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We derive bounds on nine dimension-six operators involving electroweak gauge bosons and the Higgs

boson from precision electroweak data. Four of these operators contribute at tree level, and five contribute

only at one loop. Using the full power of effective field theory, we show that the bounds on the five loop-

level operators are much weaker than previously claimed, and thus much weaker than bounds from tree-

level processes at high-energy colliders.
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I. INTRODUCTION

The discovery of the Higgs boson at the LHC finally
completes the Standard Model. The next step is the
discovery of physics beyond the Standard Model. This
can be done directly by searching for new particles, or
indirectly by searching for new interactions of the Standard
Model particles. Indirect searches for new physics can be
done model-independently by means of effective field
theory [1–3].

An effective field theory is a low-energy approximation
of a higher-energy theory. By integrating out high-energy
degrees of freedom, one obtains a low-energy theory that
includes additional effective interactions which involve
only low-energy fields. One obtains a perturbative expan-
sion in which effective interactions, or operators, are sup-
pressed by inverse powers of the mass scale of the physics
which has been integrated out. If, as in our case, one does
not know the high-energy theory, a complete operator basis
can be written down at each order.

The Standard Model operators have mass dimension
four or less. The only possible operator of dimension five
generates Majorana neutrino masses and does not concern
us here [4]. Thus, the lowest-dimension effective operators
are of dimension six. We can write down an effective field
theory which extends the Standard Model in the following
form:

Leff ¼ LSM þX
i

ci
�2

Oi þ � � � ; (1)

where the Oi are dimension-six operators, � is the mass
scale of new physics, and the ci are dimensionless coef-
ficients that reflect our ignorance of the high-energy theory.
This expansion reduces to the Standard Model in the limit
� ! 1. A complete basis of operators Oi comprises
operators which are independent with respect to equations
of motion and which are SUð3Þ � SUð2Þ �Uð1Þ gauge-
invariant [2,5]. Aside from reducing the number of inde-
pendent operators, this latter condition guarantees a

consistent framework for performing loop calculations.
That is, divergences produced by an operator at a given
order in 1=� can always be absorbed by other operators
at the same order in 1=�. Thus the renormalization pro-
gram can be carried out, order-by-order, in any complete
effective field theory.
In this paper we use the precision electroweak data in

Table I to calculate bounds on nine dimension-six op-
erators containing only gauge boson fields and Higgs
doublets. All contributions from the nine operators can
be represented as gauge boson self-energies, also called
oblique corrections [8,9]. Five of the operators contrib-
ute only at one loop; the four remaining operators con-
tribute at tree level and must be included in order to
absorb one-loop ultraviolet divergences from the other
five operators.
Similar analyses have been done previously [10–13].

These previous analyses did not appreciate that unambig-
uous bounds can be obtained on the five loop-level opera-
tors.1 We recently showed that the bounds on two of these
five operators are much weaker than had been obtained
in previous analyses [15]. In this paper we extend this
analysis to all five of the loop-level operators.
Because precision electroweak data are taken at

‘‘low’’ energies, around the Z boson mass or below,
there will often be significant suppression of operator
contributions, of the order ŝ=�2, where ŝ is the usual
Mandelstam variable. Furthermore, the five operators
contributing only at one loop receive an additional sup-
pression of 1=ð4�Þ2. It is therefore reasonable to ask
what advantages precision measurements offer. For
one, electroweak data is known to far greater precision
than high-energy collider data from the Tevatron and
LHC. In addition, the effective operator contribution is
not always energy-dependent; it is often proportional to
v2=�2. In this case, there is no disadvantage to using

1A similar calculation, with the same shortcomings, is per-
formed for a model with no Higgs field in Ref. [14].
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low-energy data.2 We therefore perform this analysis
both as an illustration of the power of effective field
theory and in order to compare our loop-level results
with tree-level results from high-energy colliders.

In Sec. II, we discuss the nine effective operators to be
examined in this paper. In Sec. III, we outline the frame-
work for computing the effect of oblique corrections on
electroweak observables. We present bounds on the effec-
tive operators in Sec. V, and conclude in Sec. VI.

II. ELECTROWEAK EFFECTIVE OPERATORS

In this paper, we are interested in the effects of new
physics on precision electroweak data. Here we examine
the set of operators that involves only gauge and Higgs
bosons. Five of these contribute only at one loop [12]:

OWWW ¼ TrŴ�
�Ŵ

�
�Ŵ

�
� (2a)

OW ¼ ðD��ÞyŴ��ðD��Þ (2b)

OB ¼ ðD��ÞyB̂��ðD��Þ (2c)

OWW ¼ �yŴ��Ŵ��� (2d)

OBB ¼ �yB̂��B̂��� (2e)

where B̂�� ¼ ig0 12B��, Ŵ�� ¼ ig �a

2 Wa
�� and �a is the

ath Pauli matrix. The covariant derivative is defined as

D�� ¼
�
@� � ig0

1

2
B� � ig

�a

2
Wa

�

�
�: (3)

Table II lists all one-loop Feynman graphs and the opera-
tors that contribute to them. The above operators affect
precision electroweak observables in two different ways.
All five operators affect gauge boson self-energies through

loop corrections. In addition, the first three operators alter
the fermion-fermion-boson vertices. It would seem as if the
final two operators, OBB and OWW , contribute to gauge
boson self-energies at tree level when the Higgs doublets
take their vacuum expectation values; however, these con-
tributions can be absorbed into the Standard Model gauge
kinetic terms with field and coupling redefinitions. These
operators therefore only affect diagrams involving Higgs
bosons [15].
The one-loop self-energies above contain ultraviolet

divergences. The following set of four operators, all of
which affect self-energies at tree level, is sufficient to
absorb all divergences from the operators of Eq. (2) [12]:

OBW ¼ �yB̂��Ŵ��� (4a)

O�;1 ¼ ðD��Þy��yðD��Þ (4b)

ODW ¼ Tr½D�; Ŵ���½D�; Ŵ��� (4c)

ODB ¼ 2@�B̂��@�B̂��: (4d)

III. ONE-LOOP BOUNDS FROM PRECISION
ELECTROWEAK DATA

The operators of Eq. (2) affect the precision data only
through gauge boson self-energies and fermion-fermion-
boson vertices. Table II shows the diagrams which contrib-
ute. The vertex corrections and self-energies always
contribute to observables in the same gauge-invariant
combinations [12]

��WW ¼ �WW þ 2ðq2 �m2
WÞ��W (5)

��ZZ ¼ �ZZ þ 2cðq2 �m2
ZÞ��Z (6)

���� ¼ ��� þ 2sq2��� (7)

TABLE I. Precision electroweak quantities. Data taken from [6,7].

Notation Measurement

Z-pole �Z Total Z width

�had Hadronic cross section

Rfðf ¼ e;�; 	; b; cÞ Ratios of decay rates

A0;f
FB ðf ¼ e;�; 	; b; c; sÞ Forward-backward asymmetries

�s2l Hadronic charge asymmetry

Afðf ¼ e;�; 	; b; c; sÞ Polarized asymmetries

Fermion pair production at LEP2 �fðf ¼ q; e;�; 	Þ Total cross sections for eþe� ! f �f

Af
FBðf ¼ �; 	Þ Forward-backward asymmetries for eþe� ! f �f

W mass and decay rate mW W mass from LEP and Tevatron

�W W width from Tevatron

DIS and atomic parity violation QWðCsÞ Weak charge in Cs

QWðTlÞ Weak charge in Tl

QWðeÞ Weak charge of the electron

g2L, g
2
R ��-nucleon scattering from NuTeV

g�eV , g�eA �-e scattering from CHARM II

2Here we are considering only interference terms between the
effective operators and the Standard Model. If c2i =�

4 terms are
included, there will in general be energy dependence.
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�� �Z ¼ ��Z þ sq2��Z þ cðq2 �m2
ZÞ��� (8)

where the �XY are the transverse parts of the gauge boson
self-energies, s and c are the sine and cosine of the weak
mixing angle, and the ��i are the fermion-fermion-boson
vertex corrections, defined as

��Vf �f
� ¼ gIf3��

1

2
ð1� �5Þ��V (9)

��Wf1f2
� ¼ gffiffiffi

2
p ��

1

2
ð1� �5Þ��W (10)

where V denotes a neutral vector boson, and If3 denotes the
third component of the fermion’s isospin.
Modified self-energies contribute to precision electro-

weak data through corrections to the input variables 
,mZ,
and s2W . The correction to 
 depends upon the type of
vertex; these corrections will be labeled �
�, �
Z, or

�
W , depending on the mediating boson. The modified
self-energy between bosons X and Y is denoted�XY in the
expressions below:


þ �
� ¼ 
ð1þ ��0
��ðq2Þ � ��0

��ð0ÞÞ (11)


þ �
Z ¼ 
ð1þ ��0
��ðq2Þ � ��0

��ð0ÞÞ
�
1þ d

dq2
��ZZðm2

ZÞ

� ��0
��ðq2Þ � c2 � s2

cs
��0
�Zðq2Þ

�
(12)


þ�
W ¼
ð1þ ��0
��ðq2Þ� ��0

��ð0ÞÞ
�
1þ d

dq2
��WWðm2

WÞ

� ��0
��ðq2Þ�c

s
��0
�Zðq2Þ

�
(13)

m2
Z þ �m2

Z ¼ m2
Z � ��ZZðm2

ZÞ þ ��ZZðq2Þ
� ðq2 �m2

ZÞ
d

dq2
��ZZðm2

ZÞ (14)

s2W þ �s2W ¼ s2
�
1� c

s
��0
�Zðq2Þ �

c2

c2 � s2

�
��0
��ð0Þ

þ 1

m2
W

��WWð0Þ � 1

m2
Z

��ZZðm2
ZÞ
��

(15)

where ��0
XYðq2Þ¼ð ��XYðq2Þ� ��XYð0ÞÞ=q2 (with ��0

XYð0Þ ¼
d
dq2

��XYð0Þ).
The correction to any electroweak observable X mea-

sured at an energy at or above the Z-pole is given by

�X ¼ �X

�

�
þ �X

�m2
Z

�m2
Z þ

�X

�s2W
�s2W: (16)

Low-energy observables are affected by corrections to s2W
and by changes to the � parameter

TABLE II. Feynman diagrams.

��W OWWW , OB, OW

��Z OWWW , OB, OW

��� OWWW , OB, OW

�WW OWWW , OB, OW

�ZZ OWWW , OB, OW

��� OWWW , OB, OW

��Z OWWW , OB, OW

�WW OB, OW , OWW

�ZZ OB, OW , OBB, OWW

��� OB, OW

��Z OB, OW , O�
BB, O

�
WW

�WW OW

�ZZ OB, OW

��� OB, OW

��Z OB, OW

�WW OBB, OWW

�ZZ OBB, OWW

���

��Z

�WW OWW

�ZZ OBB, OWW

��� OBB, OWW

��Z OBB, OWW

�WW OWW

�ZZ OBB, OWW

��� OBB, OWW

��Z OBB, OWW

�WW OWW

�ZZ OBB, OWW

��� OBB, OWW

��Z OBB, OWW

�WW OWW

�ZZ OBB, OWW

��� OBB, OWW

��Z OBB, OWW

�WW OW

�ZZ OW

���

��Z OW
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�X ¼ �X

�s2W
�s2W þ �X

��
�� (17)

where �� ¼ 1
m2

W

��WWð0Þ � 1
m2

Z

��ZZð0Þ.

IV. RENORMALIZATION OF TREE-LEVEL
OPERATORS

All divergences generated by the one-loop contributions
of the operators in Eq. (2) can be removed by a suitable

renormalization of the coefficients cBW , c
ð3Þ
� , cDW , and cDB.

The renormalized tree-level coefficients, in the MS
scheme, are

c�;1ð�Þ ¼ c0�;1�
�2� þ 3g4s2

128�2m2
Wc

2
ððm2

h þ 3m2
WÞcB

þ 3m2
WcWÞ

�
1

�
� �þ ln 4�

�
(18)

cDBð�Þ ¼ c0DB�
2� � cB

192�2

�
1

�
� �þ ln 4�

�
(19)

cDWð�Þ ¼ c0DW�
2� � cW

192�2

�
1

�
� �þ ln 4�

�
(20)

cBWð�Þ ¼ c0BW � g2

16�2

�
cWW þ s2

c2
cBB � 3

2
cWWWg

2

� 1

24c2m2
W

cBð3c2m2
h þ ð7þ 20c2Þm2

WÞ

� 1

24c2m2
W

cWð3c2m2
h � ð3þ 12c2Þm2

WÞ
�

�
�
1

�
� �þ ln 4�

�
(21)

where the superscript ‘‘0’’ indicates the bare coefficient.

V. RESULTS

We now take all of the self-energy corrections from
Appendix A and compute oblique corrections to the pre-
cision electroweak observables listed in Table I. We use the
following values for input parameters:


ðmZÞ ¼ 1=128:91; v ¼ 246:2 GeV;

mZ ¼ 91:1876 GeV; mh ¼ 125 GeV

mt ¼ 172:9 GeV; mb ¼ 4:79 GeV;

m	 ¼ 1:777 GeV:

(22)

The masses of all other fermions are neglected. We set the
renormalization scale to � ¼ MZ in the tree-level
coefficients.
We use the �2 statistic to compute bounds on the

operators:

�2 ¼ X
i;j

�ið��1Þij�j (23)

where �ij is the error matrix, and

�i ¼
�
Xi
SM � Xi

exp þX
k

ck
�2

Xi
k

�
(24)

where the sum on k runs over all loop- and tree-level
operators.
We begin by writing �2 in the following way:

�2 ¼ �2
min þ

P
ijðci � ĉiÞMijðcj � ĉjÞ

�4
(25)

where the i, j sum is over all nine operators. The ĉi are
best-fit values. We then arrive at 1� bounds by solving the
equation P

ijðci � ĉiÞMijðcj � ĉjÞ
�4

¼ 1: (26)

It is cleanest to diagonalize the matrix M and present
bounds on the nine linearly independent combinations of
operators. Those bounds appear below

�0:164 0:986 �0:018 0:025 �0:000 �0:001 0:000 �0:000�0:000

�0:494�0:103 �0:832 �0:230�0:000 �0:002 0:001 0:000 �0:000

�0:838�0:131 0:527 �0:051 0:000 �0:001 0:001 �0:001�0:000

�0:165�0:006 �0:170 0:972 �0:001 �0:000 0:002 0:000 0:000

0:001 �0:000 0:001 �0:001�0:913 �0:218 0:145 �0:312 0:011

�0:002 0:000 �0:001 �0:001�0:156 0:961 0:184 �0:129 0:031

�0:001 0:000 �0:001 0:002 0:099 0:066 �0:727 �0:675�0:030

�0:002�0:000 0:000 0:001 �0:361 0:150 �0:645 0:653 0:062

�0:000 0:000 0:000 �0:000 0:040 �0:035 0:011 �0:053 0:997

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

1

�2

cBW

c�;1

cDW

cDB

cWWW

cW

cB

cWW

cBB

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

¼

�0:004� 0:010

0:062 � 0:086

0:022 � 0:143

0:628 � 0:387

�149:2� 120:9

�17:7 � 187:5

589:3 � 455:1

�3715 � 1904

3902 � 9964

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

TeV�2:

(27)
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We find that the tree-level and loop-level bounds are
essentially decoupled from each other, as evidenced
by the nearly block-diagonal form of the above matrix.
The first four bounds represent bounds on linear combi-
nations of tree-level operators and are very tightly
constrained. The final five are bounds on linear combi-
nations of loop-level operators. These bounds are weaker
than the tree-level bounds by 2 to 3 orders of magnitude
or more. All of the coefficients are consistent with zero
at 2�.

We can also calculate bounds on the loop-level coeffi-
cients by first setting the tree-level coefficients to the
values (as a function of the loop-level coefficients) that
minimize �2. We again write this new �2 in matrix form

�2jfctreeg¼fcmin
tree g ¼ �2

min þ
P

ijðci � ĉiÞMijðcj � ĉjÞ
�4

(28)

where fctreeg is the set of all tree-level operators, and the
sum on i, j runs over all loop-level operators. We then
follow the same procedure as before to arrive at bounds on
the loop-level operators

�0:913 �0:218 0:145 �0:312 0:011

�0:156 0:961 0:184 �0:129 0:031

�0:099 �0:066 0:727 0:675 0:030

0:361 �0:150 0:645 �0:653 �0:062

0:040 �0:035 0:011 �0:053 0:997

0
BBBBBBBB@

1
CCCCCCCCA

1

�2

�

cWWW

cW

cB

cWW

cBB

0
BBBBBBBB@

1
CCCCCCCCA
¼

�149:2 � 120:9

�17:7 � 187:5

589:3 � 455:1

�3715 � 1904

3902 � 9964

0
BBBBBBBB@

1
CCCCCCCCA
TeV�2: (29)

These bounds are identical to the bounds of Eq. (27),
highlighting the fact that the two sets of operators are
decoupled in the eigenvector matrix.

We can also find bounds on each loop-level operator
separately, by setting all other loop-level operators to zero
and letting the relevant tree-level operators float. This gives
us the following bounds:

cWW

�2 ¼ 129:5� 120:8 TeV�2 (30)

cBB
�2 ¼ 1456� 2225 TeV�2 (31)

cWWW

�2 ¼ 57:59� 63:09 TeV�2 (32)

cW
�2 ¼ 100:6� 181:9 TeV�2 (33)

cB
�2 ¼ �123:4� 355:9 TeV�2: (34)

VI. CONCLUSIONS

The bounds we have obtained on the loop-level op-
erators are much weaker than the bounds obtained in
similar previous analyses [11–13]. These analyses set
the renormalized tree-level coefficients to zero rather
than letting them float. This is an unjustified assump-
tion, as these coefficients are renormalized by the one-
loop coefficients, as discussed in Sec. IV. Thus the
results of these previous analyses are specious, as we
discussed in Ref. [15]. We discuss this further in
Appendix B.
We found in Ref. [15] that the bounds on the loop-level

operators OBB and OWW from precision electroweak phys-
ics are much weaker than the bounds from tree-level
processes involving the Higgs boson. The analogous result
holds for the other three loop-level operators, OWWW , OW ,
and OB; they are much more strongly constrained by tree-
level processes involving the triple gauge boson vertex [6].
Thus the bounds on the bosonic operators from a one-loop
analysis of precision electroweak data cannot compete
with the bounds obtained from tree-level processes at
high-energy colliders.
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APPENDIX A: SELF-ENERGIES

The self-energies given below have not been calculated
previously in their entirety. The divergent parts, as well as
terms proportional to m2

h and lnm2
h (in the large mh limit)

were calculated in Refs. [11–13], and we have confirmed
these previous calculations.

1. Tree-level contributions

�WW ¼ � cDW

�2
2g2q4 (A1)

�ZZ ¼ � cBW
�2

2m2
Ws

2q2 þ c�;1

�2

v2

2
m2

Z �
cDW

�2
2g2c2q4

� cDB

�2
2g2

s4

c2
q4 (A2)

��� ¼ cBW
�2

2m2
Ws

2q2 � cDW

�2
2g2s2q4 � cDB

�2
2g2s2q4

(A3)
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��Z¼cBW
�2

m2
W

s

c
ðc2�s2Þq2�cDW

�2
2g2scq4þcDB

�2
2g2

s3

c
q4

(A4)

2. One-loop contributions

The expressions below are given in terms of scalar
integral functions A0, B0, and C0. Expressions for these
functions are given in Appendix D of Ref. [16].

OBB:

��WW ¼ cBB
�2

1

16�2

g2m4
Zs

4

m2
h

ð2m2
Z � 3A0ðm2

ZÞÞ (A5)

��ZZ ¼ cBB
�2

1

16�2

g2s4

m2
hc

2
½2m2

hm
2
Zðq2 �m2

h þm2
ZÞ

�B0ðq2;m2
h;m

2
ZÞ �m2

Zð3q2 þ 2m2
h þ 3m2

ZÞA0ðm2
ZÞ

þm2
hð2m2

Z � q2ÞA0ðm2
hÞ � 6m2

Wq
2A0ðm2

WÞ
þ 4m4

Wq
2 þ 2m4

Zq
2 þ 2m6

Z� (A6)

���� ¼ � cBB
�2

1

16�2

g2q2s2

m2
h

½m2
hA0ðm2

hÞ þ 3m2
ZA0ðm2

ZÞ

þ 6m2
WA0ðm2

WÞ � 4m4
W � 2m4

Z� (A7)

���Z¼cBB
�2

1

16�2

g2s3

m2
hc

½m2
hm

2
Zðm2

h�m2
Z�q2ÞB0ðq2;m2

h;m
2
ZÞ

þm2
Zðm2

hþ3q2ÞA0ðm2
ZÞ�m2

hðm2
Z�q2ÞA0ðm2

hÞ
þ6m2

Wq
2A0ðm2

WÞ�4m4
Wq

2�2m4
Zq

2� (A8)

OWW :

��WW ¼ cWW

�2

1

16�2

g2

m2
h

½2m2
hm

2
Wðq2 �m2

h þm2
WÞ

� B0ðq2; m2
h;m

2
WÞ � 2m2

Wð3q2 þm2
h þ 3m2

WÞ
� A0ðm2

WÞ þm2
hð2m2

W � q2ÞA0ðm2
hÞ

� 3ðm4
W þm2

Zq
2ÞA0ðm2

ZÞ þ 4m4
Wq

2

þ 2m4
Zq

2 þ 4m6
W þ 2m4

Wm
2
Z� (A9)

��ZZ ¼ cWW

�2

1

16�2

g2c2

m2
h

½2m2
hm

2
Zðq2 �m2

h þm2
ZÞ

�B0ðq2;m2
h;m

2
ZÞ �m2

Zð3q2 þ 2m2
h þ 3m2

ZÞA0ðm2
ZÞ

þm2
hð2m2

Z � q2ÞA0ðm2
hÞ � 6ðm4

Z þm2
Wq

2ÞA0ðm2
WÞ

þ 4m4
Wq

2 þ 2m4
Zq

2 þ 4m2
Wm

4
Z þ 2m6

Z� (A10)

���� ¼ � cWW

�2

1

16�2

g2q2s2

m2
h

½m2
hA0ðm2

hÞ þ 3m2
ZA0ðm2

ZÞ

þ 6m2
WA0ðm2

WÞ � 4m4
W � 2m4

Z� (A11)

���Z ¼ � cWW
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APPENDIX B: COMPARISON WITH
PREVIOUS BOUNDS

Here we discuss in detail why the bounds we obtain on
the coefficients of dimension-six operators are so much
weaker than the bounds obtained in previous calculations
[11–13]. We focus on the coefficient cWW , but the story is
similar for all of the one-loop coefficients.

We show in Fig. 1 a two-parameter fit of the tree-level
coefficient cBW and the one-loop coefficient cWW to the
precision electroweak data. We have centered the coeffi-
cients at their best-fit values. The dashed ellipse corre-
sponds to a renormalization scale of MZ, which is the
appropriate scale. If both coefficients are allowed to float,
the bound on cWW is given by the full extent of the
ellipse in the horizontal direction, �120:8 TeV�2

[cf. Eq. (30)]. If the tree-level coefficient cBW is fixed to
its central value, however, the bound on cWW is given by
the intercept of the ellipse with the horizontal axis,
�48:3 TeV�2. This partially explains the tighter bounds
obtained in Refs. [11–13].

There is another factor, however, and that is the choice
of renormalization scale. In Refs. [11–13], the renormal-
ization scale was chosen to be � ¼ 1 TeV. This has
the effect of enhancing the one-loop calculations of
Refs. [11–13], which contain terms proportional to ln�2.
We show in Fig. 1 a fit with the renormalization scale set to
1 TeV (solid ellipse). If both coefficients are allowed to
float, the bound on cWW is the same as before, which

demonstrates that our bound is independent of the renor-

malization scale. If the tree-level coefficient cBW is fixed to

its central value, however, the bound on cWW is given by

the intercept of the solid ellipse with the horizontal axis,

�4:45 TeV�2. This is a much tighter bound than the true

bound of �120:8 TeV�2.
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