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We derive bounds on nine dimension-six operators involving electroweak gauge bosons and the Higgs
boson from precision electroweak data. Four of these operators contribute at tree level, and five contribute
only at one loop. Using the full power of effective field theory, we show that the bounds on the five loop-
level operators are much weaker than previously claimed, and thus much weaker than bounds from tree-

level processes at high-energy colliders.
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L. INTRODUCTION

The discovery of the Higgs boson at the LHC finally
completes the Standard Model. The next step is the
discovery of physics beyond the Standard Model. This
can be done directly by searching for new particles, or
indirectly by searching for new interactions of the Standard
Model particles. Indirect searches for new physics can be
done model-independently by means of effective field
theory [1-3].

An effective field theory is a low-energy approximation
of a higher-energy theory. By integrating out high-energy
degrees of freedom, one obtains a low-energy theory that
includes additional effective interactions which involve
only low-energy fields. One obtains a perturbative expan-
sion in which effective interactions, or operators, are sup-
pressed by inverse powers of the mass scale of the physics
which has been integrated out. If, as in our case, one does
not know the high-energy theory, a complete operator basis
can be written down at each order.

The Standard Model operators have mass dimension
four or less. The only possible operator of dimension five
generates Majorana neutrino masses and does not concern
us here [4]. Thus, the lowest-dimension effective operators
are of dimension six. We can write down an effective field
theory which extends the Standard Model in the following
form:

£eff=£SM+Z%@i+'“, (D

where the ©; are dimension-six operators, A is the mass
scale of new physics, and the c¢; are dimensionless coef-
ficients that reflect our ignorance of the high-energy theory.
This expansion reduces to the Standard Model in the limit
A — 00, A complete basis of operators O; comprises
operators which are independent with respect to equations
of motion and which are SU(3) X SU(2) X U(1) gauge-
invariant [2,5]. Aside from reducing the number of inde-
pendent operators, this latter condition guarantees a
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consistent framework for performing loop calculations.
That is, divergences produced by an operator at a given
order in 1/A can always be absorbed by other operators
at the same order in 1/A. Thus the renormalization pro-
gram can be carried out, order-by-order, in any complete
effective field theory.

In this paper we use the precision electroweak data in
Table I to calculate bounds on nine dimension-six op-
erators containing only gauge boson fields and Higgs
doublets. All contributions from the nine operators can
be represented as gauge boson self-energies, also called
oblique corrections [8,9]. Five of the operators contrib-
ute only at one loop; the four remaining operators con-
tribute at tree level and must be included in order to
absorb one-loop ultraviolet divergences from the other
five operators.

Similar analyses have been done previously [10-13].
These previous analyses did not appreciate that unambig-
uous bounds can be obtained on the five loop-level opera-
tors." We recently showed that the bounds on two of these
five operators are much weaker than had been obtained
in previous analyses [15]. In this paper we extend this
analysis to all five of the loop-level operators.

Because precision electroweak data are taken at
“low” energies, around the Z boson mass or below,
there will often be significant suppression of operator
contributions, of the order §/A%, where § is the usual
Mandelstam variable. Furthermore, the five operators
contributing only at one loop receive an additional sup-
pression of 1/(4)?. It is therefore reasonable to ask
what advantages precision measurements offer. For
one, electroweak data is known to far greater precision
than high-energy collider data from the Tevatron and
LHC. In addition, the effective operator contribution is
not always energy-dependent; it is often proportional to
v?/A?. In this case, there is no disadvantage to using

'A similar calculation, with the same shortcomings, is per-
formed for a model with no Higgs field in Ref. [14].
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TABLE I. Precision electroweak quantities. Data taken from [6,7].
Notation Measurement
Z-pole r, Total Z width
Ohad Hadronic cross section

Rj-(f =e,u 17,b )
Ag’é(f =e u 7bcs)

2
S

Ai(f=e pm 1,b,c5)
oi(f=q e p7)
A]]:B(f =p 1)

Fermion pair production at LEP2

W mass and decay rate my
Iy
QW(CS)
Ow(TI)
Qw(e)
81 8k
8V 84°

DIS and atomic parity violation

Ratios of decay rates

Forward-backward asymmetries
Hadronic charge asymmetry
Polarized asymmetries
Total cross sections for e e~ — ff
Forward-backward asymmetries for eTe™ — ff
W mass from LEP and Tevatron
W width from Tevatron
Weak charge in Cs
Weak charge in Tl
Weak charge of the electron
v, -nucleon scattering from NuTeV
v-e scattering from CHARM II

low-energy data.” We therefore perform this analysis
both as an illustration of the power of effective field
theory and in order to compare our loop-level results
with tree-level results from high-energy colliders.

In Sec. II, we discuss the nine effective operators to be
examined in this paper. In Sec. III, we outline the frame-
work for computing the effect of oblique corrections on
electroweak observables. We present bounds on the effec-
tive operators in Sec. V, and conclude in Sec. VL.

II. ELECTROWEAK EFFECTIVE OPERATORS

In this paper, we are interested in the effects of new
physics on precision electroweak data. Here we examine
the set of operators that involves only gauge and Higgs
bosons. Five of these contribute only at one loop [12]:

Owww = TeWH , W ,W? , (2a)
Ow = (D, $)tW*" (D, ) (2b)
O = (D, ) B**(D, ) (2¢)

Oy = ¢TWH'W,,, ¢ (2d)
Opp = ¢Jréwé,w¢ (2e)

where B, = ig'iB,,, W,, =ig% W%, and o is the
ath Pauli matrix. The covariant derivative is defined as

— T ol 1 ; a-a a
DMd)—(a#—lg EB“ —ngW#)dJ. 3)
Table 1II lists all one-loop Feynman graphs and the opera-
tors that contribute to them. The above operators affect
precision electroweak observables in two different ways.
All five operators affect gauge boson self-energies through

“Here we are considering only interference terms between the
effective operators and the Standard Model. If ¢Z/A* terms are
included, there will in general be energy dependence.

loop corrections. In addition, the first three operators alter
the fermion-fermion-boson vertices. It would seem as if the
final two operators, @gp and Oy, contribute to gauge
boson self-energies at tree level when the Higgs doublets
take their vacuum expectation values; however, these con-
tributions can be absorbed into the Standard Model gauge
kinetic terms with field and coupling redefinitions. These
operators therefore only affect diagrams involving Higgs
bosons [15].

The one-loop self-energies above contain ultraviolet
divergences. The following set of four operators, all of
which affect self-energies at tree level, is sufficient to
absorb all divergences from the operators of Eq. (2) [12]:

Opw = ¢1BH' W, ¢ (4a)
Op1= (D, )T ppT(D ) (4b)
Opw = Tt[D*, W"*1D,, W,,] (4c)
Opg = 20B""9,B,,. (4d)

III. ONE-LOOP BOUNDS FROM PRECISION
ELECTROWEAK DATA

The operators of Eq. (2) affect the precision data only
through gauge boson self-energies and fermion-fermion-
boson vertices. Table II shows the diagrams which contrib-
ute. The vertex corrections and self-energies always
contribute to observables in the same gauge-invariant
combinations [12]

Myw = My + 2(g> — md,)8TY )
I,, =y, + 2c(g> — m%)8T? (6)
I, =11, + 2s¢>5” (7)
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TABLE II.

Feynman diagrams.

—
Ba

oTy,
T,

(OWWW7 @B’ @W
(OWWW7 @B’ @W
(OWWW7 @B’ @W

@WWW’ OB’ OW
@WWW’ (DB’ @W
@WWW’ (DB’ @W
@WWW’ (DB’ @W

037 @W’ @WW
@Ba Ow, OBB’ @WW
(OB’ @W
037 (OW’ @ZB’ (O*WW

Oy
O3. Oy
05, Oy
@Bv (OW

(OWW
@BB’ @WW
@BB’ @WW
@BB’ @WW

@WW
@BB’ @WW
(QBB’ (OWW

Oww
@BB’ @WW
@BB’ @WW
@BB’ @WW

Oy
Oy

Oy
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I vz =117 + 5q*8T% + c(q> — m%)8T™ (8)

where the Ilyy are the transverse parts of the gauge boson
self-energies, s and c are the sine and cosine of the weak
mixing angle, and the ST are the fermion-fermion-boson
vertex corrections, defined as

; 1
8T,/ = g1§7M5(1 — ys)ol )
srivie = 8 o L s (10)

where V denotes a neutral vector boson, and I§ denotes the
third component of the fermion’s isospin.

Modified self-energies contribute to precision electro-
weak data through corrections to the input variables «;, m,
and s%,. The correction to @ depends upon the type of
vertex; these corrections will be labeled da,, day, or
dayy, depending on the mediating boson. The modified
self-energy between bosons X and Y is denoted Iy in the
expressions below:

a+ da, = a(l + ﬁ/w(qz) - lz-[/y'y(o)) ey

} } d -
o+ day = a(l + 11,(¢2) — H’W(O))(l # o Tln)

62—S2

~ 1T, (q?) — ﬂ;z(qz)) (12)

} _ d -
a+day = a(l+ 11, () — H’yy(O))(l # oMl
- ﬁ'w(qz)—gﬁ’yz(qz)) (13)

m% + 8m% = m% — 1l ;,(m%) + 11 ;,(¢%)

d -
—(¢* - m%)d—qznzz(m%) (14)

2

s+ 8y, = s2[1 - Ef[/ﬂ(qZ) -
s

5 (713,00

2 —s
1 - 1 - »
+ — w0 — — sz(mz))] (15)
nyy mz

where [Ty (g% = (Txy(¢*) — M xy(0))/¢* (with TTxy (0) =
L Ty (0)).
The correction to any electroweak observable X mea-
sured at an energy at or above the Z-pole is given by
oX oX oX

86X = —da+ Sm? +
a dm? "z Ss%,

553  (16)

Low-energy observables are affected by corrections to 5%,
and by changes to the p parameter
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8X 58X
8X = —- 853, + —
op

8p (17)
Ss3y

where 6p = m%ﬁww(o) - %ﬁzz(o)-

IV. RENORMALIZATION OF TREE-LEVEL
OPERATORS

All divergences generated by the one-loop contributions
of the operators in Eq. (2) can be removed by a suitable

. . 3
renormalization of the coefficients cpy, cfj)), cpw,and cpp.

The renormalized tree-level coefficients, in the MS
scheme, are

() = 0 w2 3g's’ (m2 + 3m2,)
Corttt Cott 12872 m3, c? " Mw/CB
1
+ 3m%VCW)<— —y+ 1n477'> (18)
€

‘s <l—y+ln477) (19)

cppp) = CODBMZS - 1922 \e

‘w (1 — 1n477') (20)

— .0 2 _
cpw(p) Cpw M 19272 \e

g2 2 3
cpwlpm) = C%W - W(cww + ?CBB - Ecwwwg2

1
- mclg(.’)czm% + (7 + 20c2)m%‘,)
1
- mCW(:))CZm% - (3 + 12C2)m%,v))
1
X (- — oyt ln477') Q1)
€

where the superscript “0” indicates the bare coefficient.

0.000 —0.000 —0. 000\
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V. RESULTS

We now take all of the self-energy corrections from
Appendix A and compute oblique corrections to the pre-
cision electroweak observables listed in Table I. We use the
following values for input parameters:

a(my) = 1/128.91, v = 246.2 GeV,
my =91.1876 GeV,  m;, = 125 GeV ”
m, = 172.9 GeV, my, = 4.79 GeV, (22)

m, = 1.777 GeV.

The masses of all other fermions are neglected. We set the
renormalization scale to u = M, in the tree-level
coefficients.

We use the y? statistic to compute bounds on the
operators:

X=X (o X’ (23)
]
where o;; is the error matrix, and
i i i Ck i
X=Xy — Xk, + szk (24)
k

where the sum on k runs over all loop- and tree-level
operators.
We begin by writing x? in the following way:

Sle = E)M(c; — &)
X = Xr2nin + = A? — ’ (25)

where the 7, j sum is over all nine operators. The ¢; are
best-fit values. We then arrive at 1o bounds by solving the
equation

Zij(ci - CA'i)Mij(cj - 5/') -1 (26)
A4
It is cleanest to diagonalize the matrix M and present

bounds on the nine linearly independent combinations of
operators. Those bounds appear below

(CBW\

(—0.004 * 0.010\

(—0.164 0.986 —0.018  0.025 —0.000 —0.001
—0.494 —0.103 —0.832 —0.230 —0.000 —0.002 0.001 0.000 —0.000 Con 0.062 =+ 0.086
—0.838 —0.131 0.527 —0.051 0.000 —0.001 0.001 —0.001 —0.000 Cow 0.022 =+ 0.143
—0.165 —0.006 —0.170 0.972 —0.001 —0.000 0.002 0.000 0.000 Cpp 0.628 =+ 0.387
0.001 —0.000 0.001 —0.001 —0.913 —0.218 0.145 —0.312 0.011 % cwww 1=l —149.2 = 120.9 | Tev2.
—0.002  0.000 —0.001 —0.001 —0.156 0.961 0.184 —0.129 0.031 Cw —17.7 = 187.5
—~0.001 0.000 —0.001 0.002 0.099 0.066 —0.727 —0.675 —0.030 Cx 589.3 =+ 455.1
—0.002 —0.000 0.000 0.001 —0.361 0.150 —0.645 0.653 0.062 Cww —3715 + 1904
\—0.000 0.000 0.000 —0.000 0.040 —0.035 0.011 —0.053 0.997) CsB ) 3902 + 9964 )
(27)
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We find that the tree-level and loop-level bounds are
essentially decoupled from each other, as evidenced
by the nearly block-diagonal form of the above matrix.
The first four bounds represent bounds on linear combi-
nations of tree-level operators and are very tightly
constrained. The final five are bounds on linear combi-
nations of loop-level operators. These bounds are weaker
than the tree-level bounds by 2 to 3 orders of magnitude
or more. All of the coefficients are consistent with zero
at 20.

We can also calculate bounds on the loop-level coeffi-
cients by first setting the tree-level coefficients to the
values (as a function of the loop-level coefficients) that
minimize y?. We again write this new y? in matrix form

2 Zij(ci - 55)Mij(Cj - 5,')
X'min A4

Xl =temny = (28)
where {c.} is the set of all tree-level operators, and the
sum on i, j runs over all loop-level operators. We then
follow the same procedure as before to arrive at bounds on
the loop-level operators

—~0.913 —0.218 0.145 —0.312 0.011
—0.156 0.961 0.184 —0.129 0.031
—0.099 —0.066 0.727 0.675  0.030 %
0.361 —0.150 0.645 —0.653 —0.062
0.040 —0.035 0.011 —0.053 0.997
Cwww —149.2 = 120.9
cw -17.7 = 1875
x| ez =] 5893 = 4551 |Tev-2 (29
Cww —3715 = 1904
Cop 3902 =+ 9964

These bounds are identical to the bounds of Eq. (27),
highlighting the fact that the two sets of operators are
decoupled in the eigenvector matrix.

We can also find bounds on each loop-level operator
separately, by setting all other loop-level operators to zero
and letting the relevant tree-level operators float. This gives
us the following bounds:

CAWW = 129.5 + 120.8 TeV 2 (30)
CA—2 — 1456 + 2225 TeV 2 31)

L = 57.59 = 63.00 TeV 2 (32)
% — 100.6 * 181.9 TeV~2 (33)
Cp o + )

= 1234 £355.9 Tev 2 (34)
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VI. CONCLUSIONS

The bounds we have obtained on the loop-level op-
erators are much weaker than the bounds obtained in
similar previous analyses [11-13]. These analyses set
the renormalized tree-level coefficients to zero rather
than letting them float. This is an unjustified assump-
tion, as these coefficients are renormalized by the one-
loop coefficients, as discussed in Sec. IV. Thus the
results of these previous analyses are specious, as we
discussed in Ref. [15]. We discuss this further in
Appendix B.

We found in Ref. [15] that the bounds on the loop-level
operators Opp and Oyy from precision electroweak phys-
ics are much weaker than the bounds from tree-level
processes involving the Higgs boson. The analogous result
holds for the other three loop-level operators, Oy ww, Ow,
and Op; they are much more strongly constrained by tree-
level processes involving the triple gauge boson vertex [6].
Thus the bounds on the bosonic operators from a one-loop
analysis of precision electroweak data cannot compete
with the bounds obtained from tree-level processes at
high-energy colliders.
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APPENDIX A: SELF-ENERGIES

The self-energies given below have not been calculated
previously in their entirety. The divergent parts, as well as
terms proportional to m3 and Inm3 (in the large m;, limit)
were calculated in Refs. [11-13], and we have confirmed
these previous calculations.

1. Tree-level contributions

HWW = A2 2 2 4 (Al)

_ Cpw Co,1 v? 2 _CDW o, 22 4
Mzz = =@ 2ms™a” + 75 me — Sz 28
c s
28" 54" (A2)
CpB
Hw A2 ZmWs q- — e 2g 4 — —22g2s2 4

(A3)
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c s §3 Oww:
n,,= KZV m? (c —s2)qg* — A2 PWre2scq +DB A2 B> 2;614 g
_ c
ad) T =S5 0 L Ll = ]+ )
2. One-loop contributions X By(q?, mj, mw) — 2miy,(3¢> + mj, + 3myy)
The expressions below are given in terms of scalar X Ag(myy) + m3(2m}, — q*)Ay(m3)
integfal functigns A.O’ By, anq Cy. Expressions for these — 3(m, + m2g)Ag(m2) + dmd,q?
functions are given in Appendix D of Ref. [16].
Ogp: + 2mbq? + 4m§, + 2m3,m3] (A9)
_ cgg 1 g més
11 WW — 2 1.2 (2mz - 3A0(mz)) (AS) c 1 2 2
= g
A? 167 m} sz:—;\v;v 1672 imz(q* — mj + m3)

- cpp 1 g2s4
227\ 16m
X By(q? ,mh, mZ) — mz(3q + 2mh + 3mZ)A0(m%)

+mi(2m% — q*)Ag(m3) — 6m¥,q*Ag(m3,)

X Bo(q* m3, m%) — m%(3q> + 2m3 + 3m%)A(m3)
+ m% (2m2 — qz)Ao(m%) — 6(m% + m%vq2)A0(m%V)
+4my,q® + 2myq* + dmymy +2mG] (A10)

[thmz(q — mh + m?)

+ 4miyq* + 2myq* + 2mS] (A6) _ c 1 g%g%s?
w Yy = X;" 6r? [m2Ao(m3) + 3mZAg(m%)
My, =2 L S ) + Smz A + 6y Ag(ry) — 4y — 2] Al
T T A 162 m2 Ao, mzAolmz wAolmy, w z
h
+ 6m3,Ag(m¥) — 4mf, — 2m3] (A7) ) o1 g s .
2.3 HVZ:_ A2 16 2 h [mhmz(mh_mZ_Q)
= cgg 1 g5
AR T A VB ) X Bo(g?, m, m3) + m(m? + 3¢%)Ao(m3)
+ m%(m%l +3¢%)A¢(m2) — m%(m% - qz)AO(m%) - m%l(m% — qH)Ay(m %) + 6mf, q*Ag(m3,)
+6m3,q*Ag(m3,) —4my,q* — 2m%q?] (A8) — 4my,q* — 2myq°] (A12)
|
@B:
cg 1 g*mis?
= ABz 1672 364 ‘24/2 [36m3,(g* — m3,)Coy(0,0, g% m3, 0, m%) — 6¢2(m3, — q*)*By(q?, 0, m%)
+ 3((—25% + 19s* — 30s% + 12)m% — 2(25* + 75 — T)m%q% + (5 + 2¢2)q*)By(q%, m3,, m3)
= 3((1 4+ 3c®)m% + 5¢*)Ag(m%,) + 3(s*> — 2)(m3 + 5m3, — 5¢°)Ag(m2) + 2¢*(3s’m% — ¢°)] (A13)
1 cg 1 g 2 2 2 2 2 202 2)2 4
55172 mi, q*(c2q* — m3)Co(0,0, g% m3, 0,m%;) + 3(—mZ(m% — m3)? + (m} — 8mim% — m})q*

227 N2 1672 36¢%¢
+(m% +2m32)q* — ¢°)By(q?, m3, m%) + 3¢*(24my, + 8(c* — s?)mfyq° + (c* — s*)q*)Bo (g% m3y, myy)
+3(mim% —m% +miq* + g Ag(m3) + 3(m% — mimZ — (10mZ + m?)q* + g*)Ag(m%)
+6g%(—12m3, + (10c? + 1)g?)Ag(m3,) +2¢>Bmy + 3mim% + (3m2 — 2(6s* — 952 +2)m%)q* — 25%¢*)]  (Al4)

_ 1 02422
0 —_¢s 8°q’s

vy A2 1672 18

[36m},Cy(0, 0, g2, m3, 0, m%,) + 3(8m3, + g*)Bo(q?, m¥y, m¥,) + 30A,(m3,) + 2(q> — 6m3,)]

(A15)
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- cp 1 g%
"2 A216m2 72

X By(q?, m3,m%) —3(24m3, +8(c* —3s*)m3,q* + (c* — 35*)q*)Bo(q* m3y, m¥,) —3(5m% + m3 + g*)Ag(m?)
+3(5m% +mi — g*)Ag(m%) +6(12m3, + (95> — 11¢?)g?)Ag(m3,) +2¢*(3(8s* — 105> + 1)m% —3m3; +4s2¢*)] (A16)

@W:

my, (mf, + (s> — c?)q*)Cy (0,0, g%, myy, 0,m3,) + 3(m} +4mim% — Sm% — (2m3 —4m%)q*> + q*)

cy 1 g
A? 167 1247
+ g*(m} + 8mim%, — my,) — q*(2m3 + m%) + ¢%)Bo(q* m2, m3,) — 2s*m3,(m%, — q*)*Bo(q% 0, m%)

+ (2(s° — 10s* + 245% — 12)m3m3, — (455 + 45s* — 1065* + 52)m5,q* — 2(s* — 1052 + 11)m%q* — ¢°)

Oyw = [IZm%V(méV(m%V +m% + 2¢%) — Bm}, + m2)q*)Co(0, 0, %, m3, 0, m%) — (m3,(m7 — m3,)?

X By(q? m¥, m%) + (m2(m3, + ¢*) — myy, + gH)Ag(m2) — (m2m3, — 6m¥,m% — Tmj,

+ (m? — 5m% — 11m3,)q* + 22¢")Ag(m?%,) + 2(5s* — 145% + 6)m¥,m% + (145s* — 4552 + 26)m%q>

2
—(23¢? = %) gMAy(m%) + 2q2<m%mﬁ, — 12m3ym% — Tm}, + (m} + m§, + m%)q> — §q4):| (A17)

_ ¢ 1 g

77 = AVZ o2 12 2[24mwmz(mw + m¥q? — (1 + ¢2)g*)Cy(0, 0, g% m3, 0, m%,) + (—mZ(m% — m?)?
— (mh + Smhmz - m3)q® + (Zmi + m2)q* — q®)By(q?, m%, m%) — 24my,m? + 4(m%vm% + 12mé‘,)q2
+2(8s* — 2452 + 11)m%q* + (2 — s1)q°%)By(g% m3,, m%,) + (mim% — m% + m2q> + g*)Ao(m2)
+ (my — mim% — (10mZ + m3)g* + q*)Ag(m%) + 2(12m3ym% + 2(m% + 12m},)q> — (13 + 10c?)g*)Ao(m3,)

4 2
+gq <2mhmz 2(245* — 445 + 19)m%, + Qm3, + 4(c* — sH)m3y,)q*> — %q“)] (A18)
7 cw 1 g¢%° 4 2 0 2 2 2 2,2 .2 2 ) 20
Im,,= T TI: 12mj,Cy(0,0, g%, m3,, 0, my,) + (8my, + q°)Bo(q*, myy, my,) + 104, (m3,) — 4my, +T:| (A19)
_ c 1
I1,, = A—vg = 72 [ 72(1 + 2¢%)miyq*Co(0, 0, g%, m3y, 0, m3y) + 3((m% — m2)(Sm% + m2) + 2m? — 4m%)q* — q*)
X By(q? ,mh, m%) — 3(48mﬁ, + 16(1 + 202)m%‘,q2 + (3¢c? — 52)g*)By(q>, m%‘, m%V) + 3(m%l + 5m2 + qz)AO(m%)
— 3(m3 + 5m% — q*)Ag(m%) + 6(24m3, — (13 + 20c?)q?)Ag(m3y)
— 2(72mt, — 3((8s* — 145> + T)ym% + m?)q* + 4c*q*)] (A20)
Oyww:
_ c
W= AT e 4[2mév(m%v = 4))Co(0,0, ¢, miiy, 0, m3) + m3((s* = 2¢%)miy = ¢*q*)Bo(g®, miy, m3)
3 4
— (2 = A)ym3, + 22 gHA(m2) + (m3, — 2¢°)Ag(m3,) + Em%vqyz + %] (A21)
_ c
My ==35" 162 4[2m‘¢v(m%v = q)Co(0,0, 4%, miiy, O, miy) — miy (2miy + (2 = $7)q) Bo(q?, miy, mriy)
1 1
+ 2(m¥, — 2c2q%)Ag(m3,) + Em%VBCZ - s%)q* + 6626]4] (A22)
— C 2
= = 6t i Col0,0. 2 0y ik B2 i i) + 20(omk) = iy = L] a23)
I =MLE£ 2mt, (m%, — 2¢2g*)Co(0, 0, g%, m¥y, 0, m3,) — m%,(2m3, + (3¢* — s*)q*)By(q?, m3,, m3,)
vz A2 1672 2 ¢ w\Ity, q7)Lo\V, U, g7, my, U, myy, w &y, q-)bo\q~, myy, my
1 6‘26]4
+ 2(m¥, — 4c2q*)Ag(m3,) + Em%‘,(%2 - s9)q* + T] (A24)
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APPENDIX B: COMPARISON WITH
PREVIOUS BOUNDS

Here we discuss in detail why the bounds we obtain on
the coefficients of dimension-six operators are so much
weaker than the bounds obtained in previous calculations
[11-13]. We focus on the coefficient ¢y, but the story is
similar for all of the one-loop coefficients.

We show in Fig. 1 a two-parameter fit of the tree-level
coefficient cgy and the one-loop coefficient cyy to the
precision electroweak data. We have centered the coeffi-
cients at their best-fit values. The dashed ellipse corre-
sponds to a renormalization scale of M,, which is the
appropriate scale. If both coefficients are allowed to float,
the bound on cyy is given by the full extent of the
ellipse in the horizontal direction, *+120.8 TeV~2
[cf. Eq. (30)]. If the tree-level coefficient cpy, is fixed to
its central value, however, the bound on cyy is given by
the intercept of the ellipse with the horizontal axis,
+48.3 TeV~2. This partially explains the tighter bounds
obtained in Refs. [11-13].

There is another factor, however, and that is the choice
of renormalization scale. In Refs. [11-13], the renormal-
ization scale was chosen to be A =1 TeV. This has
the effect of enhancing the one-loop calculations of
Refs. [11-13], which contain terms proportional to In A2.
We show in Fig. 1 a fit with the renormalization scale set to
1 TeV (solid ellipse). If both coefficients are allowed to
float, the bound on cyy is the same as before, which

PHYSICAL REVIEW D 88, 015028 (2013)

Z100 =50 0 50 100
5 IV (Tev2)
/\2

FIG. 1. Two-parameter fit to precision electroweak data. The
tree-level parameter cgy and the one-loop parameter cyy are
centered at their best-fit values and allowed to float. Dashed
ellipse: Renormalization scale of M. Solid ellipse:
Renormalization scale of 1 TeV.

demonstrates that our bound is independent of the renor-
malization scale. If the tree-level coefficient cpyy is fixed to
its central value, however, the bound on cyy is given by
the intercept of the solid ellipse with the horizontal axis,
+4.45 TeV 2. This is a much tighter bound than the true
bound of +120.8 TeV 2.
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