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We present results on the axial and the electromagnetic form factors of the nucleon, as well as on the

first moments of the nucleon generalized parton distributions using maximally twisted mass fermions. We

analyze two Nf ¼ 2þ 1þ 1 ensembles having pion masses of 213 MeVand 373 MeVeach at a different

value of the lattice spacing. The lattice scale is determined using the nucleon mass computed on a total of

17 Nf ¼ 2þ 1þ 1 ensembles generated at three values of the lattice spacing, a. The renormalization

constants are evaluated nonperturbatively with a perturbative subtraction of Oða2Þ terms. The moments of

the generalized parton distributions are given in the MS scheme at a scale of � ¼ 2 GeV. We compare

with recent results obtained using different discretization schemes. The implications on the spin content of

the nucleon are also discussed.
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I. INTRODUCTION

Recent progress in the numerical simulation of lattice
quantum chromodynamics (LQCD) has been remarkable.
The improvements in the algorithms used and the increase
in computational power have enabled simulations to be
carried out at near physical parameters of the theory. This
opens up exciting possibilities for ab initio calculation of
experimentally measured quantities, as well as for predict-
ing quantities that are not easily accessible to experiment.
Understanding nucleon structure from first principles is
considered a milestone of hadronic physics, and a rich
experimental program has been devoted to its study, start-
ing with the measurements of the electromagnetic form
factors initiated more than 50 years ago. Reproducing these
key observables within the LQCD formulation is a prereq-
uisite to obtaining reliable predictions on observables that
explore physics beyond the standard model.

A number of major collaborations have been studying
nucleon structure within LQCD for many years. However,
it is only recently that these quantities can be obtained with
near physical parameters both in terms of the value of the
pion mass and with respect to the continuum limit [1–11].
The nucleon electromagnetic form factors are a well-suited
experimental probe for studying nucleon structure and thus
provide a valuable benchmark for LQCD. The nucleon
form factors connected to the axial-vector current are
more difficult to measure and therefore less accurately
known than its electromagnetic form factors. A notable
exception is the nucleon axial charge gA which is accu-
rately measured in � decays. The fact that gA can be
extracted at zero momentum transfer and that it is techni-
cally straightforward to compute in LQCD, due to its
isovector nature, makes it an ideal benchmark quantity
for LQCD. The generalized parton distributions (GPDs)

encode information related to nucleon structure that com-
plements the information extracted from form factors
[12–14]. They enter in several physical processes such as
deeply virtual Compton scattering and deeply virtual
meson production. Their forward limit coincides with the
usual parton distributions and, using Ji’s sum rule [15],
allows one to determine the contribution of a specific
parton to the nucleon spin. In the context of the ‘‘proton
spin puzzle,’’ which refers to the unexpectedly small frac-
tion of the total spin of the nucleon carried by quarks, this
has triggered intense experimental activity [16–20].

II. LATTICE EVALUATION

In this work we consider the nucleon matrix elements of
the vector and axial-vector operators

O �1...�n

Va ¼ �c�f�1iD
$�2 . . . iD

$�ng �
a

2
c ; (2.1)

O �1...�n

Aa ¼ �c�f�1 iD
$�2 . . . iD

$�ng�5

�a

2
c ; (2.2)

where �a are the Pauli matrices acting in flavor space, c
denotes the two-component quark field (up and down). In
this work we consider the isovector combination by taking
a ¼ 3, except when we discuss the spin fraction carried by
each quark. Furthermore, we limit ourselves to n ¼ 1 and
n ¼ 2. The case n ¼ 1 reduces to the nucleon form factors
of the vector and axial-vector currents, while n ¼ 2 corre-
sponds to matrix elements of operators with a single
derivative. The curly brackets represent a symmetrization
over indices and subtraction of traces, only applicable to
the operators with derivatives. There are well-developed
methods to compute the so-called connected diagram,
depicted in Fig. 1, contributing to the matrix elements of
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these operators in LQCD. Each operator can be decom-
posed in terms of generalized form factors (GFFs) as
follows: The matrix element of the local vector current,
O�

V3 , is expressed as a function of the Dirac and Pauli form

factors

hNðp0; s0ÞjO�

V3 jNðp; sÞi
¼ �uNðp0; s0Þ

�
��F1ðq2Þ þ i���q�

2mN

F2ðq2Þ
�
1

2
uNðp; sÞ;

where uNðp; sÞ denotes the nucleon spinors of a given
momentum p and spin s. F1ð0Þ measures the nucleon
charge while F2ð0Þ measures the anomalous magnetic mo-
ment. They are connected to the electric, GE, and mag-
netic, GM, Sachs form factors by the relations

GEðq2Þ ¼ F1ðq2Þ þ q2

ð2mNÞ2
F2ðq2Þ;

GMðq2Þ ¼ F1ðq2Þ þ F2ðq2Þ:
(2.3)

The local axial current matrix element of the nucleon
hNðp0; s0ÞjO�

A3 jNðp; sÞi can be expressed in terms of the

form factors GA and Gp as

hNðp0;s0ÞjO�

A3 jNðp;sÞi¼ �uNðp0;s0Þ
�
GAðq2Þ���5

þq��5

2mN

Gpðq2Þ
�
1

2
uNðp;sÞ: (2.4)

The matrix elements of the one-derivative operators are
parametrized in terms of the GFFs A20ðq2Þ, B20ðq2Þ,
C20ðq2Þ, and ~A20ðq2Þ and ~B20ðq2Þ for the vector and axial-
vector operators, respectively, according to

hNðp0; s0ÞjO��

V3 jNðp; sÞi

¼ �uNðp0; s0Þ
�
A20ðq2Þ�f�P�g þ B20ðq2Þ i�

f��q�P
�g

2m

þ C20ðq2Þ 1mqf�q�g
�
1

2
uNðp; sÞ; (2.5)

hNðp0; s0ÞjO��

A3 jNðp; sÞi

¼ �uNðp0; s0Þ
�
~A20ðq2Þ�f�P�g�5 þ ~B20ðq2Þ q

f�P�g

2m
�5

�

� 1

2
uNðp; sÞ: (2.6)

Note that the GFFs depend only on the momentum transfer
squared, q2 ¼ ðp0 � pÞ2; p0 is the final and p the initial
momentum. The isospin limit corresponds to taking �3=2
in Eq. (2.2) and gives the form factor of the proton minus
the form factors of the neutron. In the forward limit we thus
have GEð0Þ ¼ 1 and GMð0Þ ¼ �p ��n � 1 ¼ 4:71 [21],

which is the isovector anomalous magnetic moment.
Similarly, we obtain the nucleon axial charge, GAð0Þ �
gA, the isovector momentum fraction, A20ð0Þ � hxiu�d,
and the moment of the polarized quark distribution,
~A20ð0Þ � hxi�u��d. In order to find the spin and angular
momentum carried by each quark individually in the
nucleon, we need the isoscalar axial charge and the iso-
scalar one-derivative matrix elements of the vector opera-
tor. Unlike the isovector combinations, where disconnected
fermion loops vanish in the continuum limit, the isoscalar
cases receive contributions from disconnected fermion
loops. The evaluation of the disconnected contributions is
difficult due to the computational cost, but techniques are
being developed to compute them. Recent results on
nucleon form factors show that they are small or consistent
with zero [22–24]. The disconnected contribution to the
isoscalar axial charge has been computed and was found to
be nonzero, but it is an order of magnitude smaller than the
connected one [25]. Therefore, in most nucleon structure
calculations they are neglected. In this work we will as-
sume that the disconnected contributions are small, in
which case it is straightforward to evaluate the isoscalar
matrix elements taking into account only the connected
part depicted in Fig. 1. The quark contribution to the
nucleon spin is obtained using Ji’s sum rule: Jq ¼
1
2 ½Aq

20ð0Þ þ Bq
20ð0Þ�. Moreover, using the axial charge for

each quark, gqA, we obtain the intrinsic spin of each quark,

��q ¼ gqA, and via the decomposition Jq ¼ 1
2 ��

q þ Lq

we can extract the quark orbital angular momentum Lq.
In the present work we employ the twisted mass fermion

(TMF) action [26] and the Iwasaki improved gauge action
[27]. Twisted mass fermions provide an attractive formu-
lation of lattice QCD that allows for automatic OðaÞ
improvement, infrared regularization of small eigenvalues
and fast dynamical simulations [28]. In the computation of
GFFs the automatic OðaÞ improvement is particularly
relevant since it is achieved by tuning only one parameter
in the action, requiring no further improvements on the
operator level.
We use the twisted mass Wilson action for the light

doublet of quarks,

Sl ¼
X
x

��lðxÞ½DW þmð0;lÞ þ i�5�
3�l��lðxÞ; (2.7)

where DW is the Wilson Dirac operator, mð0;lÞ is the un-

twisted bare quark mass, and �l is the bare light twisted
mass. The quark fields �l are in the so-called ‘‘twisted
basis’’ obtained from the ‘‘physical basis’’ at maximal
twist by the transformation

FIG. 1 (color online). Connected nucleon three-point function.
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c ¼ 1ffiffiffi
2

p ½1þi�3�5��l and �c¼ ��l

1ffiffiffi
2

p ½1þi�3�5�: (2.8)

In addition to the light sector, we introduce a twisted heavy
mass-split doublet �h ¼ ð�c; �sÞ for the strange and charm
quarks, described by the action

Sh ¼ X
x

��hðxÞ½DW þmð0;hÞ þ i�5�
1�� þ �3�	��hðxÞ;

(2.9)

wheremð0;hÞ is the untwisted bare quark mass for the heavy

doublet, �� is the bare twisted mass along the �1 direction
and �	 is the mass splitting in the �3 direction. The quark
mass mð0;hÞ is set equal to mð0;lÞ in the simulations, thus

ensuringOðaÞ improvement also in the heavy quark sector.
The chiral rotation for the heavy quarks from the twisted to
the physical basis is

c ¼ 1ffiffiffi
2

p ½1þ i�1�5��h and �c ¼ ��h

1ffiffiffi
2

p ½1þ i�1�5�:
(2.10)

The reader can find more details on the twisted mass
fermion action in Ref. [29]. Simulating a charm quark
may give rise to concerns regarding cutoff effects. The
observables of this work cannot be used to check for
such an effect. However, an analysis in Ref. [30] shows
that they are surprisingly small.

A. Correlation functions

The GFFs are extracted from dimensionless ratios of
correlation functions, involving two-point and three-point
functions that are defined by

Gð ~q; tf � tiÞ ¼
X
~xf

e�ið ~xf� ~xiÞ� ~q�0
��hJ�ðtf; ~xfÞ �J�ðti; ~xiÞi;

(2.11)

G�1...�nð��; ~q; tÞ ¼ X
~x; ~xf

eið ~x� ~xiÞ� ~q��
��hJ�ðtf; ~xfÞ

�O�1...�nðt; ~xÞ �J�ðti; ~xiÞi: (2.12)

For the insertion O�1...�n , we employ the vector ( �c��c ),
the axial-vector ( �c�5��c ), the one-derivative vector

( �c�f�1D�2gc ) and the one-derivative axial-vector

( �c�5�f�1D�2gc ) operators. We consider kinematics for
which the final momentum ~p0 ¼ 0, and in our approach we
fix the time separation between sink and source, tf � ti.

The projection matrices �0 and �k are given by

�0 ¼ 1

4
ð1þ �0Þ; �k ¼ �0i�5�k: (2.13)

The proton interpolating field written in terms of the quark

fields in the twisted basis (~u and ~d) at maximal twist is
given by

JðxÞ ¼ 1ffiffiffi
2

p ½1þ i�5�
abc½~ua>ðxÞC�5
~dbðxÞ�~ucðxÞ; (2.14)

where C is the charge conjugation matrix. We use Gaussian
smeared quark fields [31,32] to increase the overlap with
the proton state and decrease the overlap with excited
states. The smeared interpolating fields are given by

qasmearðt; ~xÞ¼
X
~y

Fabð ~x; ~y;UðtÞÞqbðt; ~yÞ;

F¼ð1þaGHÞNG;

Hð ~x; ~y;UðtÞÞ¼X3
i¼1

½UiðxÞ	x;y�{̂þUy
i ðx� {̂Þ	x;yþ{̂�:

(2.15)

We also apply APE smearing to the gauge fields U� enter-

ing the hopping matrixH. The parameters for the Gaussian
smearing, aG and NG, are optimized using the nucleon
ground state [33]. Different combinations of Gaussian
parameters, NG and aG, have been tested, and it was found
that combinations of NG and aG that give a root mean
square radius of about 0.5 fm are optimal for suppressing
excited states. The results of this work have been produced
with

� ¼ 1:95: NG ¼ 50; aG ¼ 4; NAPE ¼ 20; aAPE ¼ 0:5;

� ¼ 2:10: NG ¼ 110; aG ¼ 4; NAPE ¼ 50; aAPE ¼ 0:5:

As already point out, in correlators of isovector operators
the disconnected diagrams are zero up to lattice artifacts,
and can be safely neglected as we approach the continuum
limit. Thus, these correlators can be calculated by evaluat-
ing the connected diagram of Fig. 1 for which we employ
sequential inversions through the sink [34]. The creation

operator is taken at a fixed position ~xi ¼ ~0 (source). The
annihilation operator at a later time tf (sink) carries

momentum ~p0 ¼ 0. The current couples to a quark at an
intermediate time t and carries momentum ~q. Translation
invariance enforces ~q ¼ � ~p for our kinematics. At a fixed
sink-source time separation we obtain results for all pos-
sible momentum transfers and insertion times as well as for

any operator Of�1...�ng
� , with one set of sequential inver-

sions per choice of the sink. We perform separate inver-
sions for the two projection matrices �0 and

P
k�

k given in
Eq. (2.13). An alternative approach that computes the
spatial all-to-all propagator stochastically has shown to
be suitable for the evaluation of nucleon three-point
functions [35]. Within this approach one can include any
projection without needing additional inversions.
Using the two- and three-point functions of Eqs. (2.11)

and (2.12) and considering operators with up to one
derivative, we form the ratio

R��ð��; ~q; tÞ ¼ G��ð��; ~q; tÞ
Gð~0; tf � tiÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gð ~p; tf � tÞGð~0; t� tiÞGð~0; tf � tiÞ
Gð~0; tf � tÞGð ~p; t� tiÞGð ~p; tf � tiÞ

s
;

(2.16)
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which is optimized because it does not contain potentially
noisy two-point functions at large separations and because
correlations between its different factors reduce the statis-
tical noise. For sufficiently large separations tf � t and

t� ti this ratio becomes time independent (plateau region):

lim
tf�t!1 lim

t�ti!1R��ð��; ~q; tÞ ¼ ���ð��; ~qÞ: (2.17)

From the plateau values of the renormalized asymptotic
ratio�ð��; ~qÞR ¼ Z�ð��; ~qÞ, the nucleon matrix elements
of all our operators can be extracted. The equations relating
�ð��; ~qÞ to the GFFs can be found in Refs. [1–3]. All
values of ~q resulting in the same q2, the two choices of
projector matrices �0 and

P
k�

k given by Eq. (2.13) and the
relevant orientations �, � of the operators lead to an over-
constrained system of equations, which is solved in the
least-squares sense via a singular value decomposition of
the coefficient matrix. All quantities will be given in
Euclidean space, with Q2 � �q2 the Euclidean momen-
tum transfer squared. Both projectors �0 and

P
k�

k are
required to obtain all GFFs, except for the case of the local
axial-vector operator, for which the projection with �0

leads to zero. For the one-derivative vector operator, both
cases � ¼ � and � � � are necessary to extract all three
GFFs, which on a lattice renormalize differently from each
other [36]. On the other hand, the one-derivative axial-
vector form factors can be extracted using only correlators
with� � �, but we use all combinations of�, � in order to
increase statistics. In Fig. 2 we show representative pla-
teaus for the ratios of the local axial-vector and the one-
derivative vector operators at � ¼ 1:95, using different
momenta, projectors, and indices �, �.

Since we use sequential inversions through the sink, we
need to fix the sink-source separation. Optimally, one
wants to keep the statistical errors on the ratio of
Eq. (2.16) as small as possible by using the smallest value
for the sink-source time separation that still ensures that the
excited state contributions are sufficiently suppressed.
Recent studies have shown that the optimal sink-source
separation is operator dependent [37,38]. For gA excited
state contamination was found to be small. We have also
tested different values of the sink-source time separation
[3] for the magnetic form factor and found consistent
results when the sink-source separation was about 1 fm
within our statistical accuracy. For the momentum fraction
one would need to reexamine the optimal sink-source
separation, which would require a dedicated high accuracy
study. Since in this work we are computing several observ-
ables, we will use tf � ti � 1 fm, which corresponds to the

following values:

� ¼ 1:95: ðtf � tiÞ=a ¼ 12;

� ¼ 2:10: ðtf � tiÞ=a ¼ 18:

This choice allows us to compare with other lattice QCD
results where similar values were used.

B. Simulation details

In Table I we tabulate the input parameters of the
calculation, namely �, L=a and the light quark mass a�,
as well as the value of the pion mass in lattice units [29,39].
The strange and charm quark masses were fixed to
approximately reproduce the physical kaon and D-meson
masses, respectively [40]. The lattice spacing a given in
this table is determined from the nucleon mass as explained
in the following subsection, and it will be used for the
baryon observables discussed in this paper. We note that
the study of the systematic error in the scale setting using
the pion decay constant as compared to the value extracted
using the nucleon mass is currently being pursued. Since
the GFFs are dimensionless they are not affected by the
scale setting. However, a is needed to convert Q2 to
physical units, and therefore it does affect quantities like
the anomalous magnetic moment and Dirac and Pauli radii
since these are dimensionful parameters that depend on
fitting the Q2 dependence of the form factors.
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FIG. 2 (color online). Ratios for the matrix elements of the
local axial-vector operator (upper) and one-derivative vector
operator (lower) for a few exemplary choices of the momentum.
The solid lines with the bands indicate the fitted plateau values
with their jackknife errors. From top to bottom the momentum
takes values ~p ¼ ð0; 0; 0Þ, (1, 0, 0), ð0;�1; 0Þ and (1, 0, 1).
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C. Determination of lattice spacing

For the observables discussed in this work the nucleon
mass at the physical point is the most appropriate quantity
to set the scale. The values for the nucleon mass were
computed using Nf¼2þ1þ1 ensembles for � ¼ 1:90,

� ¼ 1:95 and � ¼ 2:10, a range of pion masses and
volumes. To extract the mass we consider the two-point
correlators defined in Eq. (2.11) and construct the
effective mass

ameff
N ðtÞ ¼ � log ðCðtÞ=Cðt� 1ÞÞ

¼ amN þ log

� 1þP1
j¼1 cje

��jt

1þP1
j¼1 cje

��jðt�1Þ

�
!t!1

amN

(2.18)

where �j ¼ Ej �mN is the energy difference of the ex-

cited state j with respect to the ground state mass mN . Our
fitting procedure to extract mN is as follows: The mass is
obtained from a constant fit to meff

N ðtÞ for t � t1 for which
the contamination of excited states is believed to be small.

We denote the value extracted as mðAÞ
N ðt1Þ. A second fit to

meff
N ðtÞ is performed including the first excited state for

t � t01, where t01 is taken to be 2a or 3a. We denote the
value for the ground state mass extracted from the fit to two

exponentials by mðBÞ
N . We vary t1 such that the ratio

jamðAÞ
N ðt1Þ � amðBÞ

N j
ammean

N

; where ammean
N ¼ amðAÞ

N ðt1Þ þ amðBÞ
N

2

(2.19)

drops below 50% of the statistical error on mA
Nðt1Þ. The

resulting values for the nucleon mass are collected in
Table II.

In Fig. 3 we show results at three values of the lattice
spacing corresponding to � ¼ 1:90, � ¼ 1:95 and
� ¼ 2:10. As can be seen, cutoff effects are negligible
and we can therefore use continuum chiral perturbation

theory to extrapolate to the physical point using all the
lattice results.
To chirally extrapolate we use the well-established

Oðp3Þ result of chiral perturbation theory (�PT) given by

mN ¼ m0
N � 4c1m

2
� � 3g2A

16�f2�
m3

�: (2.20)

We perform a fit to the results at the three � values given in
Table II using the Oðp3Þ expansion of Eq. (2.20) with fit
parameters m0

N , c1 and the three lattice spacings. The
resulting fit is shown in Fig. 3 and describes well our lattice
data (�2=d:o:f:) yielding, for the lattice spacings, the values

a�¼1:90 ¼ 0:0934ð13Þð35Þ fm;

a�¼1:95 ¼ 0:0820ð10Þð36Þ fm;

a�¼2:10 ¼ 0:0644ð7Þð25Þ fm:

(2.21)

We would like to point out that our lattice results show a
curvature supporting the m3

� term. In order to estimate the
systematic error due to the chiral extrapolation we also
perform a fit using heavy baryon (HB) �PT to Oðp4Þ with
explicit � degrees of freedom in the so-called SSE [33].
We take the difference between theOðp3Þ andOðp4Þmean
values as an estimate of the uncertainty due to the chiral
extrapolation. This error is given in the second set of
parentheses in Eqs. (2.21), and it is about twice the statis-
tical error. In order to assess discretization errors we per-
form a fit to Oðp3Þ at each value of � separately. We find
a ¼ 0:0920ð21Þ, 0.0818(16), 0.0655(12) fm at � ¼ 1:90,
1.95, 2.10, respectively. These values are fully consistent
with those obtained in Eq. (2.21) indicating that discretiza-
tion effects are small, confirming a posteriori the validity

TABLE I. Input parameters ð�;L; a�Þ of our lattice calcula-
tion with the corresponding lattice spacing a, determined from
the nucleon mass, and pion mass am� in lattice units.

� ¼ 1:95, a ¼ 0:0820ð10Þ fm, r0=a ¼ 5:66ð3Þ
323 � 64, L ¼ 2:6 fm a� 0.0055

Number of configs. 950

am� 0.15518(21)(33)

Lm� 4.97

� ¼ 2:10, a ¼ 0:0644ð7Þ fm, r0=a ¼ 7:61ð6Þ
483 � 96, L ¼ 3:1 fm a� 0.0015

Number of configs. 900

am� 0.06975(20)

Lm� 3.35

TABLE II. Values of the nucleon mass and the associated
statistical error.

� a� Volume am� Statistics amN

1.90 0.003 323 � 64 0.124 740 0.524(9)

1.90 0.004 203 � 48 0.149 617 0.550(19)

1.90 0.004 243 � 48 0.145 2092 0.541(8)

1.90 0.004 323 � 64 0.141 1556 0.519(11)

1.90 0.005 323 � 64 0.158 387 0.542(6)

1.90 0.006 243 � 48 0.173 1916 0.572(5)

1.90 0.008 243 � 48 0.199 1796 0.590(5)

1.90 0.010 243 � 48 0.223 2004 0.621(4)

1.95 0.0025 323 � 64 0.107 2892 0.447(6)

1.95 0.0035 323 � 64 0.126 4204 0.478(5)

1.95 0.0055 323 � 64 0.155 18576 0.503(2)

1.95 0.0075 323 � 64 0.180 2084 0.533(4)

1.95 0.0085 243 � 48 0.194 937 0.542(5)

2.10 0.0015 483 � 96 0.070 2424 0.338(4)

2.10 0.0020 483 � 96 0.080 744 0.351(7)

2.10 0.0030 483 � 96 0.098 226 0.362(7)

2.10 0.0045 323 � 64 0.121 1905 0.394(3)
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of assuming that cutoff effects are small. The values of the
lattice spacing given in Eqs. (2.21) will be used for con-
verting to physical units the quantities we study here.
We would like to point out that redoing the Oðp3Þ fit,
eliminating data for which Lm� < 3:5, yields a�¼1:90 ¼
0:0942ð14Þ fm, a�¼1:95 ¼ 0:0858ð11Þ fm and a�¼2:1 ¼
0:0653ð8Þ, which are consistent with the values given in
Eq. (2.21). In performing these fits we only take into
account statistical errors. Systematic errors due to the
choice of the plateau are not included. We also note that
the lattice spacings were also determined from the pion
decay constant using NLO SU(2) chiral perturbation the-
ory to extrapolate the lattice data. The values obtained at
� ¼ 1:90, 1.95 and 2.10 in this preliminary analysis that
included only a subset of the ensembles used here are
smaller [39], as compared to the values extracted using
the nucleon mass. For the two� values studied in this work
they were found to be af� ¼ 0:0779ð4Þ fm at� ¼ 1:95 and

af� ¼ 0:0607ð3Þ fm at � ¼ 2:10, where with af� we de-

note the lattice spacing determined using the pion decay
constant. This means that the values of the pion mass in
physical units quoted in this paper are equivalently smaller
than those obtained using af� to convert to physical units.

A comprehensive analysis of the scale setting and the
associated systematic uncertainties is currently being

carried out by European Twisted Mass Collaboration
(ETMC) and will appear elsewhere.

D. Renormalization

We determine the renormalization constants needed for
the operators discussed in this work in the regularization
independent momentum subtraction (RI0-MOM) scheme
[41] by employing a momentum source at the vertex [42].
The advantage of this method is the high statistical accuracy
and the evaluation of the vertex for any operator including
extended operators at no significant additional computa-
tional cost. For the details of the nonperturbative renormal-
ization see Ref. [43]. In the RI scheme the renormalization
constants are defined in the chiral limit. Since the masses of
the strange and charm quarks are fixed to their physical
values in these simulations, extrapolation to the chiral limit
is not possible. Therefore, in order to compute the renor-
malization constants needed to obtain physical observables,
ETMC has generated Nf ¼ 4 ensembles for the same �

values so that the chiral limit can be taken [44]. Although we
will use theNf ¼ 4 ensembles for the final determination of

the renormalization constants, it is also interesting to com-
pute the renormalization constants using the Nf¼2þ1þ1

ensembles and study their quark mass dependence. This test
was performed on both the � ¼ 1:95 and the � ¼ 2:10
ensembles. In the upper panel of Fig. 4 we show results at
� ¼ 2:10 for both Nf ¼ 4 and Nf ¼ 2þ 1þ 1 ensembles

for the one-derivative Z factors in the RI0-MOM scheme. As
can be seen, we obtain compatible values for all four cases.
We also observe the same agreement for ZV and ZA also at
� ¼ 1:95. This can be understood by examining the quark
mass dependence of these renormalization constants. In
the lower panel of Fig. 4 we show, for the Nf ¼ 4 case,

the dependence of ZDV , ZDA on four light quark masses. The
values we find are consistent with each other. This explains
the fact that the results in the Nf ¼ 4 and Nf ¼ 2þ 1þ 1

cases are compatible. Furthermore, it makes any extrapola-
tion of Nf ¼ 4 results to the chiral limit straightforward.

We perform a perturbative subtraction of Oða2Þ terms
[43,45,46]. This subtracts the leading cutoff effects yielding,
in general, a weak dependence of the renormalization fac-
tors on ðapÞ2 for which the ðapÞ2 ! 0 limit can be reliably
taken, as can be seen in Figs. 4 and 5 for the two Nf ¼
2þ 1þ 1 ensembles.We also take the chiral limit, although
the quark mass dependence is negligible for the aforemen-
tioned operators.
The renormalization factors for the one-derivative

vector and axial-vector operators, Z
��
DV and Z

��
DA, fall into

different irreducible representations of the hypercubic
group, depending on the choice of the external indices,
�, �. Hence, we distinguish between Z��

DV ðZ��
DA Þ and

Z���
DV ðZ���

DA Þ. For the conversion factors from RI to MS
we use the results of Ref. [47] for the local vector and
axial-vector operators, while for the one-derivative

FIG. 3 (color online). Nucleon mass at three lattice spacings.
The solid lines are fits to Oðp3Þ (upper panel) and Oðp4Þ (lower
panel) HB�PT with explicit � degrees of freedom in the so-
called small scale expansion (SSE). The dotted lines denote the
error band. The physical point is shown with the asterisk.
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operators we use the expressions of Ref. [43]. Another
characteristic of these renormalization constants is that
they depend on the renormalization scale. Thus, they

need to be converted to the continuum MS scheme, and
for this we use a conversion factor computed in perturba-
tion theory to Oðg4Þ. They are also evolved perturbatively
to a reference scale, which is chosen to be ð2 GeVÞ2. The
results are shown in Fig. 5, both before subtracting the
perturbative Oða2Þ terms and after. Using the subtracted
data we find the values given in Table III.

These are the values that we use in this work to renor-
malize the lattice matrix elements. The numbers in the
parentheses correspond to the statistical error. Our full
results for the renormalization functions of the fermion
field, local and one-derivative bilinears along with the
systematic error analysis will appear in a separate
publication.

III. LATTICE RESULTS

In this section we present our results on the nucleon
electromagnetic form factors, GEðQ2Þ and GMðQ2Þ, and
the axial-vector form factors,GAðQ2Þ andGpðQ2Þ. We also

show the n ¼ 2 generalized form factors for the one-
derivative vector operator, A20ðQ2Þ, B20ðQ2Þ and C20ðQ2Þ,

0 0.01 0.02 0.03
µ

sea

1.05

1.1

1.15

1.2 Z
DV1

Z
DV2

Z
DA1

Z
DA2

FIG. 4 (color online). Upper panel: One-derivative renormal-
ization functions for � ¼ 2:10, a� ¼ 0:0015 using Nf ¼ 4

gauge configurations, where ZDV1ðZDA1Þ � Z
��
DV ðZ��

DA Þ and

ZDV2ðZDA2Þ � Z
���
DV ðZ���

DA Þ. Black circles are the unsubtracted

data, and the magenta diamonds the data after subtracting the
perturbativeOða2Þ terms. For comparison,we show the subtracted
data usingNf ¼ 2þ 1þ 1gauge configurations at the samevalue

of the quark mass and � (blue crosses). Lower panel: One-
derivative renormalization functions for � ¼ 1:95 using Nf ¼ 4

gauge configurations as a function of the twisted quark mass.
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A
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1.20
Z
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1

FIG. 5 (color online). Upper panel: ZA, ZV for � ¼ 1:95, and
a� ¼ 0:0055. Lower panel: Renormalization constants for one-
derivative operators for � ¼ 1:95 and a� ¼ 0:0055, where
ZDV1ðZDA1Þ � Z

��
DV ðZ��

DA Þ and ZDV2ðZDA2Þ � Z
���
DV ðZ���

DA Þ. The
lattice data are shown as black circles, and the data after the
Oða2Þ terms have been subtracted are shown as magenta dia-
monds. The solid diamond at ðapÞ2 ¼ 0 is the value obtained
after performing a linear extrapolation of the subtracted data.

TABLE III. Renormalization constants in the chiral limit at
� ¼ 1:95 and � ¼ 2:10 in the MS scheme at � ¼ 2 GeV.

� ¼ 1:95 � ¼ 2:10

ZV 0.625(2) 0.664(1)

ZA 0.757(3) 0.771(2)

Z
��
DV 1.019(4) 1.048(5)

Z
���
DV

1.053(11) 1.105(4)

Z
��
DA 1.086(3) 1.112(5)

Z���
DA

1.105(2) 1.119(6)
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and the one-derivative axial-vector operator, ~A20ðQ2Þ and
~B20ðQ2Þ. The numerical values are given in the tables in
Appendix A. The dependence of these quantities on the
momentum transfer square Q2, the lattice spacing, as well
as on the pion mass is examined. We also compare with
recent results from other collaborations.

As we already mentioned, most of the results are
obtained for isovector quantities. For the renormalized
nucleon matrix element of the operators with up to one
derivative, we thus consider

�u�f�D
$

�gu� �d�f�D
$

�gd;

�u�5�f�D
$

�gu� �d�5�f�D
$

�gd;

in the MS scheme at a scale � ¼ 2 GeV. Note that the
local vector and axial-vector operators are renormalization

scale independent; thus the conversion to theMS scheme is
irrelevant.

In order to study the spin content of the nucleon we
also compute the isoscalar matrix elements of the one-
derivative vector operator, as well as the isoscalar axial
charge assuming, in all cases, that the disconnected
contributions are negligible.

A. Nucleon form factors

In Fig. 6 we present our results for the axial charge
gA � GAð0Þ using Nf ¼ 2 and Nf ¼ 2þ 1þ 1 twisted

mass fermions. These are computed at different lattice
spacings ranging from a� 0:1 fm to a� 0:06 fm. As
can be seen, no sizable cutoff effects are observed.
Lattice data computed using different volumes are also
consistent down to pion masses of about 300 MeV, where

we have different volumes. In a nutshell, our results do not
indicate volume or cutoff effects larger than our current
statistical errors. A dedicated high statistics analysis using
the Nf ¼ 2þ 1þ 1 ensemble at m� ¼ 373 MeV has

shown that contributions from excited states are negligible
for gA [37,38]. In recent studies, the so-called summation
method that sums over the time slice t where the current is
inserted is used as an approach that better suppresses
excited state contributions [48]. Using this method to
analyze lattice results at near physical pion mass it was
demonstrated that, in fact, the value of gA decreases [7].
This decrease was attributed to finite temperature effects
[49], whereas for ensembles with large temporal extent the
value of gA was shown to increase in accordance with
Ref. [48]. Our main conclusion is that our lattice results
are in good agreement with other lattice computations over
the range of pion masses used in this work. It is also evident
that further investigation is needed to shed light on the
behavior of gA at near physical pion mass.
In Fig. 7 we compare our results to other recent lattice

QCD data obtained with different actions. We show results
obtained using domain wall fermions (DWF) [5], clover
fermions [50], a mixed action with 2þ 1 flavors of asqtad-
improved staggered sea and domain wall valence fermions
[51] referred to as a hybrid, and Nf ¼ 2þ 1 of tree-level

clover-improved Wilson fermions coupled to hypercubi-
cally nested stout smeared (HEX) gauge fields [7,49]. We
observe that all these lattice results are compatible. This
agreement corroborates the fact that cutoff effects are
negligible since these lattice data are obtained with differ-
ent discretized actions without being extrapolated to the

FIG. 6 (color online). Results for the nucleon axial charge with
(i) Nf ¼ 2 twisted mass fermions with a ¼ 0:089 fm (filled red

circles for L ¼ 2:1 fm and filled blue squares for L ¼ 2:8 fm),
a ¼ 0:070 fm (filled green triangles), and a ¼ 0:056 fm (open
star for L ¼ 2:7 fm and open square for L ¼ 1:8 fm) [3] and
(ii) Nf ¼ 2þ 1þ 1 twisted mass fermions with a ¼ 0:082 fm

(open circle) and a ¼ 0:064 fm (square with a cross). The
asterisk is the physical value as given by the PDG [21].

FIG. 7 (color online). The nucleon axial charge for twisted
mass fermions, Nf ¼ 2 (filled red circles) and Nf ¼ 2þ 1þ 1

(filled blue squares), as well as results using other lattice actions:
Filled (green) triangles correspond to a mixed action with 2þ 1
flavors of staggered sea and domain wall valence fermions [51],
crosses to Nf ¼ 2þ 1 domain wall fermions [5], open triangles

to Nf ¼ 2 clover fermions [50] and open (cyan) circles to

Nf ¼ 2þ 1 of tree-level clover-improved Wilson fermions

coupled to double HEX-smeared gauge fields [49].
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continuum limit. The recent result of Ref. [49] at almost
physical pion mass shows about 10% deviation from the
physical value of g

exp
A ¼ 1:267 [21]. This is a well-known

puzzle and various directions have been explored to iden-
tify the source of the discrepancy [37,38,52,53]. In Fig. 7
we also include the recent results obtained using Nf ¼ 2

clover fermions at three lattice spacings a ¼ 0:076 fm,
0.071 fm and 0.060 fm [50]. They include a result at almost
physical pion mass, which is clearly higher than the cor-
responding one obtained in Ref. [49]. As already remarked,
the latter was shown to even decrease if one uses the
summation method [7]. In Ref. [50] it is argued that
volume corrections are sizable and increase the value of
gA. We note that all lattice data shown in Fig. 7 are not
volume corrected. In order to assess which of these results
would suffer from large volume corrections, we show in
Fig. 8 gA as a function of Lm�. The data points at almost
physical pion mass are shown with the black symbols. The
result from Ref. [49] at Lm� ¼ 4:2 is lower than the one
from Ref. [50] at Lm� ¼ 2:74. Thus volume effects alone
may not account for the whole discrepancy, and therefore
there is still an open issue in the evaluation of gA.

Next, we study the dependence of the axial form factors
on the momentum transfer, Q2. In Fig. 9 we compare our
Nf ¼ 2þ 1þ 1 results forGAðQ2Þ andGpðQ2Þ as the pion
mass decreases from 373MeV to 213MeV. As can be seen,
the dependence on the pion mass is very weak for GAðQ2Þ
whereas for GpðQ2Þ a stronger dependence is observed, in
particular, at lowQ2. This is not surprising since GpðQ2Þ is
expected to have a pion-pole dependence that dominates its
Q2 dependence as Q2 ! 0. The solid line is the result of a
dipole fit to the experimental electroproduction data for
GAðQ2Þ. Assuming pion-pole dominance we can deduce
from the fit to the experimental data on GAðQ2Þ the

expected behavior for GpðQ2Þ, shown in Fig. 9. As can

be seen, both quantities have a smaller slope with respect to
Q2 than what is extracted from experiment. Such a behav-
ior is common to all the nucleon form factors and it
remains to be further investigated if reducing the pion
mass even more will resolve this discrepancy. The Q2

dependence of the lattice QCD data for GAðQ2Þ can be
well parametrized by dipole Ansatz of the form

GAðQ2Þ ¼ gA
ð1þQ2=m2

AÞ2
; (3.1)

as it was done for the experimental results. Likewise,
assuming pion-pole dominance we fit GpðQ2Þ to the form

GpðQ2Þ ¼ GAðQ2ÞGpð0Þ
ðQ2 þm2

pÞ
: (3.2)

In both fits we take into account lattice data withQ2 up to a
maximum value of ð1:5Þ2 GeV2. The values of the parame-
ter mA extracted from the fit for the two ensembles are

� ¼ 1:95: mA ¼ 1:60ð5Þ GeV;
� ¼ 2:10: mA ¼ 1:48ð12Þ GeV:

These are higher than the experimental value of mexp
A ¼

1:069 GeV [54] extracted from the best dipole parametri-
zation to the electroproduction data. This deviation
between lattice and experimental data reflects the smaller
slope in the lattice QCD data. Another observation is that
the fits for GpðQ2Þ are strongly dependent on the lowest

values of Q2 taken in the fit due to the strong Q2

dependence of GpðQ2Þ at low Q2.

FIG. 8 (color online). The nucleon axial charge for twisted
mass fermions (Nf ¼ 2 and Nf ¼ 2þ 1þ 1), as well as results

using other lattice actions versus Lm�. Black symbols denote
results at almost physical pion mass obtained using Nf ¼ 2 [50]

and Nf ¼ 2þ 1 [49] clover fermions. The rest of the notation is

the same as that in Fig. 7.
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FIG. 9 (color online). Comparison of the Nf ¼ 2þ 1þ 1
twisted mass data on GAðQ2Þ (upper) and GpðQ2Þ (lower) for
the two different pion masses considered. Filled blue squares
correspond to � ¼ 2:10 and m� ¼ 213 MeV, while filled red
circles correspond to � ¼ 1:95 andm� ¼ 373 MeV. The dashed
lines are the dipole fits on the lattice data, while the solid green
line is the dipole fit of experimental data for GAðQ2Þ [54] in
combination with pion-pole dominance for GpðQ2Þ.
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In Figs. 10 and 11 we compare results using the two
Nf ¼ 2þ 1þ 1 ensembles with those obtained with

Nf ¼ 2 ensembles at similar pion masses. We do not

observe large deviations between the Nf ¼ 2 and Nf ¼
2þ 1þ 1 results, showing that strange and charm quark
effects are small, as expected.

It is interesting to compare our TMF results to those
obtained using different fermion discretization schemes.
We collect recent lattice QCD results in Figs. 12 and 13 at
similar pion masses. As can be seen, in the case of GAðQ2Þ
there is agreement of our results with those obtained using

DWF and the hybrid approach. For GpðQ2Þ hybrid results

obtained on a larger volume are higher at small Q2 values.
This is an indication that volume effects are larger for
quantities like GpðQ2Þ for which pion cloud effects are

expected to be particularly large at small Q2.
We next discuss the results obtained for the isovector

electromagnetic form factors, GEðQ2Þ and GMðQ2Þ. In
Fig. 14 we compare our Nf ¼ 2þ 1þ 1 results as the

pion mass decreases from 373 MeV to 213 MeV. As can
be seen, the values for both quantities decrease towards the
experimental values shown by the solid line, which is
Kelly’s parametrization to the experimental data [55]. In
particular, for GMðQ2Þ lattice results at m� ¼ 213 MeV
become consistent with the experimental results. In order
to extract the value ofGMð0Þ, we need to extrapolate lattice
results at finiteQ2. We parametrized both form factors by a
dipole form
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FIG. 10 (color online). The Q2 dependence of the form factors
GA and Gp for (i) Nf ¼ 2 at m� ¼ 377 MeV, a ¼ 0:089 fm

(filled red circles) and (ii) Nf ¼ 2þ 1þ 1 at m� ¼ 373 MeV,

a ¼ 0:082 fm. The solid line in the upper plot shows the result-
ing dipole fit to the experimental data on GAðQ2Þ [54]. Assuming
a pion-pole dependence for GpðQ2Þ and using the fit on GAðQ2Þ
shown in the upper panel produces the solid line shown in the
lower panel for GpðQ2Þ.
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FIG. 11 (color online). The Q2 dependence of the form factors
GA (upper) and Gp (lower) for Nf ¼ 2þ 1þ 1 twisted mass

fermions at m� ¼ 213 MeV, a ¼ 0:064 fm (filled blue squares)
and Nf ¼ 2 twisted mass fermions at m� ¼ 262 MeV and a ¼
0:056 fm (filled red circles). The rest of the notation is the same
as that in Fig. 10.

FIG. 12 (color online). Q2 dependence of GAðQ2Þ for Nf ¼
2þ 1þ 1 at m� ¼ 373 MeV (filled blue squares) and the Nf ¼
2 [3] at m� ¼ 298 MeV (filled red circles) twisted mass data on
a lattice with spatial length L ¼ 2:8 fm and similar lattice
spacing. We also show results with Nf ¼ 2þ 1 DWF at m� ¼
329 MeV, L ¼ 2:7 fm (crosses) [5] and with a hybrid action
with Nf ¼ 2þ 1 staggered sea and DWF atm� ¼ 356 MeV and

L ¼ 3:5 fm (open orange circles) [51].

FIG. 13 (color online). The Q2 dependence of GpðQ2Þ. The
notation is the same as that in Fig. 12.
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GEðQ2Þ ¼ 1

ð1þQ2=m2
EÞ2

; GMðQ2Þ ¼ GMð0Þ
ð1þQ2=m2

MÞ2
:

(3.3)

The values of GMð0Þ extracted are shown in Fig. 14, as are
the resulting fits with the dashed lines. The overall trend
of the lattice QCD data clearly shows that as the pion
mass decreases they approach the experimental values.
However, even at m� ¼ 213 MeV the value of GMð0Þ,
which determines the isovector anomalous magnetic
moment, is still underestimated. In Table IV we tabulate
the resulting fit parameters mE, GMð0Þ and mM for the two
Nf ¼ 2þ 1þ 1 ensembles extracted from the dipole fits

of Eqs. (3.3).
In Fig. 15 we show the Q2 dependence of GEðQ2Þ and

GMðQ2Þ at � ¼ 2:10 and m� ¼ 213 MeV, comparing it to
the smallest available pion mass of 262 MeV obtained
using Nf ¼ 2 ensembles. Once again we do not observe

any sizable effects due to the strange and charm quarks in
the sea.

It is useful to compare TMF results to those obtained
within different fermion discretization schemes. In particu-
lar, we compare in Figs. 16 and 17, with results obtained
using Nf ¼ 2þ 1 DWF [4], Nf ¼ 2 Wilson improved

clover fermions [52] and using the hybrid action [51] for a
pion mass of about 300 MeV. We see a nice agreement
among all lattice results for GEðQ2Þ, confirming that cutoff

effects are small for these actions. In the case of GMðQ2Þ
there is also an overall agreement except in the case of the
Nf ¼ 2 clover results. These results are somewhat lower

and are more in agreement with our results at m� ¼
213 MeV. The reason for this is unclear and might be due
to limited statistics as these data carry the largest errors.
Having fitted the electromagnetic form factors we can

extract the isovector anomalous magnetic moment and root
mean square (r.m.s.) radii. The anomalous magnetic mo-
ment is given by the Pauli form factor F2ð0Þ, and the slope
of F1 at Q2 ¼ 0 determines the transverse size of the
hadron, hr2?i ¼ �4dF1=dQ

2jQ2¼0. In the nonrelativistic
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FIG. 14 (color online). Comparison of the Nf ¼ 2þ 1þ 1
twisted mass data on GEðQ2Þ (upper) and GMðQ2Þ (lower) for
the two different pion masses considered. The solid lines are
Kelly’s parametrization of the experimental data [55], whereas
the dashed lines are dipole fits to the lattice QCD data.

TABLE IV. Results on the nucleon electric and magnetic mass
extracted by fitting to the dipole form of Eq. (3.3).

� mE (GeV) GMð0Þ mM (GeV)

1.95 1.17(32) 3.93(12) 1.30(08)

2.10 0.86(07) 3.86(34) 0.99(15)

0

0.2

0.4

0.6

0.8

1

G
 E

 

TMF (Nf =2)        : 262MeV
TMF (Nf =2+1+1): 213MeV
exp

0 0.25 0.5 0.75 1 1.25 1.5

Q 2  (GeV 2)

0

1

2

3

4

G
 M

 TMF (Nf =2)        : 262MeV
TMF (Nf =2+1+1): 213MeV
exp

FIG. 15 (color online). The Q2 dependence of GEðQ2Þ (upper)
and GMðQ2Þ (lower) for Nf ¼ 2þ 1þ 1 TMF at m� ¼
213 MeV (filled blue squares) and Nf ¼ 2 TMF at m� ¼
262 MeV (filled red circles).

FIG. 16 (color online). The Q2 dependence of GEðQ2Þ. We
show results for Nf ¼ 2þ 1þ 1 at m� ¼ 373 MeV (filled blue

squares) and Nf ¼ 2 [1] at m� ¼ 298 MeV (filled red circles)

TMF data on a lattice with spatial length L ¼ 2:8 fm and similar
lattice spacing. We also show results with Nf ¼ 2þ 1 DWF at

m� ¼ 297 MeV, L ¼ 2:7 fm (crosses) [4], with a hybrid action
with Nf ¼ 2þ 1 staggered sea and DWF atm� ¼ 293 MeV and

L ¼ 2:5 fm (open orange circles) [51], and Nf ¼ 2 clover at

m� ¼ 290 MeV and L ¼ 3:4 fm (asterisks) [52]. The solid line
is Kelly’s parametrization of the experimental data [55] from a
number of experiments as given in Ref. [55].
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limit the r.m.s. radius is related to the slope of the form
factor at zero momentum transfer. Therefore the r.m.s. radii
can be obtained from the values of the dipole masses by
using

hr2i i ¼ � 6

FiðQ2Þ
dFiðQ2Þ
dQ2

��������Q2¼0
¼ 12

m2
i

; i¼ 1;2: (3.4)

The electric and magnetic radii are given by hr2E;Mi ¼
12=m2

E;M and can be directly evaluated from the values

of the parameters listed in Table IV. In Fig. 18 we present
our results on the anomalous magnetic moment, and Dirac
and Pauli r.m.s. radii. As can be seen, the new results at
m� ¼ 213 MeV, although they are still lower than the
experimental value, show an increase towards that value.
In Ref. [7] an analysis of the results using the summation
method at m� ¼ 147 MeV with Nf ¼ 2þ 1 clover fermi-

ons was carried out. It was shown that the value of these
three quantities increases to bring agreement with the
experimental value. This is an encouraging result that
needs to be confirmed.

B. Nucleon generalized form factors
with one-derivative operators

In this section we present results on the nucleon matrix
elements of the isovector one-derivative operators defined
in Eq. (3.1). The full body of our results are collected in
Tables VII and VIII in Appendix A. Like gA, A20ðQ2 ¼ 0Þ
and ~A20ðQ2 ¼ 0Þ can be extracted directly from the corre-
sponding matrix element at Q2 ¼ 0. On the other hand,
B20ðQ2 ¼ 0Þ, C20ðQ2 ¼ 0Þ and ~B20ðQ2 ¼ 0Þ, like GM and
Gp, cannot be extracted at Q

2 ¼ 0. Therefore one needs to

extrapolate lattice data at Q2 � 0 by performing a fit.
In Fig. 19 we compare our lattice data of the unpolarized

and polarized isovector moments obtained for Nf ¼ 2 [1]

TMF for different lattice spacings and volumes to theNf ¼
2þ 1þ 1 TMF results of this work. As can be seen, there
are no detectable cutoff effects for the lattice spacings
considered here, nor volume dependence, at least for

pion masses up to about 300 MeV where different volumes
were analyzed. Also, there is consistency among results
obtained using Nf ¼ 2 and Nf ¼ 2þ 1þ 1 gauge con-

figurations indicating that strange and charm quark effects
are small. We would like to point out that the renormal-
ization constant for the vector one-derivative operator is
larger by about 2% than the one used in Ref. [38] since in

FIG. 17 (color online). The Q2 dependence of GMðQ2Þ. The
notation is the same as that in Fig. 16.

FIG. 18 (color online). Twisted mass fermion results with
Nf ¼ 2 [3] and with Nf ¼ 2þ 1þ 1, for the isovector anoma-

lous magnetic moment, 
p�n in Bohr magnetons (upper), Dirac
r.m.s. radius (middle) and Pauli r.m.s. radius (lower). The nota-
tion is the same as that in Fig. 6.
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converting to MS we used the 2-loop conversion factor
instead of the 3-loop result, thus increasing the value of
hxiu�d. As in the case of the nucleon axial charge, a number
of studies were undertaken to examine the role of excited
states in the extraction of hxiu�d. A high statistics analysis
carried out with twisted mass fermions at m� ¼ 373 MeV
has shown that excited state contamination accounted for a
decrease of about 10% in the value of hxiu�d as compared
to the value extracted using sink-source separation of about
1 fm [37,38]. The most noticeable behavior regarding these
TMF results is that the values obtained at m� ¼ 213 MeV
for both hxiu�d and hxi�u��d approach the physical value.
We would like to remark that the phenomenological value
of hxiu�d extracted from different analyses [56–61] shows
a spread, which, however, is significantly smaller than the

discrepancy as compared to the deviation shown by lattice
data for pion masses higher than the physical point. The
same applies for hxi�u��d [62,63].

Recent results on A20 and ~A20 from a number of groups
using different discretization schemes are shown in Fig. 20.
We limit ourselves to results extracted from fitting to the
ratio given in Eq. (2.17), taking a source-sink separation of
1 fm to 1.2 fm. Once more, there is an overall agreement
among these lattice data, indicating that cutoff effects are
small for lattice spacings & 0:1 fm, for the improved
actions used. The decrease seen using TMF at m� ¼
213 MeV is corroborated by other recent results at near
physical pion masses: for hxiu�d results from Ref. [6] using
clover-improved fermions at m� ¼ 157 MeV and Lm� ¼
2:74, as well as from Ref. [49] using Nf ¼ 2þ 1 flavors of

tree-level clover-improved Wilson fermions coupled to

FIG. 19 (color online). Results for hxiu�d (upper) and hxi�u��d

(lower) using Nf ¼ 2 and Nf ¼ 2þ 1þ 1 twisted mass fermi-

ons as a function of the pion mass. We show results for
(i) Nf ¼ 2 twisted mass fermions with a ¼ 0:089 fm (filled

red circles for L ¼ 2:1 fm and filled blue squares for L ¼
2:8 fm), a ¼ 0:070 fm (filled green triangles), and a ¼
0:056 fm (open stars for L ¼ 2:7 fm and open square for
L ¼ 1:8 fm) and (ii) Nf ¼ 2þ 1þ 1 twisted mass fermions

with a ¼ 0:0820 fm (open circle) and a ¼ 0:0657 fm (square
with a cross). The physical point, shown by the asterisk, is from
Ref. [59] for the unpolarized and from Refs. [62,63] for the
polarized first moment.

FIG. 20 (color online). Results for hxiu�d (upper) and hxi�u��d

(lower) obtained in this work are shown with the red filled circles
for Nf ¼ 2 and with the blue filled squares for Nf ¼ 2þ 1þ 1.

We compare with (i) Nf ¼ 2þ 1 DWF for a ¼ 0:114 fm [72],

(ii) Nf ¼ 2þ 1 using DWF for the valence quarks on staggered

sea [51] with a ¼ 0:124 fm, and (iii) Nf ¼ 2 clover with a ¼
0:075 fm [73]. For hxiu�d we also show recent results using
Nf ¼ 2 clover with a ¼ 0:071 fm [6] and Nf ¼ 2þ 1 of

tree-level clover-improved Wilson fermions coupled to double
HEX-smeared gauge fields with a ¼ 0:116 fm [7].
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double HEX-smeared gauge fields at m� ¼ 149 MeV and
Lm� ¼ 4:2, also decrease towards the physical value.
Furthermore, for the latter case, three sink-source separa-
tions up to 1.4 fm were utilized to apply the summation
method, reducing the value shown in Fig. 20 further to
bring it into agreement with the experimental one [7]. Note
that this is opposite to what was found for gA where its
value decreased further away from the experimental value.
The agreement between the values found in Refs. [6,49],
despite the different volumes, indicates that the volume
dependence of this quantity is small, again different from
what was claimed in Ref. [50] for gA. In Ref. [49] it was
demonstrated that contributions from excited states in-
crease as the pion mass decreases towards its physical
value, indicating that excited state contamination may
explain the discrepancy between lattice results and the
experimental value. Further studies of excited state con-
tamination at near physical pion mass will be essential in
order to establish this conclusion.

The Q2 dependence of A20ðQ2Þ and ~A20ðQ2Þ is shown in
Fig. 21 for our two Nf ¼ 2þ 1þ 1 ensembles and for the

Nf ¼ 2 ensemble with the smallest available mass, namely

262 MeV. Since strange and charm quark effects have been
shown to be small, one can study the dependence on the
pion mass by comparing with results obtained using
Nf ¼ 2 TMF. As the pion mass decreases from 373 MeV

to 262 MeV there is no significant change in the values of

A20ðQ2Þ and ~A20ðQ2Þ over the whole Q2 range. Reducing
the pion mass further to 213 MeV leads to a larger decrease

in the values of both A20ðQ2Þ and ~A20ðQ2Þ, indicating that
near the physical regime the pion mass dependence be-
comes stronger. Such a pion mass dependence is what one
would expect if the lattice QCD data atQ2 ¼ 0 are to agree
with the experimental value. In Fig. 22 we compare our
results using TMF to hybrid results and, for A20ðQ2Þ, we

also include Nf ¼ 2 clover at similar pion masses. There is

an overall agreement between clover and TMF for A20ðQ2Þ,
whereas the hybrid data are somewhat lower. The fact that
they are renormalized perturbatively might explain their
lower values.
Before closing this section we present in Fig. 23 results

for B20ðQ2Þ, C20ðQ2Þ, ~B20ðQ2Þ for the two Nf ¼ 2þ 1þ 1

ensembles. None of these GFFs can be extracted atQ2 ¼ 0
directly from the matrix element and therefore we must
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FIG. 21 (color online). The Q2 dependence of A20ðQ2Þ (upper)
and ~A20ðQ2Þ (lower) for Nf ¼ 2 with a ¼ 0:056 fm and m� ¼
262 MeV (filled green diamonds), and Nf ¼ 2þ 1þ 1 with

(i) a ¼ 0:064 fm and m� ¼ 213 MeV (filled blue squares) and
(ii) a ¼ 0:082 fm and m� ¼ 373 MeV (filled red circles).
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FIG. 22 (color online). The Q2 dependence of A20ðQ2Þ (upper)
and ~A20ðQ2Þ (lower) shown for (i) Nf ¼ 2 twisted mass fermions

for a ¼ 0:089 fm, m� ¼ 377 MeV (filled red circles) [1],
(ii) Nf ¼ 2þ 1þ 1 twisted mass fermions (this work) for a ¼
0:082 fm and m� ¼ 373 MeV (iii) Nf ¼ 2 clover fermions for

a� 0:08 fm and m� � 350 MeV (open cyan diamonds) [74],
and (iv) Nf ¼ 2þ 1 with DWF valence on a staggered sea for

a ¼ 0:124 fm and m� ¼ 356 MeV (open orange circles) [51].
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FIG. 23 (color online). The Q2 dependence of B20ðQ2Þ,
C20ðQ2Þ and ~B20ðQ2Þ for Nf ¼ 2þ 1þ 1 computed at � ¼
1:95 (m� ¼ 373 MeV) and � ¼ 2:10 (m� ¼ 213 MeV). The
dashed lines show the linear fits to B20ðQ2Þ, C20ðQ2Þ and
~B20ðQ2Þ to extract the value at Q2 ¼ 0 shown here.
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extrapolate them using an Ansatz to fit the Q2 dependence.
We performed two types of fits: a linear and a dipole fit.
Note that for small Q2 the two are equivalent. It was
generally found that a linear fit describes well the data
with smaller errors on the fit parameters. We therefore
use the fitted values extracted from the linear fit summa-
rized in Table V. C20ðQ2Þ is consistent with zero for all
values of Q2.

IV. PROTON SPIN

Howmuch of the proton spin is carried by the quarks is a
question that has been under study ever since the European
Muon Collaboration (EMC) claimed that the quarks car-
ried only a small fraction of the proton spin [64]. This
became known as the ‘‘proton spin crisis.’’ It was proposed
that gluons in a polarized proton would carry a fraction of
the spin, which however would be unnaturally large if it
were to resolve the EMC spin crisis. It is now understood
that the resolution of this puzzle requires one to take into
account the nonperturbative structure of the proton [65].
In order to use our lattice results to obtain information on
the spin content of the nucleon, we need to evaluate,
besides the isovector moments, the isoscalar moments
Auþd
20 and Buþd

20 since the total angular momentum of a

quark in the nucleon is given by

Jq ¼ 1

2
ðAq

20ð0Þ þ Bq
20ð0ÞÞ: (4.1)

As already discussed, the total angular momentum Jq can
be further decomposed into its orbital angular momentum
Lq and its spin component ��q as

Jq ¼ 1

2
��q þ Lq: (4.2)

The spin carried by the u and d quarks is determined using

��uþd ¼ ~Auþd
10 , and therefore we need the isoscalar axial

charge. The isoscalar quantities take contributions from the
disconnected diagram, which are notoriously difficult to
calculate and are neglected in most current evaluations of
GFFs. These contributions are currently being computed
using improved stochastic techniques [22,66]. Under the
assumption that these are small we may extract informa-
tion on the fraction of the nucleon spin carried by quarks.

In Fig. 24 we show our results for the isoscalar
GAðQ2Þuþd, A20ðQ2Þuþd, B20ðQ2Þuþd and C20ðQ2Þuþd for
the two Nf ¼ 2þ 1þ 1 ensembles analyzed in this

work. It was shown using the Nf ¼ 2 ensembles at three

lattice spacings smaller than 0.1 fm [1] that cutoff effects
are small. We expect a similar behavior for our Nf ¼ 2þ
1þ 1 ensembles. Therefore, we perform a chiral extrapo-
lation directly using all our lattice data for the Nf ¼ 2 and

Nf ¼ 2þ 1þ 1 ensembles. Having both isoscalar and

isovector quantities we can extract the angular momentum
Ju and Jd carried by the u and d quarks. In order to extract
these quantities we need to know the value of B20 at
Q2¼0. As explained already, one has to extrapolate the
lattice results using an Ansatz for the Q2 dependence to
extract B20 at Q2 ¼ 0, and two Ansätze were considered
for the Q2 dependence, a dipole and a linear form. For the
linear fit we use two fitting ranges: one up to Q2¼
0:25GeV2 and the other up to Q2 ¼ 4 GeV2. Thus the
extrapolation introduces model dependence in the extrac-
tion of the quark spin Jq. The values of B20 extracted using
these three Ansätze are consistent, with the dipole fit result-
ing in parameters that carry large errors. In extracting the
angular momentum we thus use the data extracted using the
extended range linear fit, which are given in Table V.
We first compare in Fig. 25 our results for the u- and

d-quark angular momentum Jq, spin ��q and orbital
angular momentum Lq to those obtained using the hybrid
action of Ref. [51]. As can be seen, the lattice data are in
agreement within our statistical errors, indicating that lat-
tice artifacts are smaller than the current statistical errors,
also for these quantities. In order to get an approximate
value for these observables at the physical point we per-
form a chiral extrapolation using heavy baryon chiral
perturbation theory (HB�PT). Combining the expressions
for A20 and B20 [67,68] in the isoscalar and isovector cases,
we obtain the following form for the angular momentum:

Jq ¼ aq0
m2

�

ð4�f�Þ2
ln
m2

�

�2
þ aq1m

2
� þ aq2 ; (4.3)

TABLE V. Results on B20ðQ2 ¼ 0Þ, C20ðQ2 ¼ 0Þ and
~B20ðQ2 ¼ 0Þ by fitting to a linear Q2 dependence.

� B20ð0Þ (GeV) C20ð0Þ ~B20ð0Þ
1.95 0.344(19) �0:009ð09Þ 0.648(71)

2.10 0.205(62) 0.016(34) 0.518(251)
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FIG. 24 (color online). The Q2 dependence of the isoscalar
GAðQ2Þ, A20ðQ2Þ and B20ðQ2Þ for Nf ¼ 2þ 1þ 1 computed at

� ¼ 1:95 (m� ¼ 373 MeV) and � ¼ 2:10 (m� ¼ 213 MeV).

NUCLEON FORM FACTORS AND MOMENTS OF . . . PHYSICAL REVIEW D 88, 014509 (2013)

014509-15



and we take �2 ¼ 1 GeV2. We also carry out a chiral fit
using Oðp2Þ covariant baryon chiral perturbation theory
(CB�PT) [69]. All the expressions are collected in
Appendix B for completeness. As noted, these chiral ex-
trapolations are used to give an indicative idea of what one
might obtain since their range of validity may require using
pion masses closer to the physical point.

In order to correctly estimate the errors both on the data
points and on the error bands, we apply an extended version
of the standard jackknife error procedure known as super-
jackknife analysis [51]. This generalized method is
applicable for analyzing data computed on several gauge
ensembles. This is needed for carrying out the chiral ex-
trapolations for the angular momentum Jq, orbital angular
momentum Lq and spin ��q. Although there is no

correlation among data sets from different gauge ensem-
bles, the data within each ensemble are correlated. This
analysis method allows us to consider a different number of
lattice QCD measurements for each ensemble, taking into
account correlations within each ensemble correctly. It
should be apparent that the superjackknife reduces to the
standard jackknife analysis in the case of a single ensemble.
In Fig. 26 we show the chiral fits for Jq. In the upper

panel we show the chiral extrapolation using CB�PT and
in the lower the extrapolation using HB�PT. Both have
the same qualitative behavior, yielding a much smaller
contribution to the angular momentum from the d quark
than that from the u quarks. In the plot we also show the
band of allowed values if the fit were performed on data

FIG. 25 (color online). Comparison of TMF results (filled
symbols) to those using a hybrid action [51] (open symbols).
The upper panel shows the angular momenta Ju and Jd for u and
d quarks, respectively (blue filled squares for Nf ¼ 2þ 1þ 1

and filled red circles for Nf ¼ 2). The lower panel shows the

quark spin (same symbols as for Jq) and the orbital angular
momentum (filled green triangles for Nf ¼ 2 and filled magenta

diamonds for Nf ¼ 2þ 1þ 1). The errors are determined by

carrying out a superjackknife analysis described in Ref. [51].
The experimental values of ��u;d are shown by the asterisks and
are taken from the HERMES 2007 analysis [71].

FIG. 26 (color online). Chiral extrapolation using CB�PT
(upper) and HB�PT (lower) for the angular momentum carried
by the u and d quarks. The red band is the chiral fit using the data
for B20ðQ2 ¼ 0Þ obtained by a linear extrapolation of B20ðQ2Þ
using Q2 values up to Q2 ¼ 4 GeV2, whereas the green band is
the fit using values of B20ð0Þ extracted from a linear extrapola-
tion of B20ðQ2Þ using Q2 values up to �0:25 GeV2. The data
shown in the plot are obtained from the extended linear Q2

extrapolation. Filled red circles are data for Nf ¼ 2 at � ¼ 3:9,

filled green triangles for Nf ¼ 2 at � ¼ 4:05, filled magenta

diamonds for Nf ¼ 2 at � ¼ 4:2, filled light blue inverted

triangle for Nf ¼ 2þ 1þ 1 at � ¼ 1:95 and filled blue square

for Nf ¼ 2þ 1þ 1 at � ¼ 2:10.
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that used the Q2 ¼ 0 extrapolated values of B20 from the
limited range linear fit. As can be seen, the two bands are
consistent. Had we used a dipole Ansatz for the Q2 ¼ 0
extrapolation, the error band would also be consistent but
much larger, especially for smaller pion masses, where

there are no lattice data. Therefore, for the rest of the
discussion we only show the extrapolation bands obtained
using the limited and fullQ2 range linear fits. These results
are in qualitative agreement with the chiral extrapolations
using the data obtained with the hybrid action [51].
In Fig. 27 we show separately the orbital angular mo-

mentum and spin carried by the u and d quarks. The total
orbital angular momentum carried by the quarks tends to
be small negative values as we approach the physical point.
This is a crucial result and it would be important to perform
a calculation at lower pion mass to confirm that this trend
towards negative values remains [70]. After chiral extrapo-
lation, the value obtained at the physical point is consistent
with zero, in agreement with the result by Lattice Hadron
Physics Collaboration (LHPC). We summarize the values
for the angular momentum, orbital angular momentum and
spin in the proton at the smallest pion mass, namely at
m� ¼ 213 MeV, in Table VI. The pion mass dependence
of ��u and ��d is weak, as can be seen in Fig. 25, and if
one assumes that this continues up to the physical pion
mass, then ��u agrees with the experimental value
whereas ��d is less negative. As already pointed out,
results closer to the physical pion mass will be essential
to resolve such discrepancies. In addition, the computation
of the disconnected diagrams will eliminate the remaining
systematic error and will enable us to have final results on
the spin carried by the quarks and, consequently, on the
gluon contribution to the nucleon spin.

V. CONCLUSIONS

We have performed an analysis on the generalized form
factors GEðQ2Þ, GMðQ2Þ, GAðQ2Þ, GpðQ2Þ, A20ðQ2Þ,
B20ðQ2Þ, C20ðQ2Þ, ~A20ðQ2Þ and ~B20ðQ2Þ, extracted from
the nucleon matrix elements of the local and one-derivative
vector and axial-vector operators using Nf ¼ 2þ 1þ 1

flavors of twisted mass fermions. Our results are

FIG. 27 (color online). Chiral extrapolation using HB�PT. The
uppergraphshows the spin andorbitalangularmomentacarriedbyu
and d quarks, whereas the middle and lower graphs show the spin
and orbital angular momenta carried separately by the u and d
quarks.Theerrors are determined througha superjackknifeanalysis.
The physical points, shown by the asterisks, are from the HERMES
2007 analysis [71]. The notation is the same as that in Fig. 26.

TABLE VI. Values of nucleon spin observables at m� ¼
213 MeV, the smallest pion mass available in our LQCD simu-
lations, and from experiment [71]. The errors on the LQCD
values are only statistical.

m� ¼ 213 MeV Experiment

Ju�d 0.217(32)

Juþd 0.211(30)

Ju 0.214(27)

Jd �0:003ð17Þ
��u�d=2 0.582(31) 0.634(2)

��uþd=2 0.303(26) 0.208(9)

��u=2 0.443(24) 0.421(6)

��d=2 �0:140ð16Þ �0:214ð6Þ
Lu�d �0:365ð45Þ
Luþd �0:092ð41Þ
Lu �0:229ð30Þ
Ld 0.137(30)
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nonperturbatively renormalized, and they are presented in

the MS scheme at a scale of 2 GeV. The comparison of the
results using Nf ¼ 2 and Nf ¼ 2þ 1þ 1 twisted mass

fermions with the results obtained using other discretizations
shows an overall agreement for pion masses down to about
200 MeV. The compatibility of Nf ¼ 2 data with those

including a dynamical strange and a charm quark is an
indication that any systematic effect of strange and charm
sea quarks on these quantities for which disconnected con-
tributions were neglected is small. The twisted mass fermion
results on the axial nucleon charge remain smaller than the
experimental value.The recent results usingNf ¼ 2 [50] and

Nf ¼ 2þ 1 [7] clover-improved fermions near the physical

pion mass are somewhat in conflict with each other and hard
to interpret in a consistent way. Therefore, further investiga-
tion is required to resolve the issue. For the unpolarized
isovector momentum fraction lattice results show a decrease
as we approach the physical pion mass, with indications of
excited state contamination that need further investigation.

We also analyze the corresponding isoscalar quantities
using our lattice data directly. Of particular interest here is
to extract results that shed light on the spin content of the
nucleon. Assuming that the disconnected contributions to
the isoscalar quantities are small, we can extract the spin
carried by the quarks in the nucleon. For the chiral extrap-
olations of these quantities we use HB�PT and CB�PT
theory applied to all our Nf ¼ 2 and Nf ¼ 2þ 1þ 1 data.

We find that the spin carried by the d quark is almost
zero whereas the u quarks carry about 50% of the
nucleon spin. This result is consistent with other lattice
calculations [51].
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APPENDIX A: NUMERICAL RESULTS FOR THE ISOVECTOR SECTOR

TABLE VII. Results on the isovector GE, GM, GA and Gp and isoscalar GIS
A form factors at � ¼ 1:95 (323 � 64) and � ¼ 2:10

(483 � 96). GIS
A ð0Þ is needed to extract the spin carried by quarks in the nucleon.

m� (GeV) (no. configs.) ðQÞ2 GE GM GA Gp GIS
A

� ¼ 1:95, 323 � 64
0.373 (950) 0.0 1.000(1) 3.930(117) 1.141(18) 18.211(9.209) 0.599(15)

0.192 0.734(6) 2.979(61) 0.995(14) 9.462(399) 0.514(12)

0.372 0.570(7) 2.355(46) 0.872(12) 6.116(226) 0.460(11)

0.542(1) 0.469(10) 1.937(47) 0.775(14) 4.512(209) 0.423(14)

0.704(1) 0.392(12) 1.676(57) 0.714(21) 3.117(208) 0.370(17)

0.859(2) 0.331(11) 1.405(46) 0.642(18) 2.591(134) 0.350(15)

1.007(2) 0.288(13) 1.250(53) 0.589(21) 2.134(129) 0.340(17)

1.287(3) 0.208(20) 0.950(79) 0.480(39) 1.441(182) 0.273(30)

1.420(4) 0.185(20) 0.865(85) 0.450(41) 1.249(163) 0.273(29)

� ¼ 2:10, 483 � 96
0.213 (900) 0.0 1.006(6) 3.855(342) 1.164(62) 14.880(11.790) 0.607(52)

0.147 0.722(21) 2.849(198) 1.034(47) 10.454(1.445) 0.481(42)

0.284 0.565(23) 2.347(142) 0.909(42) 6.317(783) 0.410(40)

0.414(1) 0.430(30) 1.950(153) 0.850(52) 5.227(699) 0.390(49)

0.537(1) 0.444(41) 1.622(170) 0.690(68) 2.466(723) 0.418(66)

0.655(2) 0.318(29) 1.338(120) 0.689(53) 2.628(395) 0.371(49)

0.768(3) 0.266(32) 1.291(136) 0.707(71) 2.763(481) 0.367(64)

0.980(4) 0.218(52) 1.104(237) 0.558(129) 2.466(701) 0.267(106)

1.081(5) 0.186(44) 0.686(164) 0.437(110) 1.714(541) 0.246(99)
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In Tables VII and VIII we tabulate our results for the isovector quantities which were presented in the main part of the

paper, that is, GE, GM, GA, Gp, A20, B20, ~A20, and ~B20. For completeness, we include the isoscalar quantities GIS
A , AIS

20, and

BIS
20, which are required in the extraction of the orbital angular momentum and spin component of the nucleon.

APPENDIX B: EXPRESSIONS FOR THE CHIRAL EXTRAPOLATION OF THE QUARK SPIN AND
ANGULAR MOMENTUM

In this appendix we collect the expression used to extrapolate our lattice data for the quark spin to the physical point.
Throughout, we use �2 ¼ 1 GeV2, f� ¼ 0:0924 GeV and gA ¼ 1:267.

In HB�PT the expressions for A20ð0Þ and B20ð0Þ for the isovector combination are given by

AI¼1
20 ð0Þ ¼ AI¼1ð0Þ

20

�
1� m2

�

ð4�f�Þ2
�
ð3g2A þ 1Þ lnm

2
�

�2
þ 2g2A

��
þAI¼1ð2;mÞ

20 m2
�; (B1)

BI¼1
20 ð0Þ ¼ BI¼1ð0Þ

20

�
1� m2

�

ð4�f�Þ2
�
ð2g2A þ 1Þ lnm

2
�

�2
þ 2g2A

��
þAI¼1ð0Þ

20

m2
�g

2
A

ð4�f�Þ2
ln
m2

�

�2
þBI¼1ð2;mÞ

20 m2
� (B2)

and for the isoscalar by

AI¼0
20 ð0Þ ¼ AI¼0ð0Þ

20 þ AI¼0ð2;mÞ
20 m2

�; (B3)

BI¼0
20 ð0Þ ¼ BI¼0ð0Þ

20

�
1� 3g2Am

2
�

ð4�f�Þ2
ln
m2

�

�2

�
� AI¼0ð0Þ

20

3g2Am
2
�

ð4�f�Þ2
ln
m2

�

�2
þ BI¼0ð2;mÞ

20 m2
� þ BI¼0ð2;�Þ

20 : (B4)

The spin carried by the quarks is given by the axial coupling gA or ~A10ð0Þ as
��uþd ¼ ~Auþd

10 ¼ ~AI¼0
10 ð0Þ; (B5)

��u�d ¼ ~Au�d
10 ¼ ~AI¼1

10 ð0Þ: (B6)

The corresponding expressions for ~A10ð0Þ in the isoscalar and isovector cases are

TABLE VIII. Results on the isovector A20, B20, ~A20 and ~B20 and isoscalar AIS
20 and BIS

20 generalized form factors at � ¼ 1:95 (323 �
64) and � ¼ 2:10 (483 � 96).

m� (GeV) (no. configs.) ðQÞ2 A20 B20
~A20

~B20 AIS
20 BIS

20

� ¼ 1:95, 323 � 64
0.373 (950) 0.0 0.270(5) 0.344(19) 0.302(5) 0.648(71) 0.650(6) �0:029ð19Þ

0.192 0.242(4) 0.292(15) 0.281(5) 0.582(121) 0.562(5) �0:035ð19Þ
0.372 0.222(4) 0.266(15) 0.264(5) 0.578(65) 0.502(5) �0:030ð16Þ
0.542(1) 0.207(5) 0.266(15) 0.249(6) 0.495(73) 0.453(6) �0:018ð17Þ
0.704(1) 0.195(6) 0.213(20) 0.231(7) 0.236(81) 0.419(9) �0:019ð20Þ
0.859(2) 0.177(6) 0.209(15) 0.219(7) 0.319(46) 0.380(11) �0:007ð16Þ
1.007(2) 0.163(8) 0.192(16) 0.202(9) 0.294(47) 0.348(11) �0:016ð16Þ
1.287(3) 0.152(14) 0.169(25) 0.170(15) 0.200(63) 0.303(23) �0:022ð22Þ
1.420(4) 0.134(14) 0.134(21) 0.164(16) 0.165(53) 0.284(25) �0:023ð20Þ

� ¼ 2:10, 483 � 96
0.213 (900) 0.0 0.228(18) 0.205(62) 0.251(19) 0.518(251) 0.580(19) �0:157ð59Þ

0.147 0.206(14) 0.184(63) 0.242(14) 0.793(475) 0.515(14) �0:183ð64Þ
0.284 0.190(12) 0.233(52) 0.247(14) 0.830(244) 0.477(14) �0:072ð49Þ
0.414(1) 0.165(16) 0.224(58) 0.229(18) 0.526(259) 0.428(19) �0:034ð57Þ
0.537(1) 0.176(23) 0.159(63) 0.204(25) �0:446ð289Þ 0.410(30) �0:047ð70Þ
0.655(2) 0.152(16) 0.159(49) 0.180(19) �0:036ð145Þ 0.357(22) �0:043ð48Þ
0.768(3) 0.167(20) 0.205(53) 0.181(24) 0.101(160) 0.364(30) 0.038(54)

0.980(4) 0.173(40) 0.305(90) 0.164(43) 0.371(233) 0.367(65) 0.052(78)

1.081(5) 0.142(33) 0.164(65) 0.122(35) 0.106(166) 0.289(54) 0.054(62)
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~AI¼1
10 ð0Þ ¼ ~AI¼1ð0Þ

10

�
1� m2

�

ð4�f�Þ2
�
ð2g2A þ 1Þ lnm

2
�

�2
þ g2A

��
þ ~AI¼1ð2;mÞ

10 m2
�; (B7)

~AI¼0
10 ð0Þ ¼ ~AI¼0ð0Þ

10

�
1� 3g2Am

2
�

ð4�f�Þ2
�
ln
m2

�

�2
þ 1

��
þ ~AI¼0ð2;mÞ

10 m2
�: (B8)

For the total spin J we have

JI¼0 ¼ aIS0

�
1� 3g2Am

2
�

ð4�f�Þ2
ln
m2

�

�2

�
þ aIS1 m2

� þ aIS2 ; (B9)

JI¼1 ¼ aIV0

�
1� m2

�

ð4�f�Þ2
�
ð2g2A þ 1Þ lnm

2
�

�2
þ 2g2A

��
þ aIV1 m2

�; (B10)

and the expression for ��q, Lq and Jq are of the form

Qu;d ¼ au;d2 þ au;d1 m2
� þ au;d0

m2
�

ð4�f�Þ2
ln
m2

�

�2
(B11)

where Q ¼ J, ��, L. We also use CB�PT for A20ð0Þ, B20ð0Þ, C20ð0Þ in the isovector case,
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20 ð0Þ ¼ av20 þ
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þOðp3Þ; (B12)

BI¼1
20 ð0Þ ¼ bv20
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2
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and the isoscalar case
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We then extract the total spins using

Juþd ¼ 1

2
ðAI¼0

20 ð0Þ þ BI¼0
20 ð0ÞÞ; Ju�d ¼ 1

2
ðAI¼1

20 ð0Þ þ BI¼1
20 ð0ÞÞ: (B18)
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