The coordinate x�ð� ¼ 0; . . . ; 3Þ denotes the four-
dimensional Minkowski spacetime and y is the coordinate
of the extra dimension. The translation U together with the
reflection P1 is equivalent to the reflection P0, so that there
is a relation U ¼ P1P0. We take Piði ¼ 0; 1Þ to be funda-
mental projections.

In the scenario of the gauge-Higgs unification, the zero
modes for Ay play an important role and behave like Higgs

fields at low energy. If the Higgs field develops a vacuum
expectation value, the SUð2Þ � Uð1Þ gauge symmetry is
broken to the electromagneticUð1Þem. One must choose the
boundary conditions P0;1 in such a way that the zero mode

for Ay belongs to the fundamental representation under the

SU(2) gauge group.We chooseP0 ¼P1 ¼ diagð�1;�1;1Þ.
Then the SU(3) gauge symmetry is broken down explicitly
to SUð2Þ � Uð1Þ by the orbifolding. The zero modes for the
gauge field are read off by Eq. (2) for the boundary
condition of P0;1.

The zero modes for A� are given by

Að0Þ
� ¼ 1

2

A3
� þ A8

�ffiffi
3

p A1
� � iA2

� 0

A1
� þ iA2

� �A3
� þ A8

�ffiffi
3

p 0

0 0 � 2ffiffi
3

p A8
�

0
BBBBB@

1
CCCCCA; (3)

by which the residual gauge symmetry is clearly
SUð2Þ � Uð1Þ. On the other hand, the zero mode for Ay

is found to be

Að0Þ
y ¼ 1

2

0 0 A4
y � iA5

y

0 0 A6
y � iA7

y

A4
y þ iA5

y A6
y þ iA7

y 0

0
BB@

1
CCA: (4)

We observe that

� � ffiffiffiffiffiffiffiffiffiffi
2�R

p 1ffiffiffi
2

p A4
y � iA5

y

A6
y � iA7

y

 !
(5)

belongs to the fundamental representation under the SU(2).
The adjoint representation of the SU(3) is decomposed
under the SU(2) into

8 ! 3þ 2þ 2� þ 1: (6)

We understand how the gauge and Higgs fields are
embedded into the higher-dimensional gauge field.
By utilizing the SUð2Þ � Uð1Þ degrees of freedom, the

vacuum expectation value for the Higgs field is parame-
trized by

hA6
yi ¼ a

gR
; (7)

where g is the five-dimensional gauge coupling and a is a
real parameter. The parameter a is related with the Wilson-
line phase,

W ¼ P exp

�
ig
I
S1
dyhAyi

�

¼
1 0 0

0 cos ð�aÞ i sin ð�aÞ
0 i sin ð�aÞ cos ð�aÞ

0
BB@

1
CCA ðamod 2Þ: (8)

The original gauge invariance, namely concerning the fifth
direction, guarantees that the Wilson-line phase is mod 2.
The gauge symmetry-breaking patterns of the SUð2Þ�Uð1Þ
are classified by the values of a,

SUð2Þ � Uð1Þ !

8>><
>>:
SUð2Þ � Uð1Þ for a ¼ 0;

Uð1Þ � Uð1Þ0 for a ¼ 1;

Uð1Þem for otherwise:

(9)

The value of a is determined as the global minimum of the
effective potential for the Higgs field.2Notations used in this paper are the same as those in Ref. [14].
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In the scenario of the gauge-Higgs unification, one needs
not only the matter fields that satisfy the periodic boundary
condition (PBC), but also the ones that satisfy the anti-
periodic boundary condition (APBC). They are distin-
guished by the parameter �ð¼ 1 for PBC;�1 forAPBCÞ
[14]. In addition, we also consider the matter fields belong-
ing to the large representation under the SU(3) gauge group
such as the adjoint representation. These are necessary
ingredients for a viable model with the gauge-Higgs
unification.

In a gauge-Higgs unification scenario, we start with the
following five-dimensional effective potential contribution:

F5ðQa; �;�Þ ¼ 1

4�R

X1
n¼�1

Z �

��

d4p

ð2�Þ4

� ln

�
p2
E þ

�
nþQa� �

2

R

�
2
�
; (10)

where Q ¼ 1, 1=2 for the adjoint, fundamental represen-
tation under the SU(2), respectively. The parameter � takes
a value of 0 (1) for the field with the PBC (APBC). We have
introduced the four-dimensional ultraviolet cutoff � in the
momentum integration, which originates in the five-
dimensional ultraviolet cutoff because our starting theory
is a five-dimensional Yang-Mills theory and has some
ultraviolet-divergent quantities owing to the nonrenorma-
lizability. Noting that it is necessary to sum up all the
Kaluza-Klein modes in order to keep the shift invariance
reflected as five-dimensional gauge invariance, the five-
dimensional ultraviolet divergence reduces to the four-
dimensional cutoff � [Eq. (10)]. The effective potential
is given by collecting all the contributions of the fields in
the theory,

Veff ¼
X

i¼fields

ð�1ÞFNi
degF

i
5ðQa; �Þ: (11)

The F stands for the fermion number of the internal loop,
and Ni

deg is the number of on-shell degrees of freedom for

the relevant matter field.
We first sum up all the Kaluza-Klein modes,

X1
n¼�1

2pER
2

ðRpEÞ2 þ ðnþQa� �
2Þ2

¼ L� sinh ðLpEÞ
cosh ðLpEÞ � cos ð2�ðQa� �

2ÞÞ
; (12)

where we have defined L � 2�R and used the formula

X1
n¼�1

1

x2 þ ðnþ aÞ2 ¼
�

x

sinh ð2�xÞ
cosh ð2�xÞ � cos ð2�aÞ : (13)

Let us note that summing up all the Kaluza-Klein modes is
consistent with the gauge invariance for the direction of the
extra dimension. By integrating it with respect to pE, we
immediately have

X1
n¼�1

ln

�
p2
E þ

�
nþQa� �

2

R

�
2
�

¼ ln

�
cosh ðLpEÞ � cos

�
2�

�
Qa� �

2

���
: (14)

It can be shown that the integration constant does not
depend on the order parameter a, so we have set it to be
zero.
Second, we perform the four-dimensional momentum

integration,

F5ðQa;�; ~�Þ¼ 1

2L5

2�2

�ð2Þð2�Þ4
Z ~�

0
d~pE ~p

3
E

� ln

�
cosh ~pE�cos

�
2�

�
Qa��

2

���
(15)

¼ 1

ð4�Þ2L5
½�6ðLi5ðe2�iðQa��

2ÞÞ þ c:c:Þ

þ 6ðLi5ðe2�iðQa��
2Þ�~�Þ þ c:c:Þ

þ 6~�ðLi4ðe2�iðQa��
2Þ�~�Þ þ c:c:Þ

þ 3~�2ðLi3ðe2�iðQa��
2Þ�~�Þ þ c:c:Þ

þ ~�3ðLi2ðe2�iðQa��
2Þ�~�Þ þ c:c:Þ�; (16)

where the dimensionless integration variable has been

defined by ~pE � LpE in Eq. (15) and ~� ¼ L�, and we
have used the polylogarithm defined in Eq. (A4) in the
Appendix. Here we have ignored constant terms that do
not depend on the order parameter a. The derivation of
Eq. (16) is given in the Appendix.
In Eqs. (15) and (16) we have introduced a dimension-

less parameter ~� which relates the four-dimensional cutoff
� and the energy scale of the extra dimension L�1 as

~� ¼ L� ¼ �

1=L
� �: (17)

The parameter � in Eq. (17) plays an important role in the
low-energy physics. We call this the interrelation between
a four-dimensional physics and the extra dimension. Here

we notice that ~� stands for not only the cutoff, but also for
the contribution of the Kaluza-Klein mode, depending on
the scale of �. Namely, the latter point of view is crucial
for the interrelation (which will be discussed in the
Sec. III), so we shall use a different notation � when we
emphasize the interrelation, such as in the calculation of
the Higgs mass.
Originally the five-dimensional dynamics is out of con-

trol due to the nonrenormalizabilty. A cutoff must be
introduced to define the theory, and it lies in a certain
energy scale, though it is unknown where this should be.
One does not know how much we should take account of
the quantum correction from the Kaluza-Klein mode in
order to determine the low-energy physics. At present, the
discovery of the Higgs boson has been reported [12,13] and
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we expect that the consistent cutoff with the LHC result
must lie in a certain energy scale. Then the interrelation
tells us how much quantum correction from the Kaluza-
Klein mode one should take into account in order for the
cutoff to be consistent with the LHC result. At the one-loop
level, the effective potential is written in terms of the
interrelation and—as we will see concretely later—the
interrelation becomes manifest through the Higgs mass.

The first term on the right-hand side of Eq. (16) is well
known and has been obtained in a previous calculation
[15]. One observes that all the terms except for the first
term have a remarkable combination of � and the order
parameter,3

e2�iQa��: (18)

The combination is a result of respecting the gauge invari-
ance for the direction of the extra dimension, that is, the
periodicity of the order parameter a and introducing the
four-dimensional cutoff in the momentum integration (15).
The potentially dangerous order parameter-dependent di-

vergence disappears as �ð¼ ~�Þ goes to infinity thanks to
the exponential damping. Let us note that the exponential
behavior of the cutoff (18) never appears in the dimen-
sional regularization.

The combination (18) is traced back to Eq. (12). By
setting � ¼ 0, it is rewritten as

X1
n¼�1

2pER
2

ðRpEÞ2 þ ðnþQaÞ2

¼ L� sinh ðLpEÞ
cosh ðLpEÞ � cos ð2�QaÞ

¼ L�
�
1þ

�
e2�iQa�~pE

1� e2�iQa�~pE
þ c:c:

��
: (19)

Then the relevant quantity is obtained by the integral of the
form

Ið~�Þ �
Z ~�

0
dyfðyÞei �a�y; (20)

where the function fðyÞ is an nth polynomial, fðyÞ ¼P
n
k¼1 aky

k. The above integral is evaluated as

Ið~�Þ¼Fð0Þei �a�Fð~�Þei �a�~� ¼ Ið1Þ�Fð~�Þei �a�~�: (21)

Here we have defined

FðyÞ � Xn
m¼0

fðmÞðyÞ: (22)

The first term in Eq. (21) corresponds to the well-known
finite term obtained in the previous calculation. It is inter-

esting to note that the ultraviolet limit of the function Ið~�Þ
is evaluated at the infrared point of the integration variable

y ¼ 0 for another function FðyÞ. This is a notable feature in
the scenario of the gauge-Higgs unification.
The effective potential is a special quantity in the gauge-

Higgs unification because of the combination e2�iQa�� at
least at the one-loop level, which is never observed in the
usual quantum field theory. Once we recognize this point,
one immediately realizes that a quantity other than this
type does not possess such a combination and hence the
finiteness. As we will see below, the Higgs mass also has
the same combination.
Now let us proceed to the Higgs mass, which is obtained

by the second derivative of the effective potential at the
vacuum denoted by a ¼ a0,

m2
H � @2Veff

@hA6
yi2

��������vac
¼ ðgRÞ2 @

2Veff

@a2

��������a¼a0

: (23)

The structure of the second derivative of the effective
potential can be seen from Eq. (16) by

@2Veff

@a2
/ @2FðQa; �; �Þ

@a2

/ �6ðLi3ðe2�iðQa��
2ÞÞ þ c:c:Þ

þ 6ðLi3ðe2�iðQa��
2Þ��Þ þ c:c:Þ

þ 6�ðLi2ðe2�iðQa��
2Þ��Þ þ c:c:Þ

þ 3�2ðLi1ðe2�iðQa��
2Þ��Þ þ c:c:Þ

þ �3ðLi0ðe2�iðQa��
2Þ��Þ þ c:c:Þ: (24)

As stated before, we confirm that the Higgs mass also
possesses the same combination, e2�iQa��, as that of the
effective potential.
If one takes the infinite limit of �, only the first finite

term in Eq. (16) survives to reproduce the well-known
expression for the Higgs mass. In order to make discus-
sions of the interrelation concrete, we need to consider
models explicitly, which we will do in the next section.

III. HIGGS AS AN INTERRELATION BETWEEN
FOUR AND EXTRA DIMENSIONS

Let us introduce a set of matter. We follow the studies of
the gauge-Higgs unification made in the past [7,14,16], in
which we have introduced the fermions and bosons satis-
fying the periodic boundary condition (� ¼ 1) and anti-
periodic boundary condition (� ¼ �1), and whose
representations under the SU(3) gauge group are the
adjoint and fundamental ones. We denote their flavor
numbers by

ðNadjðþÞ
F ; NfdðþÞ

F ; N
adjðþÞ
S ; NfdðþÞ

S Þ;
ðNadjð�Þ

F ; Nfdð�Þ
F ; N

adjð�Þ
S ; Nfdð�Þ

S Þ:
(25)

Here theN
adjðfdÞ
FðSÞ stands for the number of the fermion (scalar)

belonging to the adjoint (fundamental) representation

3The boundary condition � of the field is not essential in this
discussion, so we have ignored it.
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under the SU(3) gauge group. The � sign associated with

N
adjðfdÞ
FðSÞ is the periodicity of the matter field, � ¼ �1.

Recalling Eq. (11), the effective potential with these
types of matter fields is given by

Vtotal
eff ¼ 1

ð4�Þ2L5
½ð�1Þ03JadjðþÞ þ ð�1Þ14NadjðþÞ

F JadjðþÞ

þ ð�1Þ14NfdðþÞ
F JfdðþÞ þ ð�1Þ02NadjðþÞ

S JadjðþÞ

þ ð�1Þ02NfdðþÞ
S JfdðþÞ þ ð�1Þ14Nadjð�Þ

F Jadjð�Þ

þ ð�1Þ14Nfdð�Þ
F Jfdð�Þ þ ð�1Þ02Nadjð�Þ

S Jadjð�Þ

þ ð�1Þ02Nfdð�Þ
S Jfdð�Þ�; (26)

where the first term is the contribution from the gauge
bosons, and we have defined

JadjðþÞ � F1ð2a; 0Þ þ F�ð2a; 0; �Þ
þ 2ðF1ða; 0Þ þ F�ða; 0; �ÞÞ; (27)

Jadjð�Þ � F1ð2a; 1Þ þ F�ð2a; 1; �Þ
þ 2ðF1ða; 1Þ þ F�ða; 1; �ÞÞ; (28)

JfdðþÞ � F1ða; 0Þ þ F�ða; 0; �Þ; (29)

Jfdð�Þ � F1ða; 1Þ þ F�ða; 1; �Þ; (30)

and

F1ðx; �Þ ¼ �6ðLi5ðe2�iðx2��
2ÞÞ þ c:c:Þ; (31)

F�ðx; �; �Þ ¼ 6ðLi5ðe2�iðx2��
2Þ��Þ þ c:c:Þ

þ 6�ðLi4ðe2�iðx2��
2Þ��Þ þ c:c:Þ

þ 3�2ðLi3ðe2�iðx2��
2Þ��Þ þ c:c:Þ

þ �3ðLi2ðe2�iðx2��
2Þ��Þ þ c:c:Þ: (32)

The shape of the effective potential is determined once we
fix the number of flavors and �. In the limit of � ! 1, the
F�ðx; �; �Þ vanishes, and the effective potential is given by
the function F1ðx; �Þ alone, which is consistent with
the results obtained in the previous calculation. The
effective potential vanishes at � ¼ 0, as seen from
Eqs. (31) and (32).

Let us also give the second derivative of the effective
potential, which is necessary for the calculation of the
Higgs mass by Eq. (23),

@2V total
eff

@a2
¼ ð2�Þ2

ð4�Þ2L5
ð�1Þ½ð�1Þ03JadjðþÞ

H

þ ð�1Þ14NadjðþÞ
F J

adjðþÞ
H þ ð�1Þ14NfdðþÞ

F JfdðþÞ
H

þ ð�1Þ02NadjðþÞ
S J

adjðþÞ
H þ ð�1Þ02NfdðþÞ

S JfdðþÞ
H

þ ð�1Þ14Nadjð�Þ
F Jadjð�Þ

H þ ð�1Þ14Nfdð�Þ
F Jfdð�Þ

H

þ ð�1Þ02Nadjð�Þ
S J

adjð�Þ
H þ ð�1Þ02Nfdð�Þ

S Jfdð�Þ
H �;

(33)

where we have defined

JadjðþÞ
H � F1

H ð2a; 0Þ þ F�
Hð2a; 0; �Þ

þ 1

4
� 2ðF1

H ða; 0Þ þ F�
Hða; 0; �ÞÞ; (34)

J
adjð�Þ
H � F1

H ð2a; 1Þ þ F�
Hð2a; 1; �Þ

þ 1

4
� 2ðF1

H ða; 1Þ þ F�
Hða; 1; �ÞÞ; (35)

JfdðþÞ
H � 1

4
ðF1

H ða; 0Þ þ F�
Hða; 0; �ÞÞ; (36)

Jfdð�Þ
H � 1

4
ðF1

H ða; 1Þ þ F�
Hða; 1; �ÞÞ; (37)

and

F1
H ðx; �Þ ¼ �6ðLi3ðe2�iðx2��

2ÞÞ þ c:c:Þ; (38)

F�
Hðx; �; �Þ ¼ 6ðLi3ðe2�iðx2��

2Þ��Þ þ c:c:Þ
þ 6�ðLi2ðe2�iðx2��

2Þ��Þ þ c:c:Þ
þ 3�2ðLi1ðe2�iðx2��

2Þ��Þ þ c:c:Þ
þ �3ðLi0ðe2�iðx2��

2Þ��Þ þ c:c:Þ: (39)

The F�
Hðx; �; �Þ vanishes for � ! 1 to reproduce the old

results for the Higgs mass, which is given by Eq. (38). At
� ¼ 0, the Higgs mass vanishes, as seen from Eqs. (38) and
(39). The Higgs mass is given by4

m2
H ¼ ðgRÞ2 @

2Veff

@a2

��������a¼a0

¼ ð2�gRÞ2
ð4�Þ2L5

HðQa0; �; �Þ

¼ g44
ð8�2Þ2

�
v

a0

�
2
HðQa0; �; �Þ; (40)

where we have used the relation v ¼ a0=ðg4RÞ following
from the weak gauge boson mass MW ¼ a0=ð2RÞ, and we
have defined HðQa; �; �Þ by the expression aside from the

4The models of the gauge-Higgs unification in this paper do
not predict the correct Weinberg angle, and we implicitly assume
that we have used the prescription done, for example, in
Ref. [17], so that the four-dimensional gauge coupling becomes
a free parameter and that its size is of order of one.
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factor ð2�Þ2=ðð4�Þ2L5Þ in Eq. (33). The four-dimensional

gauge coupling is defined by g4 � g=
ffiffiffiffi
L

p
. The value of the

Higgs mass is determined by inserting the values of a0, �
and the number of flavors.

Now let us first study the case where the matter content
is given by

model A:

8<
: ðNadjðþÞ

F ; NfdðþÞ
F ; N

adjðþÞ
S ; NfdðþÞ

S Þ ¼ ð2; 2; 0; 0Þ;
ðNadjð�Þ

F ; Nfdð�Þ
F ; N

adjð�Þ
S ; Nfdð�Þ

S Þ ¼ ð2; 2; 0; 3Þ:
(41)

We first present the typical shape of the effective potential

for ~� ! 1 in Fig. 1. The global minimum is located at a0 ¼
0:0402199 and the SUð2Þ � Uð1Þ gauge symmetry breaks
down to Uð1Þem. By using the vacuum expectation value a0,
the Higgs mass in the same limit is calculated as mH=g

2
4 ¼

130:222 GeV. It is known that the matter content is crucial
for obtaining the sufficiently heavy Higgs mass [16].

Now we turn on the cutoff ~�ð¼ �Þ. The shape of the

effective potential is changed according to the value of ~�,
so that the position of the global minimum is also changed.

We show the behavior of a0 with respect to ~� in Fig. 2. The
gauge symmetry is correctly broken, that is, a0 � 0, 1 for the

range of ~�we have studied.5 Themagnitude of ~� for ~� * 10

almost saturates the values obtained in the limit of ~� ! 1.
Let us next depict the behavior of the Higgs mass with

respect to the interrelation � ¼ �
1=L in Fig. 3. We observe

that the Higgs mass becomes larger as � is larger and for
� * 10 the Higgs mass almost saturates the value obtained
in the limit of � ! 1. On the other hand, for 1 & � & 8,
the Higgs mass grows almost linearly with respect to �.
If we take account of the recently reported Higgs mass of
126 GeV at the LHC [12,13], we obtain a bound on �.

It is given by � ¼ �
1=L * 10, which implies that the

four-dimensional cutoff � must satisfy � * 10L�1. The
value of the Higgs mass is smoothly connected to zero for
� ! 0 as far as our numerical analyses are concerned.
We can also understand the behavior of the Higgs mass

with respect to � by the first derivative of F�
Hðx; �; �Þ,

which essentially controls the Higgs mass. It is given by

@F�
Hðx; �; �Þ
@�

¼ ��3
X1
n¼1

nðe2�inðx2��
2Þ�n� þ c:c:Þ

¼ ��3

�
e2�iðx2��

2Þ��

ð1� e2�iðx2��
2Þ��Þ2 þ c:c:

�
: (42)

For a large value of �, due to the exponential damping
factor, the first derivative vanishes, so that the value of the
Higgs mass becomes constant. This corresponds to the flat
behavior in Fig. 3. When � becomes larger than zero, the �3

starts to control the behavior of the Higgs mass. This gives
the almost linear growth of the Higgs mass with respect to
� in Fig. 3.

Let us discuss the interrelation � ¼ �
1=L which is mani-

fest through the Higgs mass. If the four-dimensional cutoff

0.01 0.02 0.03 0.04 0.05 0.06
a

17.130

17.125

17.120

17.115

17.110

17.105

V_ eff

FIG. 1. The shape of the effective potential in the limit of ~� !
1 for the model A. The global minimum is located at a0 ¼
0:0402199.
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FIG. 2. The behavior of the order parameter a with respect to
~� for the model A.
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FIG. 3. The behavior of the Higgs mass with respect to � ¼ �
1=L

for the model A. The asymptotic value of the Higgs mass is
about 130 GeV.

5At ~� ¼ 0, the effective potential vanishes, so that the position
of the global minimum in the limit is unclear.
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� is smaller than the scale of the extra dimension, �<
L�1, the Kaluza-Klein modes can not be excited in the four
dimensions. Since the Higgs mass is essentially generated
by the quantum effect of the Kaluza-Klein mode, the Higgs
mass is tiny enough for the region of the scale � & 1. As
the cutoff � becomes larger, the Kaluza-Klein modes can
start to excite and contribute to the Higgs mass, so that it
gradually becomes heavier. This corresponds to the slope
in the region of 1 & � & 8. When the � becomes larger,
L�1 � �, the Kaluza-Klein modes can be excited enough
to yield the Higgs mass corresponding to the flat part. The
behavior of the Higgs mass clearly shows the interrelation
between the effect of the four-dimensional cutoff and the
physics in five dimensions, that is, the Kaluza-Klein mode.

As an illustration, let us also consider two more cases,
where the matter contents are given by

modelB:

8<
: ðNadjðþÞ

F ; NfdðþÞ
F ; NadjðþÞ

S ; NfdðþÞ
S Þ ¼ ð3; 2; 0; 0Þ;

ðNadjð�Þ
F ; Nfdð�Þ

F ; Nadjð�Þ
S ; Nfdð�Þ

S Þ ¼ ð4; 1; 1; 3Þ;
(43)

modelC:

8<
: ðNadjðþÞ

F ; NfdðþÞ
F ; NadjðþÞ

S ; NfdðþÞ
S Þ ¼ ð3; 4; 0; 0Þ;

ðNadjð�Þ
F ; Nfdð�Þ

F ; Nadjð�Þ
S ; Nfdð�Þ

S Þ ¼ ð5; 1; 2; 4Þ:
(44)

In the limit of ~� ! 1, the Higgs mass in the model B (C)
is 186.694 (168.096) GeV, where the order parameter at the
vacuum is given by a0 ¼ 0:0285365 (0.0436442).

We turn on the cutoff ~� and depict the behavior of the
order parameter a0 in Fig. 4 for the models B and C. For the

range of ~� we have studied the gauge symmetry is broken
correctly. In Fig. 5, we show the behaviors of the Higgs
mass for the two models. For the model B (C), if we
take account of the LHC result of the Higgs mass of

126 GeV, we obtain � ¼ �
1=L * 5:7 (6.26), which implies

� * 5:7 ð6:26ÞL�1.

IV. CONCLUSIONS

We have evaluated the one-loop effective potential and
the Higgs mass in the scenario of the gauge-Higgs unifica-
tion by introducing the four-dimensional cutoff� in order to
control the ultraviolet effect. It was clarified how much the
Kaluza-Klein mode appearing in four dimensions contrib-
utes to the effective potential and the Higgs mass thanks to
the cutoff. The effective potential and the Higgs mass

depend on both the order parameter a and � � �
1=L through

the remarkable combination e2�iQa��. Due to the exponen-
tial damping, the well-known terms obtained in past calcu-
lations are reproduced in the limit of � ! 1.

The parameter � ¼ �
1=L stands for the interrelation, which

is, in particular, concretized through the Higgs mass. We
have presented the three models in order to study the inter-
relation. We have obtained the behaviors of the Higgs mass

with respect to � ¼ �
1=L . The behavior shows the interrela-

tion between the four dimensions and the extra dimension.
For the smaller cutoff �, the Kaluza-Klein excitations are
suppressed in four dimensions, so that the Higgs mass,
which essentially originates from the quantum effect of
the Kaluza-Klein mode, is suppressed as well. As the cutoff
� becomes larger, the excitations can be allowed to generate
the Higgs mass gradually, and for certain large value of �
the Higgs mass approaches the value obtained in the limit of
� ! 1, which means that the quantum correction in the
extra dimension is fully incorporated. The interrelation is
manifest through the Higgs mass, which shows that the five-
dimensional effect dominates for the large�, while the four-
dimensional cutoff becomes effective for the smaller �.
We have also obtained the bound on � by taking account

of the LHC result. This, in turn, gives the bound on the ratio
between the four-dimensional cutoff� and the scale of the
extra dimensions 1=L.
The combination e2�iQa�� is remarkable if we think of the

usual logarithm and power behaviors with respect to the
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0.30

a_0

FIG. 4. The behavior of the order parameter a with respect to
~�. The dotted (solid) line stands for the case of model C (B).
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FIG. 5. The behavior of the Higgs mass with respect to
� ¼ �

1=L . The thick (thin, dashed) line is the case for the model

A (C, B). The asymptotic value of the Higgs mass for each model
is about 130 (168, 186) GeV for model A (C, B).
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cutoff in the quantum field theory. The combination shows
that the effective potential and Higgs mass are the special
quantities in the gauge-Higgs unification. The origin of the
combination may be the gauge invariance in the extra dimen-
sion. It is interesting to ask whether such a combination still
holds beyond the one-loop calculation [18] and to investigate
the role of the combination further. It may shed new light on
the gauge-Higgs unification from the point of view of quan-
tum field theory. Of course, it is important to study non-
perturbatively the five-dimensional gauge theory in view of
the interrelation. This will be reported on elsewhere [19].
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APPENDIX

Derivation of Eq. (16)

The momentum integration in Eq. (15) can be performed
analytically. It is easy to show that the indefinite integration
is carried out asZ

dyy3 ln ðcosh y� cos �aÞ

¼
Z

dy

�
y4

4

�0
ln ðcosh y� cos �aÞ

¼ y4

4
ln ðcosh y� cos �aÞ

�
Z

dy
y4

4

�
1þ

�
ei �a�y

1� ei �a�y þ c:c:

��

¼ y4

4
ln ½cosh y� cos �a� � y5

20

� y4

4
ðln ð1� ei �a�yÞ þ c:c:Þ

þ
Z

dyy3ðln ð1� ei �a�yÞ þ c:c:Þ: (A1)

It is straightforward to show that the first three terms in
Eq. (A1) become

y4

4
ln ½cosh y� cos �a� � y5

20
� y4

4
ðln ½1� ei �a�y� þ c:c:Þ

¼ �y5

20
þ y4

4
ln

�
cosh y� cos �a

ð1� e�i �a�yÞð1� ei �a�yÞ
�

¼ �y5

20
þ y4

4
ln

�
ey

2

�
¼ y5

5
� ln 2

4
y4: (A2)

In the second line of Eq. (A1) we first expand the logarithm
by6

ln ð1� xÞ ¼ �X1
n¼1

xn

n
; (A3)

and after the partial integration we make use of the
polylogarithm,

LisðzÞ �
X1
n¼1

zn

ns
: (A4)

We finally obtain that

Z
dyy3 ln ½cosh y� cos �a�

¼ y5

5
� ln 2

4
y4 þ y3ðLi2ðei �a�yÞ þ c:c:Þ

þ 3y2ðLi3ðei �a�yÞ þ c:c:Þ þ 6yðLi4ðei �a�yÞ þ c:c:Þ
þ 6ðLi5ðei �a�yÞ þ c:c:Þ: (A5)

The first and second terms are independent of �a and are
something like the cosmological constant. Equipped with
Eq. (A5), the momentum integration (15) is evaluated as
Eq. (16).
The momentum integration for the case of MD�1 �

S1=Z2 is also carried out in the same manner. It is given by

Z
dyyD�2 ln ðcoshy� cos �aÞ ¼

Z
dy

�
yD�1

D� 1

�0
ln ðcoshy� cos �aÞ

¼ yD�1

D� 1
ln ðcoshy� cos �aÞ�

Z
dy

yD�1

D� 1

�
1þ

�
ei �a�y

1� ei �a�yþ c:c:

��

¼ yD

D
� ln2

D� 1
yD�1þ yD�2ðLi2ðei �a�yÞþ c:c:Þþ ðD� 2ÞyD�3ðLi3ðei �a�yÞþ c:c:Þ

þ ðD� 2ÞðD� 3ÞyD�4ðLi4ðei �a�yÞþ c:c:Þþ ðD� 2ÞðD� 3ÞðD� 4ÞyD�5ðLi5ðei �a�yÞþ c:c:Þ
þ �� �þ ðD� 2ÞðD� 3Þ � � � ðD�ðD� 2ÞÞðD�ðD� 1ÞÞðLiDðei �a�yÞþ c:c:Þ: (A6)

D ¼ 5 is our case (A5).

6Note that the mode n in Eqs. (A3) and (A4) is different from the original Kaluza-Klein mode n. We point out that the mode
summation (A3) is the same as the one obtained by the Poisson resummation formula.
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