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We develop and demonstrate techniques needed to compute the long distance contribution to the

KL � KS mass difference, �MK, in lattice QCD and carry out a first, exploratory calculation of this

fundamental quantity. The calculation is performed on 2þ 1 flavor, domain wall fermion, 163 � 32

configurations with a 421 MeV pion mass and an inverse lattice spacing 1=a ¼ 1:73 GeV. We include

only current-current operators and drop all disconnected and double penguin diagrams. The short distance

part of the mass difference in a 2þ 1 flavor calculation contains a quadratic divergence cut off by the

lattice spacing. Here, this quadratic divergence is eliminated through the Glashow-Iliopoulos-Maiani

mechanism by introducing a valence charm quark. The inclusion of the charm quark makes the complete

calculation accessible to lattice methods provided the discretization errors associated with the charm

quark can be controlled. The long distance effects are discussed for each parity channel separately. While

we can see a clear signal in the parity odd channel, the signal to noise ratio in the parity even channel is

exponentially decreasing as the separation between the two weak operators increases. We obtain a mass

difference �MK which ranges from 6:58ð30Þ � 10�12 MeV to 11:89ð81Þ � 10�12 MeV for kaon masses

varying from 563 to 839 MeV. Extensions of these methods are proposed which promise accurate results

for both �MK and �K, including long distance effects.

DOI: 10.1103/PhysRevD.88.014508 PACS numbers: 11.15.Ha, 12.38.Gc

I. INTRODUCTION

Lattice QCD provides a first-principles method to com-
pute nonperturbative QCD effects in electroweak pro-
cesses. In first-order weak interaction processes, the large
masses of theW and Z bosons mean that these interactions
take place in a very small space-time region, at distances of
Oð10�18 mÞ, allowing their effects on the QCD scale to be
described by a local four-quark operator, HW . However, in
second-order weak processes, the position of the two W or
Z exchanges may be separated by a distance which is much
larger than 1=MW and may be as large as 1=�QCD or 1=m�.

Such long distance effects contain nonperturbative contri-
butions, making lattice QCD a natural method for their
determination. Before this can be achieved however, a
number of theoretical and practical problems must be
overcome, and the purpose of this paper is to begin tackling
these issues.

The KL � KS mass difference with a value of
3:483ð6Þ � 10�12 MeV [1] is extremely small and is
known very accurately. It is believed to arise from K0- �K0

mixing via second-order weak interactions. However, be-
cause of its small size and because it arises from an
amplitude in which strangeness changes by two units,
this is a promising quantity to reveal phenomena which
lie outside the standard model, making the calculation of

the standard model contribution to �MK an important
challenge. Conventionally, the standard model contribution
to this mass difference is separated into short distance and
long distance parts. The short distance part receives con-
tributions from momenta on the order of the charm quark
mass, has been evaluated to next-to-next-to-leading order
in QCD perturbation theory and represents about 70% of
the total mass difference [2,3]. If the mass difference can
be explained within the standard model, the remaining
30% must come from nonperturbative, long distance
effects.
A further uncertainty associated with this conventional

approach is the use of QCD perturbation theory at the scale
of the charm quark mass. As pointed out in the recent next-
to-next-to-leading order (NNLO) calculation [3] these
NNLO order terms are as large as 36% of the leading order
(LO) and next-to-leading order (NLO) terms, raising
doubts about the use of QCD perturbation theory at this
energy scale. These uncertainties can be removed if the
charm quark is also treated using lattice methods and a
connection to perturbation theory attempted at a scale
significantly larger than the charm quark mass mc.
It is customary when discussing the KL � KS mass

difference to follow this convention of referring to distance
scales at or below 1=mc as short distance and those larger
than 1=mc as long distance. We will follow this convention
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here. However, the inverse charm quark mass represents a
somewhat large distance to act as boundary between short
and long distance regions. Thus, we should keep in mind
that nonperturbative methods may be needed for the proper
treatment of a portion of these short distance contributions
to the KL � KS mass difference and that it may be better to
adopt a shorter distance demarcation between short and
long distances in the future.

Here we propose a method to compute these long dis-
tance effects on a Euclidean lattice [4] which also includes
a nonperturbative treatment of the charm quark. The
method is composed of three parts. First, we devise a
Euclidean-space amplitude which can be evaluated in lat-
tice QCD and which contains the second-order mass dif-
ference of interest. As explained in the following section,
we perform a second-order integration of the product of
two first-order weak Hamiltonians in a given space-time
volume. The integration sums the contribution to the mass
difference from all possible intermediate states.

Second we must deal with those contributions coming
when the separation between the two effective weak op-
erators HW is at or below the lattice spacing. In this region,
the lattice description is not accurate and for separations
approaching 1=MW even the description of the process by a
product of two separate four-quark operators breaks down.
In fact, a generic product of two four-quark operators with
two pairs of quark fields contracted will diverge quadrati-
cally when integrated over the region where the locations
of these two operators coincide—a divergence controlled
in reality by the W and Z propagators that are approxi-
mated at low energies by the four-quark operator HW . For
such a case, we must introduce sufficient subtractions,
themselves represented at low energies by additional
�S ¼ 2 four-quark operators, to make the lattice calcula-
tion well defined and dominated by distances that are large
compared to the lattice spacing. This requires the energy
scale � at which the subtraction is performed to be smaller
than 1=a: � � 1=a. If this subtraction is performed in the
continuum, it must be arranged so that the subtraction term
is infrared safe, with all internal momenta at a scale where
continuum QCD perturbation theory can be applied, i.e.
�QCD � �.

Fortunately, for the largest contribution to the mass
difference �MK, the Glashow-Iliopoulos-Maiani (GIM)
mechanism [5] removes this quadratic divergence, leaving
a convergent integral involving loop momenta at or below
the scale of the charm quark mass. Naively one might
expect the subtraction realized by the GIM mechanism to
convert a quadratic into a logarithmic divergence, leaving a
short distance part that, in the language of second-order
effective field theory, would need to be removed by adding
a new, local counterterm. However, because of the V � A
structure of the standard model, the GIM mechanism ef-
fectively results in a double subtraction, leaving a finite
amplitude that can be computed without ambiguity in the

four-flavor theory. Thus, for the problem at hand we will
simply include the charm quark. In the approximation that
mc � 1=a the complete calculation, including those parts
referred to both as long and short distance, can be carried
out accurately using lattice methods.
Third, a generalization of the Lellouch-Luscher method

[6] is used to correct potentially large finite-volume effects
coming from the two-pion state which can be degenerate
with the kaon and the associated principal part appearing in
the infinite volume integral over intermediate states [4].
This is an important part of this proposal. However, in the
kinematic region studied in this paper, we are unable to
resolve the two-pion intermediate state signal from statis-
tical fluctuations, so this last piece cannot be studied
numerically in the present work. We therefore postpone a
more complete theoretical discussion of this topic, beyond
that presented in Refs. [4,7], to a later paper.
An important limitation of the numerical calculation

described here is the omission of disconnected diagrams.
Including such diagrams leads to an exponentially falling
signal to noise ratio adding serious difficulty to the calcu-
lation [8]. For this practical reason, we omit this type of
diagram from this first study of long distance effects in
lattice QCD. The problem of how best to calculate dis-
connected diagrams with good precision is more general
than the present calculation and is a subject of very active
research. The techniques currently being developed will be
applied at the next stage to the calculation of the mass
difference. The main aim of this paper is to show that the
other issues, special to this second-order weak calculation,
can be resolved.
The KL � KS mass difference considered in this paper is

a particularly interesting example of a class of rare,
second-order weak processes in which long distance ef-
fects (i.e. effects arising when the two exchanged W or Z
bosons are separated by distances at the QCD scale) play
an important role. Closely related to �MK is the somewhat
smaller long distance contribution to �K, the parameter
describing indirect CP violation in the kaon system [9],
which is discussed here in Appendix A. Also related to the
calculation performed here are various rare kaon decays in
which pairs ofW and Z bosons and photons are exchanged
as a K meson decays into a pion and lepton or neutrino
pair [10].
In this paper, we perform a first study of long distance

effects using a 2þ 1 flavor, domain wall fermion,
163 � 32� 16 lattice ensemble with a 421 MeV pion
mass and an inverse lattice spacing 1=a ¼ 1:73 GeV.
This paper is organized as follows. In Sec. II we introduce
the four-point, second-order weak amplitude computed in
this work and explain how to extract the finite volume
approximation to the mass difference from this amplitude.
(In Appendix B we apply standard perturbation theory to
the time development operator generated by the combined
strong and weak interactions to motivate this construction
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and compare it with less favorable alternative approaches.)
In Sec. III we describe the setup of this calculation includ-
ing the ensemble used and kinematic regions explored.
Section IV gives the details of the effective operators
used and contractions evaluated. In Sec. V, we discuss
the quadratic divergence arising from short distance effects
when only three flavors of valence quarks are present and
explain how to use the GIM mechanism to remove it.

In Sec. VI, the long distance portion of the amplitude
is separated into two parts according to the parity of the
intermediate state and each part is discussed separately. In
Sec. VII, we renormalize the lattice operators and present
the resulting KL � KS mass differences. Section VIII con-
tains a comparison of our lattice calculation with the
corresponding NLO perturbation theory result. Since
both calculations are limited to the same box graphs and
the NLO formulas can be evaluated at the kinematics used
in the lattice calculation, this provides a meaningful com-
parison of these two approaches, with the lattice result
approximately twice as large as that found in NLO pertur-
bation theory for our relatively heavy, 421 MeV pion.
Further discussion and our conclusions are given in
Sec. IX. Appendix A contains a brief review of the differ-
ent terms which contribute to the mass difference�MK and
to the indirect CP violation parameter �K in the standard
model. We discuss their relative sizes, the distance scales
involved and propose a strategy, following the methods
presented here, to compute each of these pieces using a
combination of perturbation theory and lattice methods,
with well controlled errors. This paper provides a complete
account of a calculation reported in preliminary form
in Ref. [11].

II. SECOND ORDER WEAK AMPLITUDE

If we neglect CP violating effects, which are at the 0.1%
level, the standard model contribution to theKL � KS mass
difference is given by

�MK ¼ 2M�00 ¼ 2P
X
n

h �K0jHW jnihnjHW jK0i
MK � En

; (1)

where HW is the �S ¼ 1 effective weak Hamiltonian. The
operator HW represents the effects of the exchange of a W
boson at energies much less than the W boson’s mass and
can be written as a sum of four-quark operators multiplied
by Wilson coefficients. This operator is described thor-
oughly in Ref. [12] and the details of the particular choice
for HW used in this calculation are given in Sec. VII. In
Eq. (1) and elsewhere (except Appendix A), we will ne-
glect CP violating effects, treating the off-diagonal mass
mixing matrix element M�00 as real and omitting CP vio-
lating terms from the effective weak Hamiltonian HW . In
Eq. (1) we are summing over all possible intermediate
states jni with energy En. This generalized sum includes
an integral over intermediate-state energies and the P
indicates that the principal part should be taken when

evaluating the integral over the En ¼ MK singularity.
This formula does not correctly treat intermediate states
whose energies are on the order of the masses of theW and
Z bosons. As will be discussed below, such states are
unimportant for �MK in the standard model.
Since the second order mass difference given in Eq. (1)

must appear in the Dyson-Wick expansion for the time
evolution operator at second order in the �S ¼ 1 effective
weak Hamiltonian HW , we should expect a similar expres-
sion to enter the following four-point correlator which can
be directly studied using lattice methods:

Gðtf; t2; t1; tiÞ ¼ h0jTfK0ðtfÞHWðt2ÞHWðt1ÞK0ðtiÞgj0i; (2)

where T is the usual time ordering operator. Here the initial

K0 state is generated by the kaon source K0ðtiÞ at the
time ti and the final �K0 state is destroyed by the kaon
sink �K0ðtfÞ at time tf and we assume tf � ti. The two

effective Hamiltonians act at the times t2 and t1. Assuming
that the time separations tf � tk and tk � ti for k ¼ 1 and 2

are sufficiently large that the time development operator

will project onto the K0 and K0 initial and final states and
inserting a complete set of energy eigenstates jni, we find

Gðtf; t2; t1; tiÞ ¼ N2
Ke

�MKðtf�tiÞ
X
n

hK0jHW jni

� hnjHW jK0ie�ðEn�MKÞjt2�t1j; (3)

where NK is the normalization factor for the kaon inter-
polating operator. If we fix the times ti and tf, then this

correlator depends only on the time separation between the
two Hamiltonians jt2 � t1j. We will refer to Gðtf; t2; t1; tiÞ
as the unintegrated correlator. The unintegrated correlator
receives contributions from all possible intermediate
states. The terms in this sum over intermediate states
show exponentially decreasing or increasing behavior
with increasing jt2 � t1j depending on whether En lies
above or below MK.
We can integrate the times t1 and t2 in the unintegrated

correlator over a time interval ½ta; tb� and obtain

A ¼ 1

2

Xtb
t2¼ta

Xtb
t1¼ta

h0jTfK0ðtfÞHWðt2ÞHWðt1ÞK0ðtiÞgj0i: (4)

We call this amplitude the integrated correlator. The inte-
grated correlator is represented schematically in Fig. 1.

FIG. 1. One type of diagram contributing to A in Eq. (4).
Here t2 and t1 are integrated over the time interval ½ta; tb�,
represented by the shaded region.
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After inserting a sum over intermediate states and
summing explicitly over t2 and t1 in the interval ½ta; tb�
one obtains

A ¼ N2
Ke

�MKðtf�tiÞ
8<
:
X
n�n0

h �K0jHW jnihnjHW jK0i
MK � En

�
�
�T þ eðMK�EnÞT � 1

MK � En

�

þ 1

2
h �K0jHW jn0ihn0jHW jK0iT2

9=
;: (5)

Here T ¼ tb � ta þ 1 and the sum includes all possible
intermediate states except a possible state jn0i which is
degenerate with the kaon, En0 ¼ MK. (In this discussion

and in the remainder of this paper, we express all dimen-
sionful quantities in lattice units unless otherwise speci-
fied.) The contribution from such a degenerate state
appears separately as the final term on the right-hand
side of this equation. The method proposed in Ref. [4] to
control finite volume errors requires that the spatial volume
be adjusted to create such a degenerate �-� state and that
this state be omitted from the finite volume expression used
as an approximation to the infinite volume quantity �MK

[13]. The expression on the right-hand side of Eq. (5) has
been made easier to recognize by replacing the quantity
1� exp ðMK � EnÞa, which results from the sum over the
discrete times t1 and t2, by its value in the continuum limit,
i.e. by either zero or ðEn �MKÞa as appropriate.

The coefficient of the term which is proportional to T in
Eq. (5) gives the finite-volume approximation to �MK up
to some normalization factors:

�MFV
K ¼ 2

X
n�n0

h �K0jHW jnihnjHW jK0i
MK � En

: (6)

The other terms in Eq. (5) can be classified into four
categories according to their dependence on T:

(i) The term independent of T within the large paren-
theses. This constant does not affect our determina-
tion of the mass difference from A.

(ii) Terms exponentially decreasing as T increases com-
ing from states jni with En >MK. These terms are
negligible for sufficiently large T.

(iii) Terms exponentially increasing as T increases
coming from states jni with En <MK. These will
be the largest contributions when T is large and
must be removed as discussed in the paragraph
below.

(iv) The final term proportional to T2 coming from
states degenerate with the kaon. As discussed be-
low, this term must be identified and removed in
order to relate the finite- and infinite-volume ex-
pressions for �MK following the method of
Ref. [4].

This behavior of the integrated correlator is interpreted in
Appendix B by using standard perturbation theory to ana-
lyze the time development generated by the sum of the
QCD and weak Hamiltonian. This provides insight into
Eq. (5) and allows other alternative choices of correlation
function to be easily discussed.
The exponentially growing terms, introduced in item

(iii) above, pose a significant challenge. Fortunately, the
two leading terms corresponding to the vacuum and single
pion states can be computed separately and subtracted. In
this work, since no disconnected diagrams are included,
there is no contribution from the vacuum state. The matrix
element h�0jHW jK0i can be obtained from three-point
correlation functions which allows the exponentially grow-
ing single-pion term to be determined and removed.
A second approach to remove these two unwanted ex-

ponentially growing terms exploits the chiral Ward identi-
ties to add to HW terms proportional to the scalar and
pseudoscalar densities, �sd and �s�5d, with coefficients
chosen to eliminate the two matrix elements h�jHW jK0i
and h0jHW jK0i. Since these two densities can be written as
the divergence of the vector and axial currents respectively,
they cannot contribute to an on-shell matrix element such
as that given in Eq. (2). (Note that this statement remains
valid when the effective, weak interaction, current-current
and QCD penguin operators are added to the action so no
contact terms are needed for this approach to be applied to
the second-order processes considered here.) This ap-
proach is similar to the subtraction that we carry out in
this paper but instead of removing only the exponentially
growing term in Eq. (5), such an addition will remove all
single pion and vacuum contributions from that equation,
including their appearance in the sum over intermediate
states jni. We have not explored this approach here because
our omission of disconnected diagrams has already re-
moved possible vacuum intermediate state contributions
and the density �sd will contribute only to type 3 and type 4
amplitudes (see Figs. 5 and 6 below) which are not
included in the present calculation.
Two-pion states with energies below MK may also exist

and, if present, must be explicitly identified and removed.
For our current kinematics, the only �-� state with an
energy possibly below MK is the threshold state with two
pions essentially at rest. In the following we study the
contribution of this state as the kaon mass is varied. In a
future, more physical calculation the difficulty of two-pion
states with energy below MK can be avoided if we intro-
duce G-parity boundary conditions to force each pion to
have a nonzero momentum and then tune the energy of the
lightest �-� state to be degenerate with that of the kaon,
following Ref. [4].
The approach developed in Ref. [4] to control finite-

volume errors requires a choice of spatial box and bound-
ary conditions which results in a �-� state, jn0i, whose
energy approximates that of the kaon. If this degeneracy is
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precise with an accuracy jMK � En0 j � 1=T then this

state will contribute the term proportional to the T2 term
in Eq. (5) above. Since such degeneracy needs only to be
achieved at a level of jMK � En0 j � �QCD (the scale at

which the result will depend on MK � En0) to properly

control finite-volume errors, we may instead need to iden-
tify this nearly degenerate state as a term showing very
slow exponential increase or decrease with T. This is the
final, important piece of a lattice calculation of �MK.
However, in this work we have been unable to distinguish
a clear signal from the �-� intermediate state. Thus, this
last step cannot be studied in the current work. We will
discuss this issue further in Sec. VI.

III. SIMULATION DETAILS

The calculation is performed on a lattice ensemble
generated with the Iwasaki gauge action and 2þ 1 flavors
of domain wall fermions at a coupling � ¼ 2:13. The
space-time volume is 163 � 32 and the inverse lattice
spacing a�1 ¼ 1:729ð28Þ GeV. The fifth-dimensional ex-
tent is Ls ¼ 16 and the residual mass is mres ¼ 0:00308ð4Þ
in lattice units. (In the following all quantities will be ex-
pressed in lattice units unless otherwise stated. Occasionally,
an explicit factor of the lattice spacing a may be added for
clarity.) The sea light and strange quark masses are ml ¼
0:01 and ms ¼ 0:032 respectively, corresponding to a pion
mass M� ¼ 421 MeV and a kaon mass MK ¼ 563 MeV.
We use 800 configurations, each separated by 10 time units.
This ensemble is described in greater detail in Ref. [8] and is
also similar to the earlier ensembles described and analyzed
in Ref. [14], except that the current ensemble has a more
physical value for the sea quark mass and was generated
with a better RHMC algorithm.

Wewill use Fig. 1 to explain the setup of this calculation.
Two Coulomb gauge-fixed kaon sources are located at time
slices ti ¼ 0 and tf ¼ 27 respectively. The two effective

weak operators HWðtiÞi¼1;2 are introduced in the interval

4 � t1, t2 � 23. We calculate the four-point function de-
fined in Eq. (2) for all possible choices of t1 and t2. Note
that the diagram given in Fig. 1 is only one type of possible
contraction. We will discuss the contractions in detail in
Sec. IV.

For given values of t1 and t2, each of the two effective
operators should be integrated over the whole spatial vol-
ume since these two volume averages would result in
reduced statistical noise. However, there is no easy way
to do this because of two difficulties. First, we are not able
to compute all of the light-quark propagators connecting
the two operators. It is impractical to use point source
propagators since there will be 163 point sources on each
time slice. In simpler cases, this difficulty can be avoided
by the use of a stochastic source distributed over the time
slice. However, an attempt to use this technique in the
present case failed to give a signal that could be recognized
above the noise. Even if this first difficulty of generating

the multitude of needed point source propagators could be
overcome, we would still face a second difficulty: the
number of operations needed to calculate all the contrac-
tions would beOðV2Þ, where V is the space-time volume of
the lattice. This also would be too time consuming. Thus,
we sum the location of only one of the two operators over
the spatial volume and, relying on the translational sym-
metry of the other ingredients in the calculation, fix the
spatial location of other operators at the origin (0, 0, 0). For
each of the contractions in our calculation, these two weak
operators enter in distinct ways and we average the two
cases where one operator is fixed at the origin and the other
integrated over the spatial volume to improve the statistics.
We use periodic boundary conditions in the spatial

directions for the Dirac operator when computing the
propagators. In the temporal direction, we calculate propa-
gators for both periodic and antiperiodic boundary condi-
tions and take their average for the propagator that we use.
This effectively doubles the temporal extent of the lattice
and suppresses around-the-world effects to a negligible
level. (This approach is equivalent to working on a lattice
of size 163 � 64 with gauge fields invariant under a trans-
lation of 32 sites in the time direction.) The most expensive
part of this simulation is solving for the light quark propa-
gators. There are 2 wall source light quark propagators and
20 point source light quark propagators, one on each time
slice between ta ¼ 4 and tb ¼ 23. So in total we need to
calculate ð20þ 2Þ � 2 ¼ 44 propagators, where the factor
of 2 comes from our two choices of temporal boundary
conditions. Further each propagator requires 12 Dirac op-
erator inversions, one for each spin and color. This large
number of light quark Dirac operator inversions makes this
calculation a good candidate for the use of the EigCG
technique [15,16]. We collect the lowest 100 eigenvectors

2 4 6 8 10 12 14 16 18 20
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M
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K

FIG. 2 (color online). A plot of the kaon effective mass found
from the two-point correlator between a wall source and a wall
sink using ml ¼ 0:01 and ms ¼ 0:032. The blue line shows the
result of the fit.
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and use them to accelerate the light quark Dirac operator
inversions. The overhead associated with collecting these
low modes is amortized over many inversions and the
number of conjugate gradient iterations is reduced by a
factor of 6.

We mentioned in Sec. II that the time separation be-
tween the kaon wall source and the�S ¼ 1weak operators
should be large enough to project onto kaon states. In the
setup of this calculation, the two operators can be located
at any time slice between [4,17]. So the time separation
between the kaon source or sink and either effective weak
operator is guaranteed to be equal to or larger than 4. In
Fig. 2 we give a sample kaon effective mass plot for ml ¼
0:01 and ms ¼ 0:032. This plot suggests that the effects of
excited kaon states will be negligible when the separation
between source and sink is 5 or larger. We therefore use the
restricted range [5,18] for tk in the following analysis,
discarding the results when either operator is at the location
tk ¼ 4 or 23 for k ¼ 1 and 2.

In order to reduce short distance effects to a level which
can be accurately controlled using lattice methods, we
introduce a valence charm quark into our calculation. In
Sec. V, we investigate the resulting GIM cancellation for
different charm quark masses. These masses are given in
Table I, where we use mass renormalization factor

ZMS
m ð2 GeVÞ ¼ 1:498 [19]. When we discuss the long

distance effects in Sec. VI, we choose an 863 MeV valence
charm quark mass and several different valence strange
quark masses. The strange quark masses and correspond-
ing kaon masses are given in Table II. The up and down
quark masses are kept at their unitary value, equal to the
0.01 mass of the sea quark.

IV. OPERATORS AND CONTRACTIONS

In this section we will describe the �S ¼ 1 effective
weak operators and the contractions that are evaluated in
this calculation. The first-order, �S ¼ 1 effective weak
Hamiltonian including four flavors can be written as

HW ¼ GFffiffiffi
2

p X
q;q0¼u;c

VqdV
�
q0sðC1Q

qq0
1 þ C2Q

qq0
2 Þ; (7)

where q and q0 are each one of the two charge 2=3 quarks
in the four-flavor theory (u and c), Vqd and Vq0s are

Cabibbo-Kobayashi-Maskawa (CKM) matrix elements,
C1 and C2 are Wilson coefficients and we include only
the current-current operators, which are defined as

Qqq0
1 ¼ ð�sidiÞV�Að �qjq0jÞV�A

Qqq0
2 ¼ ð �sidjÞV�Að �qjq0iÞV�A;

(8)

where i, j are color indices and the spinor indices are
contracted within each pair of brackets. The subscript
V � A on each fermion bilinear indicates the usual differ-
ence of vector and axial currents with the four-vector index
on the currents appearing in each of the two bilinear factors
contracted. We neglect the penguin operators in the effec-
tive Hamiltonian. This is a good approximation since these
operators are suppressed by a factor �¼�VtdV

�
ts=

VudV
�
us¼0:0016 in a four-flavor theory. (Such operators

will be discussed in Appendix A when a possible calcu-
lation of the long distance contribution to �K is
considered.)
We list all the possible contractions contributing to the

four-point correlators in Figs. 3–6. There are in total 16
diagrams which are labeled by circled numbers and we
categorize them into four types according to their topology.
There are six quark propagators in each diagram. Four of
these propagators are connected to the kaon wall sources
while two propagators connect one of the weak operators
to the other or each weak operator to itself. We call these
two quark propagators internal propagators. In a four-
flavor theory, the flavor of the internal quark propagators
can be either up or charm. We therefore have four different
combinations for each diagram: uu, cc, uc and cu. We use
these labels in a subscript to denote the flavor of the two
internal quark propagators. For example, the first diagram
with two internal up quark propagators is represented by
s1uu, and the GIM cancellation occurs in the combination:

s1 GIM ¼ s1uu þs1cc �s1uc �s1cu: (9)

Because of the arrangement of quark flavors and spin

contractions in the operatorsQqq0
1 andQqq0

2 the spin indices
on quark fields which carry the same charge are always

TABLE I. Valence charm quark masses used to implement the GIM cancellation. The upper
row gives the bare masses in lattice units. The lower row contains the MS masses at a scale of
2 GeV.

mc 0.132 0.165 0.198 0.231 0.264 0.330

mc (MeV) 350 435 521 606 692 863

TABLE II. Valence strange quark mass (upper row) and kaon mass (lower row), both in lattice
units.

ms 0.01 0.032 0.06 0.075 0.09 0.11 0.13 0.18

MK 0.2431(8) 0.3252(7) 0.4087(7) 0.4480(7) 0.4848(8) 0.5307(8) 0.5738(8) 0.6721(10)
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contracted with an interposed ��ð1� �5Þ spin matrix.

Therefore, the pattern of spin contractions need not be
represented in Figs. 3–6. Instead, the separation of each
four-quark vertex into two pairs of two-quark vertices
shown in those figures indicates the pattern of color con-
tractions. Thus, when two quark lines carrying the same
charge are joined in those figures that arrangement of spin

and color contractions is the same and the operator Qqq0
1

appears at that vertex. If lines with different charge are

joined, it is the operator Qqq0
2 that appears.

All the correlation functions are given by combinations
of these contractions. For example,

hK0ðtfÞQuu
1 ðt2ÞQuu

1 ðt1ÞK0ðtiÞi ¼ s1uu �s5uu �s9uu þs13uu;

(10)

where the contractions identified by circled numbers do not
carry the minus sign coming from the number of fermion
loops. Instead these minus signs appear explicitly in
Eq. (10). Since our definition of the kaon interpolation

FIG. 3. Diagrams for type 1 contractions. The two two-quark vertices associated with the kaon sources correspond to a spinor
product including a �5 matrix. Each of the four two-quark vertices associated with four-quark operators correspond to a contraction of
color indices. The spinor products, which include the matrix ��ð1� �5Þ, connect incoming and outgoing quark lines which carry the

same electric charge. Vertices where the quark lines are joined in this fashion then have the color and spin contracted in the same
pattern and correspond to the operator Q1. Where the quark lines and corresponding color contractions for quarks with different
electric charges are joined, the operator Q2 appears.

FIG. 4. Diagrams for type 2 contractions. The conventions used here are the same as those explained in the caption to Fig. 3.
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operators is K0 ¼ ið �d�5sÞ, there will be a minus sign,
i2 ¼ �1, coming from two kaon sources. This minus
sign is also not included in the contractions.

In a unitary calculation, we need to include all types of
diagrams. However, we do not include type 3 and type 4
diagrams in this calculation for two reasons. The first
reason is practical. We would need to compute an addi-
tional stochastic wall source for each time slice to evaluate
the new loop graphs which appear in the type 3 and 4
contractions. This would approximately double the com-
putation time. More importantly, type 4 diagrams are dis-
connected diagrams which are extremely noisy and would
require a far larger statistical sample than is being used
here [8]. The second reason is phenomenological. There is
some empirical evidence suggesting that the contribution
from type 3 and type 4 diagrams may be small. For
example, disconnected graphs similar to those of type 4
are often small when contributing to other processes where
they are said to be ‘‘OZI suppressed’’ [20]. The omission of
such diagrams is also consistent with the results of the
recent study of�I ¼ 1=2K ! �� decays [8] in which the
contribution of disconnected diagrams was found to be
zero within rather large errors. [Note that in the 2þ 1
flavor calculation of Ref. [8], diagrams containing a closed
loop formed from a single quark line did give large
Oð1=a2Þ contributions from off-shell states and required
careful treatment. However, in the case of four flavors,
GIM cancellation renders such loops convergent, reducing
them in size by a factor of ðmcaÞ2. As a result, such
disconnected diagrams may require less complex treatment

in the four-flavor theory considered here.] Of course in a
complete calculation these diagrams must be calculated
explicitly after which the precision of the Zweig suppres-
sion will be known.
Neglecting type 3 and type 4 diagrams, Eq. (10)

reduces to

hK0ðtfÞQuu
1 ðt2ÞQuu

1 ðt1ÞK0ðtiÞi ¼ s1uu �s5uu: (11)

There are two other possible operator combinations in this
calculation:

hK0ðtfÞQuu
2 ðt2ÞQuu

2 ðt1ÞK0ðtiÞi ¼ s4uu �s8uu

hK0ðtfÞðQuu
1 ðt2ÞQuu

2 ðt1Þ þQuu
2 ðt2ÞQuu

1 ðt1ÞÞK0ðtiÞi
¼ �s2uu �s3uu þs6uu þs7uu: (12)

After GIM cancellation, these become

hK0ðtfÞQGIM
11 ðt2; t1ÞK0ðtiÞi ¼ s1 GIM �s5 GIM

hK0ðtfÞQGIM
22 ðt2; t1ÞK0ðtiÞi ¼ s4 GIM �s8 GIM

hK0ðtfÞðQGIM
12 ðt2; t1Þ þQGIM

21 ðt2; t1ÞÞK0ðtiÞi
¼ �s2 GIM �s3 GIM þs6 GIM þs7 GIM: (13)

Here the subscript ‘‘GIM’’ under the circles indicates
the same combination of internal quark line flavors as is
given in Eq. (9). The four operator products QGIM

ij ðt2; t1Þ
appearing on the left-hand side of Eq. (13) are each the

FIG. 5. Diagrams for type 3 contractions, which are not included in this calculation.
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appropriate sum of all four combinations of intermediate
charm and up quarks:

QGIM
ij ðt2; t1Þ ¼ Quu

i ðt2ÞQuu
j ðt1Þ þQcc

i ðt2ÞQcc
j ðt1Þ

�Quc
i ðt2ÞQcu

j ðt1Þ �Qcu
i ðt2ÞQuc

j ðt1Þ
i; j ¼ 1; 2: (14)

As discussed in Sec. II, we need to calculate the matrix
element h�0jHW jK0i in order to remove the exponentially
growing term in the second-order correlator. However, the
definition of the �0 intermediate state must be reconsid-
ered in this nonunitary calculation. In a unitary theory, �uu,
�dd and �ss will mix with one another through disconnected
diagrams. Then the resulting energy eigenstates are �0, �

and �0, where �0 is defined as ið �u�5u� �d�5dÞ=
ffiffiffi
2

p
.

However, in our nonunitary calculation, all disconnected
diagrams are neglected and correlators of the operators
ið �u�5u� �d�5dÞ will reveal independent but symmetrical
‘‘states’’ with the same mass. Since only up quarks can
appear in our intermediate state, we must use the interpo-
lating operator i �u�5u to create our�0 state and can neglect
the effects of the symmetrical state created by �d�5d. Thus,
in our calculation of h�0jHW jK0i, we use �0 ¼ i �u�5u

(with no 1=
ffiffiffi
2

p
factor) and only include the pair of con-

tractions shown in Fig. 7.

V. SHORT DISTANCE CONTRIBUTION

In this section, we discuss the short distance contribution
to our calculation of �MK in detail. We begin by discus-
sing results without a charm quark and their dependence
on a short distance, position-space cutoff. We then intro-
duce a charm quark and examine the resulting GIM
cancellation.
All the results presented in this section are for integrated

correlators composed of the operator combination Q1 	Q1,
i.e. both four-quark operators areQ1 operators. (This case is
presented for illustration since it is for this combination of
operators that we have data which include a short distance,
position-space cutoff.) The results are the average of 600
configurations separated by 10 time units, with valence
quark masses ml ¼ 0:01 and ms ¼ 0:032. The resulting
pion and kaon masses are m� ¼ 0:2431ð8Þ and mK ¼
0:3252ð7Þ respectively. The�0 state is the only intermediate
state lying below the kaon mass for these kinematics.

A. Quadratic divergence at short distance

In Eq. (5), we can see that the integrated correlator
depends only on the separation between ta and tb which
we defined earlier as T ¼ tb � ta þ 1, the number of dis-
crete times lying in the interval ½ta; tb�. For a given value of
T, all ðta; ta þ T � 1Þ pairs which lie in the range [5,18] are

FIG. 7. Diagram for the h�0jHW jK0i contractions. The vertex at each of the two kaon sources includes a �5 matrix. The meaning of
the vertices is the same as those in the previous figures and is explained in the caption to Fig. 3.

FIG. 6. Diagrams for type 4 contractions, which are not included in this calculation.
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possible choices of this integration interval. We calculate
all of them and use the averaged result after normalization
as the final definition of integrated correlator:

�AðT; ti; tfÞ ¼ 1

19� T

eMKðtf�tiÞ

N2
K

� X23�T

ta¼5

Aðta; tb ¼ ta þ T � 1; ti; tfÞ: (15)

In the left panel of Fig. 8, we plot the integrated correlator
as a function of the integration time interval T. Here the
valence charm quark is not included, so there is no GIM
cancellation. There are two curves in this plot: the red
squares correspond to the integrated correlator defined in
Eq. (15); the blue diamonds represent the results after the
exponentially growing �0 term is removed. The �0 con-
tribution to the integrated correlator can be determined
using Eq. (5), where the h�0jHW jK0i matrix element is
determined from a three-point correlator calculation. Note
that only the exponentially growing �0 term and a constant
term coming from the �0 are removed; the �0 contribution
to the term proportional to T is retained as required by
Eq. (5). The left-hand plot suggests that the exponentially
growing �0 term is only a small part of the result. This can
be explained as follows. The integrated correlator receives
contributions from all possible intermediate states. The short
distance part, which comes from heavy intermediate states,
is expected to be power divergent. The �0 contribution,
which is long distance physics, contains no such divergence
and is small compared to the divergent short distance part
even though it is exponentially growing with T.

To investigate the divergent character of the short
distance part in detail, we introduce an artificial
position-space cutoff radius R. When we perform the

double integration, we require the space-time separation
between the positions of the two operators to be larger than
or equal to this cutoff radius:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt2 � t1Þ2 þ ð ~x2 � ~x1Þ2

q

 R: (16)

The right-hand plot in Fig. 8 presents the result with a
cutoff radius of 5. Comparing this plot with the left plot, we
can see that the amplitude of the integrated correlator is
reduced by a factor of approximately 10 and the exponen-
tially growing �0 term is now a very important part of the
result which significantly changes the behavior of the
correlator at long distance. All these observations suggest
that the short distance contribution is substantially reduced
after we impose the cutoff. We can also plot the mass
difference �MK as a function of this cutoff radius R. The
mass difference on a finite lattice is defined in Eq. (6).
However, we consider only the operator Q1 here, so we
define

�M11
K ¼ 2

X
n�n0

h �K0jQuu
1 jnihnjQuu

1 jK0i
MK � En

; (17)

where the superscript 11 means both operators are Q1.
This quantity is given by the slope of the coefficient of
the linear term in Eq. (5) when T is sufficiently large that
the exponentially falling terms can be neglected. We
choose to fit the slope of the integrated correlator in the
range 9 � T � 18. In Fig. 9 we show the dependence of
�M11

K on the cutoff radius R. The blue curve is a naive
uncorrelated two parameter fit:

�M11
K ðRÞ ¼ b

R2
þ c; (18)
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where b and c are constants. The fitting result shows a
convincing, power divergent short distance contribution.

B. Valence charm quark and GIM cancellation

The short distance contribution in a lattice calculation is
necessarily unphysical, principally determined by the lat-
tice cutoff. To control these short distance effects, we
introduce a valence charm quark. The resulting GIM
mechanism will then substantially reduce the short dis-
tance contribution. The implementation of the GIM can-
cellation in this calculation is quite straightforward. We
simply replace the two internal up quark propagators in the
contractions with the appropriate difference between up
quark and charm quark propagators. We use six different
valence charm quark masses which are given in Table I. In
Fig. 10 we plot the integrated Q1 	Q1 correlator after GIM
cancellation with an 863 MeV valence charm quark mass.
We can compare this plot with those in Fig. 8. The behavior
of the integrated correlator after GIM cancellation is quite
similar to the result after introducing the artificial position-
space cutoff. The GIM cancellation reduces the amplitude
by approximately a factor of 10. Thus, as expected, the
short distance contribution is substantially reduced by the
GIM mechanism.

In Fig. 11, we plot the mass difference for different
valence charm masses. The definition of the mass differ-
ence �M11

K is similar to that given in Eq. (17), but the GIM
cancellation is now included. The mass difference is ob-
tained from the slope in T of the integrated correlator using
the fitting range T 2 ½9; 18�. The values of �M11

K are listed
in Table III. The plot shows that the mass difference
increases as the charm quark mass increases. This is ex-
pected since the cancellation between the up and charm

quark propagators will be more complete for a lighter
charm quark.

C. Short distance subtraction

One might expect that the GIM cancellation would
reduce the quadratic divergence present in a 2þ 1 flavor
lattice calculation of �MK to a milder logarithmic diver-
gence leaving an unphysical, short distance artifact of the
form ln ðmcaÞ reflecting a physical ln ðmc=MWÞ short dis-
tance contribution, inaccessible to a lattice calculation.
However, because of the V � A structure of the weak
vertices in the standard model, the u and c quark masses
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appear only quadratically in the internal quark lines so that
the difference of those propagators introduces a factor of
m2

c �m2
u for each of the two internal quark lines, reducing

the overall degree of divergence by four units. It should be
noted that in our calculation this (V � A)-induced cancel-
lation reduces the result by approximately an order of
magnitude, a reduction that depends critically upon the
use of chiral lattice fermions. Thus, the GIM cancellation
is complete, leaving only convergent integrals in a theory
built from the effective four-quark operator HW , with all
‘‘short distance’’ contributions coming from distances on
the order of 1=mc. Thus, if potential lattice artifacts asso-
ciated with the large value ofmca can be neglected and the
role of the omitted charmed sea quarks is small, then the
present calculation (or one in which diagrams with all
possible topologies have been included) will capture all
important aspects of �MK. If mca is sufficiently large that
it cannot be neglected or charmed sea quarks need to be
included, then these difficulties can be systematically ad-
dressed in a later, 2þ 1þ 1 flavor calculation at a smaller
lattice spacing. In contrast, the corresponding continuum
calculation cannot properly treat the long distance region
where the two weak operators are separated by a distance
of a few tenths of a Fermi and even the short distance part
with momenta on the order of mc may suffer from poor
convergence of the perturbation expansion.

In a generic calculation of a second-order weak quantity
using an effective four-Fermi form for each of the weak
operators, divergences will be encountered because of the
singular behavior that results as the two operators approach
each other in space-time. In the most difficult case, this
divergence will be quadratic and two subtractions will be
required before the calculation using the effective theory
becomes well defined. If the GIM subtraction reduces the
divergence to one which is only logarithmic, then the
needed single subtraction can be carried out explicitly
using a Rome-Southampton style [21], regularization-
independent momentum-subtraction (RI/MOM). Indeed,
in an earlier version of this work [11], we were unaware
of the absence of a ln ðmcaÞ term in the lattice calculation
with valence charm and we performed such an explicit
RI/MOM subtraction to remove it. This subtraction was
determined from the bilocal operator formed from the
product of the two effective weak Hamiltonians by requir-
ing that a particular, spin- and color-projected, four exter-
nal quark, Landau gauge-fixed vertex vanish at a specific
kinematic point. This subtraction was chosen in such a way

that it could be both easily applied in the lattice calculation
and also computed perturbatively so that the correct sub-
traction term could be restored to the lattice result. In fact,
the subtraction term reported in Ref. [11], performed at a
scale � ¼ 2 GeV, was zero within errors, consistent with
the absence of a true short distance, ln ðmc=MWÞ, contri-
bution to �MK.

VI. LONG DISTANCE CONTRIBUTION

In this section we will examine the long distance con-
tribution to our calculation of �MK in detail. As we have
discussed in Sec. II, the intermediate states lying below the
kaon mass will contribute terms which grow exponentially
as the time interval T, over which the bilocal, second-order
weak interaction operators are integrated, is increased.
These terms do not contribute to the physical mass differ-
ence �MK and must be identified and removed. For physi-
cal quark masses such states include the vacuum, �0, �-�
and three� states. There is no vacuum state contribution in
this work and for our kinematics the kaon mass is below the
three-pion threshold. Thus, in the present calculation we
are most interested in the �0 and �-� intermediate states.
The different parity of these two states allows us to study
their contributions separately. Each left-left, �S ¼ 1 four-
quark operator can be separated into parity conserving and
violating parts:

LL ¼ ðVV þ AAÞ � ðVAþ AVÞ: (19)

The product of the two left-left operators can then be
written as the sum of four terms:

LL � LL ¼ ðVV þ AAÞ � ðVV þ AAÞ þ ðVAþ AVÞ
� ðVAþ AVÞ � ðVV þ AAÞ � ðVAþ AVÞ
� ðVAþ AVÞ � ðVV þ AAÞ: (20)

The third and fourth terms of Eq. (20) change the parity
and hence cannot contribute to the matrix element between

K0 and K0 states. In the first term on the right-hand side of
Eq. (20) both operators are parity conserving, which im-
plies that the intermediate state must have odd parity. In the
second term, both operators are parity violating, so the
intermediate states have even parity. We can distinguish
these two contributions and investigate the �0 (parity odd)
and �-� (parity even) intermediate states separately.
The integrated correlator receives contributions from

both short and long distances. Therefore, in this section

TABLE III. The mass difference �M11
K , defined in Eq. (17) after GIM cancellation, evaluated

for different charm quark masses. These results were obtained from 600 configurations, use a
kaon mass of 563 MeV and are the matrix elements of bare lattice operators without Wilson
coefficients or renormalization factors.

mc (MeV) 350 435 521 606 692 863

�M11;GIM
K 0.0452(13) 0.0481(14) 0.0511(15) 0.0542(15) 0.0575(16) 0.0647(18)
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we examine the unintegrated correlators in Eq. (2), where
we can explicitly study the case of large time separation
between the two �S ¼ 1 operators. The results presented
in this section are for an average of 800 configurations
separated by 10 time units, with a valence light quark mass
ml ¼ 0:01 which corresponds to a pion mass m� ¼
0:2431ð8Þ and eight valence strange quark masses whose
values together with the corresponding kaon masses are
given in Table II.

A. Parity odd channel

For this case, corresponding to the contribution of the
first term in Eq. (20), both operators are parity conserving
which implies that all intermediate states have odd parity.
As can be seen from Eq. (3), in the limit of large time
separation jt2 � t1j the contribution from heavier states
will decrease exponentially and only the lightest states
will survive. For the parity odd case this lightest state is
the �0 so that the unintegrated correlator becomes

Gðtf; t2; t1; tiÞ ¼ N2
Ke

�MKðtf�tiÞhK0jHW j�0i
� h�0jHW jK0ie�ðM��MKÞjt2�t1j: (21)

The unintegrated correlator only depends on the time
separation TH ¼ t2 � t1 at given ti and tf. For a given

value of TH, all ðt1; t1 þ THÞ pairs in the range [5,18] are
possible choices. We compute all of them, take their aver-
age and remove the normalization factor N2

K. The result is
the unintegrated correlator �GðTH; tf; tiÞ:

�GðTH; tf; tiÞ ¼ 1

tf � ti � 9� TH

eMKðtf�tiÞ

N2
K

� Xtf�5�TH

t1¼tiþ5

Gðtf; t2 ¼ t1 þ T; t1; tiÞ; (22)

where we have adopted the order t2 > t1 and imposed the
restriction t1 
 ti þ 5 and tf � 5 
 t2.

We also compute the three-point correlator needed to
extract the matrix element h�0jQijK0i. We can then com-
pare our lattice result for the unintegrated correlator given
in Eq. (22) for large TH with the contribution of a single �0

shown in Eq. (21). The single-pion matrix elements are
given in Table IV for the set of eight kaon masses. As we
have explained in Sec. III, we use �0 ¼ i �u�5u and only
compute the diagrams shown in Fig. 7.
In Figs. 12–14, we plot the unintegrated correlators and

resulting effective masses for the kaon mass MK ¼
0:4848ð8Þ. The three figures correspond to the different
operator combinations: Q1 	Q1, Q1 	Q2 and Q2 	Q2, re-
spectively. In the plots of the unintegrated correlators
we show both original results and the results after the

TABLE IV. Results for single-pion matrix elements,
h�0jQijK0i, at various kaon masses. We use �0 ¼ i �u�5u and
only include the diagrams in Fig. 7.

MK h�0jQuu
1 jK0i h�0jQuu

2 jK0i
0.2431(8) 0.02107(29) �0:00779ð26Þ
0.3252(7) 0.02729(30) �0:00954ð23Þ
0.4087(7) 0.03300(33) �0:01067ð22Þ
0.4480(7) 0.03550(35) �0:01103ð22Þ
0.4848(8) 0.03773(36) �0:01128ð22Þ
0.5307(8) 0.04037(39) �0:01149ð22Þ
0.5738(8) 0.04271(42) �0:01160ð23Þ
0.6721(10) 0.04753(49) �0:01156ð25Þ
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subtraction of the �0 contribution. This subtraction is done
using the numerical results in Table IV. Since only the �0

term should be present for large time separations, we
expect that the results after subtraction should be consis-
tent with zero for large TH. In the effective mass plots, we
calculate the effective mass MX �MK from the uninte-
grated correlators; hereMX is the mass of the intermediate
state. For this parity conserving case, the lightest state is
the pion. The ‘‘exact’’M� �MK mass obtained from two-
point correlator calculation is shown in the plots as a blue
horizontal line which agrees well with the computed ef-
fective mass. Although all three figures show the expected
behavior, we find that the statistical errors seen for the
different operator combinations are quite different. The
operator combinationQ1 	Q1 has the smallest errors while
Q2 	Q2 has the largest.

In Fig. 15, we plot the intermediate state masses ob-

tained from unintegrated correlators at eight different kaon

masses for the Q1 	Q1 case. The mass MX �MK is ob-

tained from a two parameter exponential fit and compared

with the difference of MK and M� obtained directly from

the two-point correlators. The intermediate state mass

agrees very well with the single pion mass for all choices

of kaon mass.

B. Parity even channel

In this section, we examine the case where parity violat-

ing operators appear at both vertices. This requires that the

intermediate states have even parity. The long distance

behavior is expected to be dominated by the two-pion

intermediate state, which is the lightest parity even state.
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FIG. 13 (color online). Plots of the unintegrated correlator �G and corresponding effective mass for the operator combination Q1 	Q2

at a kaon mass MK ¼ 0:4848ð8Þ. Only the product of the parity even components of the two operators is included.
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In Fig. 16, we present the unintegrated correlators for the
three different products of parity violating operators eval-
uated at a kaon mass MK ¼ 0:4848ð4Þ. This kaon mass is
very close to the energy of two pions at rest, so we expect
to get a plateau at large time separation TH. However, our
results are extremely noisy at long distance and we are not
able to identify such a plateau. This large noise can be
explained as follows. Although the signal should come
from two-pion intermediate states, we will also have noise,
whose size can be estimated from the square of the Green’s
functions being studied. In this squared Green’s function
the source and sink are composed of the product of two
parity violating operators and two kaon sources and sinks.
Such a Green’s function will receive a contribution from a
two-pion intermediate state. The noise will fall with in-
creasing separation jt2 � t1j between the weak operators as
the square root of this Green’s function, implying that this

noise will behave as e�jt2�t1jm� , dominating the two-pion

signal which falls more rapidly as e�jt2�t1j2m� . Thus, the
signal to noise ratio will fall exponentially for large time
separation. The situation here is very similar to what is
found for disconnected diagrams. This argument is con-
sistent with our observation that most of the noise comes
from type 1 diagrams, shown in Fig. 3, because the topol-
ogy of type 2 diagrams does not allow a single-pion
contribution to their noise.

This argument is confirmed by plotting the results from
type 2 contractions only. If we analyze the type 2 diagrams
alone, and fit the resulting intermediate state masses the

results agree with the two-pion mass very well, as seen in
the lower right panel of Fig. 16.

VII. THE KL �KS MASS DIFFERENCE

In order to use the numerical results presented in the
previous sections to calculate the physical KL � KS mass
difference, we must connect our four-quark lattice opera-
tors with the physical �S ¼ 1 effective weak Hamiltonian
HW given in Eq. (7). Thus, we must determine the Wilson
coefficients and normalize the lattice operators in the same
scheme in which the Wilson coefficients are computed. We
will follow the same procedure used in previous work
[8,22]. The Wilson coefficients are evaluated in the ex-

tended minimal subtraction (MS) scheme in naive dimen-
sional regularization (NDR) using the formulas in
Ref. [12]. The lattice operators are first nonperturbatively
normalized in the RI/MOM scheme and then converted

into the MS NDR scheme using formulas provided by
Lehner and Sturm, extending to our four-flavor case the
results given in Ref. [23].
We will consider only the current-current operators de-

fined in Eq. (8) which enter the present calculation. In
particular, we are only interested in the operators:

~Q1 ¼ ð �siujÞV�Að �ujdiÞV�A � ð �sicjÞV�Að �cjdiÞV�A

~Q2 ¼ ð �siuiÞV�Að �ujdjÞV�A � ð �siciÞV�Að �cjdjÞV�A

Qcu
1 ¼ ð �siujÞV�Að �cjdiÞV�A Qcu

2 ¼ ð �siuiÞV�Að �cjdjÞV�A

Quc
1 ¼ ð �sicjÞV�Að �ujdiÞV�A Quc

2 ¼ ð �siciÞV�Að �ujdjÞV�A:

(23)

These six operators can be categorized into three groups
according to their different flavor structure. Operator mix-
ing will take place within each group. The discussion of
operator mixing is simplified if we define a second, equiva-
lent basis:

QXþ ¼ QX
1 þQX

2 QX� ¼ QX
1 �QX

2 ; (24)

where the label X takes on the three values ‘�’, cu, uc
appearing in Eq. (23). Thus, we have three groups of

operators ~Q�, Qcu� and Quc� . The advantage of this basis
is that Qþ belongs to the (84, 1) irreducible representation
of SUð4ÞL � SUð4ÞR, while Q� belongs to the (20, 1)
representation [18]. Since the renormalization will be
carried out in the SUð4ÞL � SUð4ÞR symmetric limit of
vanishing u, d, s and c quark masses, the operators Qþ
and Q� will not mix with each other or any other
dimension-6 operator. Finally SUð4ÞL � SUð4ÞR symmetry
requires that the renormalization factors for all operators in
the same representation will be identical.
Although the basis in Eq. (24) is favored theoretically,

we choose to use the basis in Eq. (23) for our actual
calculation since it is those operators whose matrix ele-
ments are obtained from the explicit contractions which we
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FIG. 15 (color online). Intermediate state masses determined
for all eight kaon masses from the unintegrated correlators of the
parity even portion of the operators Q1 	Q1. The red diamonds
are the fitting results and should correspond to the difference
MX-MK . The blue squares are obtained from the results for
MX-MK by adding the result for MK obtained from the two-
point kaon correlators. The blue horizontal line is the ‘‘exact’’
pion mass given by the two-point function calculation.
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evaluate. The effects of the Wilson coefficients and all
operator renormalization and mixing can then be summa-
rized by

HW ¼ GFffiffiffi
2

p X
q;q0¼u;c

VqdV
�
q0s

X
i¼1;2

CMS
i ð�Þð1þ �rRI!MSÞij

� ðZlat!RIÞjkQqq0;lat
k ð�Þ

¼ GFffiffiffi
2

p X
q;q0¼u;c

VqdV
�
q0s

X
i¼1;2

Clat
i ð�ÞQqq0;lat

i ð�Þ: (25)

All the operator renormalization and mixing are performed
at a scale � ¼ 2:15 GeV. As summarized above, the

Wilson coefficients CMS
i ð�Þ are calculated following

Eqs. (5.8)–(5.21) inRef. [12] using the parameters�sðMZÞ¼
0:1184, MZ ¼ 91:1876 GeV, MW ¼ 80:399 GeV and
mbðmbÞ ¼ 4:19 GeV [1].
We use formulas provided by Lehner and Sturm which

extend their earlier, 2þ 1 flavor results [23] for the match-

ing matrix �rRI!MS to the four-flavor case being studied

here. Their 2� 2 matching matrix is given by
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We plot both the full results and the results from type 2 diagrams only. The last plot is the fitted intermediate state mass (red diamonds)
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�r ¼ �sð�Þ
4�

�4 ln ð2Þ �8þ 12 ln ð2Þ
�8þ 12 ln ð2Þ �4 ln ð2Þ

 !
: (26)

Here �sð�Þ is calculated using the two-loop formula
given by Eq. (3.19) in Ref. [12]. For � ¼ 2:15 GeV,
�s ¼ 0:2974.

The lattice operators are related nonperturbatively to
operators renormalized in a regularization independent,
Rome-Southampton [21] scheme following the method
developed in Ref. [22] but using nonexceptional momenta
[17] at a scale of � ¼ 2:15 GeV. Specifically, we use the
RI=SMOMð��; 6qÞ scheme [23]. Here the first �� means

that the projectors are constructed from � matrices. The
second 6q identifies the wave function renormalization

scheme. We take the value Z6q
q ¼ 0:8016ð3Þ from [8].

Combining all three ingredients we obtain the final coef-
ficients Clat

i , i ¼ 1, 2 that must be applied to the bare lattice
operators to construct the complete �S ¼ 1 effective
weak Hamiltonian given in Eq. (25). The results for these
coefficients and the ingredients from which they are con-
structed are given in Table V. Note the diagonal character
of the renormalization for the operator basis QX� can be

seen from the structure of the 2� 2 matrices given in this
table, with equal diagonal and equal off-diagonal elements
in our QX

i , i ¼ 1, 2 basis.
We now combine all these ingredients and determine the

mass difference�MK in physical units. The mass difference
�MK can be obtained by fitting the integrated correlator in
the limit that the integration region ½ta; tb� become large.We
fit the dependence of the integrated correlator on T¼ tb�
taþ1 to a linear function over the range 9 � tb � ta � 18.
Figure 17 shows the computed values for the integrated
correlator as a function of T and the corresponding linear
fit for each of the three operator products Q1 	Q1, Q1 	Q2

and Q2 	Q2, for the case MK ¼ 834 MeV. The results are
given in Table VI. The lattice mass differences given in this
table have a common factor 10�2 which is not shown. The
errors given in the table are statistical only.
Although we have data for eight different kaon masses,

we present results for only the seven kaon masses ranging
from 563 to 1162 MeV. We do not give results for the
lightest kaon because it is degenerate with the pion
while the standard formula for �MK, which we are using,

assumes that the K0 and K0 are the only coupled, single-
particle, degenerate states. While listed for completeness,

TABLE V. The Wilson coefficients, the RI ! MS matching matrix, the nonperturbative
lat ! RI operator renormalization matrix and their final product, all at a scale � ¼ 2:15 GeV
shown in columns 1 through 4 respectively.

CMS
1 CMS

2 �r11 ¼ �r22 �r12 ¼ �r21 Z11 ¼ Z22 Z12 ¼ Z21 Clat
1 Clat

2

�0:2967 1.1385 �6:562� 10�2 7:521� 10�3 0.5916 �0:05901 �0:2216 0.6439
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FIG. 17 (color online). Lattice results for the integrated corre-
lator given in Eq. (5) for the three operator products Q1 	Q1,
Q1 	Q2 and Q2 	Q2 and the case MK ¼ 834 MeV. The three
lines give the linear fits to the data in the time interval [9,20]
used to extract the corresponding values given in Table VI. (Note
the slope of the integrated correlator as a function of the time T
given in Eq. (5) must be multiplied by �2 to obtain the
corresponding contribution to �MK.)

TABLE VI. The contribution of the three operator products
evaluated here to the mass difference �MK for the seven differ-
ent choices of the kaon mass listed in the first column in MeV.
The quantities in columns 2 through 4 are the simple lattice

matrix elements of the operator productsQqq0
i Qq0q

j for each i, j ¼
1, 2, summed over the four values of q, q0 ¼ u, c, without
Wilson coefficients or renomalization factors, and have been
scaled to remove a factor 10�2. These results are obtained from a
fitting range [9,20]. The final column gives the complete con-
tribution to �MK , expressed in physical units. The results for the
three largest values of the kaon mass are contaminated by an
unknown, exponentially growing two-pion contribution which
we have been unable to identify and subtract but are given here
for completeness. These results come from 800 configurations
and use a charm quark mass of 863 MeV.

MK

(MeV) �M11
K �M12

K �M22
K

�MK

ð�10�12 MeVÞ
563 6.42(15) �2:77ð16Þ 1.56(9) 6.58(30)

707 8.94(23) �3:16ð27Þ 2.26(14) 8.85(48)

775 10.65(29) �3:49ð35Þ 2.67(18) 10.32(62)

834 12.55(37) �3:84ð46Þ 3.11(24) 11.89(81)

918 15.36(50) �4:34ð66Þ 3.75(34) 14.20(115)

993 18.51(69) �4:91ð93Þ 4.49(48) 16.83(164)

1162 28.23(154) �6:97ð220Þ 6.99(112) 25.58(382)
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the three heavier kaon masses of 918, 993 and 1162 MeV
are more massive than the threshold two-pion intermediate
state and will therefore contain an unknown, exponentially
growing contamination which we have been unable to
identify and remove.

Given our pion mass of 421 MeV, the two-pion inter-
mediate state will be close to degenerate with kaon for the
MK ¼ 839 MeV case. Were we to follow the prescription
proposed in Ref. [4] to control finite-volume effects, we
should choose this degenerate case and then remove com-
pletely the contribution of the degenerate, two-pion inter-
mediate state, which should appear in the integrated
correlator with the time dependence ðtb � taÞ2. However,
as explained earlier, we are not able to identify the two-
pion intermediate state within errors. This implies that the
approximately on-shell, two-pion intermediate state con-
tributes only a small part to the mass difference in our
calculation and should have a small effect, at least on the
results for 563 � MK � 834 MeV.

VIII. COMPARISON WITH NLO
PERTURBATIVE CALCULATION

A direct comparison between our results and the experi-
mental value of �MK has limited value because our kaon
and pion masses are far from physical and we have not
included all diagrams. However, we can learn something
about the degree to which the present perturbative
calculations describe �MK for our unphysical kinematics
by comparing our result with that obtained perturbatively
by evaluating the perturbative formula at the kaon and pion
masses used in our present calculation. While there are
now results for�MK computed at NNLO given in Ref. [3],
complete expressions for the results are not given in that
brief Letter. Therefore, we choose to compare with the
NLO result of Herrlich and Nierste [2] for which complete
information is available in published form. Since the full
results at NLO and NNLO orders differ by 36% at the
physical point, the agreement with our result should be
only approximate and this use of the NLO result adequate
for our purpose. This comparison with NLO perturbation
theory may also lessen the significance of our omission of
disconnected diagrams, which do not appear at NLO. We
will compare this NLO result, evaluated at our kinematics,
with our lattice calculation carried out using 600 configu-
rations at the unitary quark masses ml ¼ 0:01 and ms ¼
0:032 (M� ¼ 421 MeV and MK ¼ 563 MeV) for a series
of valence charm quark masses.

The mass difference in the perturbative calculation is
given by

�MK ¼ G2
F

6�2
f2KB̂KMK

�
	� 	3

2

�
2
�1ð�c;mcð�cÞÞm2

cð�cÞ;
(27)

which can be obtained, for example, from Eq. (12.1) in
Ref. [12]. Here 	 is the sine of the Cabibbo angle, one of

the four Wolfenstein parameters entering the CKM matrix,
�c is the scale at which the four-flavor theory is matched to
that with three flavors and the kaon decay constant fK is
defined using conventions which make its physical value
equal to 155 MeV. The two nonperturbative parameters,
the kaon decay constant fK and the kaon bag parameter

B̂K, evaluated in the renormalization group invariant (RGI)
scheme, can also be computed for the unphysical values of
ml and ms listed above. For the present calculation we find
it convenient to directly compute the matrix element of the
left-left operator:

hOLLi ¼ h �K0jð�sdÞV�Að�sdÞV�AjK0i; (28)

obtaining the value 0.00462(5) for ml ¼ 0:01 and ms ¼
0:032. Here we use nonrelativistic normalization for the
kaon states: hKð ~pÞjKð ~p0Þi ¼ 
3ð ~p� ~p0Þ. This lattice result
can be converted to the RGI scheme by multiplying by the
factor:

ZRGI
VVþAA ¼ ZRGI

BK Z2
A; (29)

where ZRGI
BK ¼ 1:27 and ZA ¼ 0:7161 are taken from

Ref. [24].
The expression for the mass difference then becomes

�MK¼ G2
F

8�2
ZRGI
BK Z2

AhOLLi
�
	�	3

2

�
2
�1ð�c;mcð�cÞÞm2

cð�cÞ:
(30)

Here the factors ZRGI
BK Z2

AhOLLi are lattice quantities deter-
mined for the kinematics studied here while �1 is deter-
mined from the NLO perturbation theory calculation of
Ref. [2], summarized in Ref. [12]. Specifically, Eq. (30)
corresponds to the term in Eq. (12.1) of Ref. [12] contain-
ing �1. Note, the two rightmost factors in Eq. (12.1) do not
appear in our Eq. (30) since they have been incorporated in

B̂K, changing it to the RGI scheme. We evaluate �1 using
Eq. (12.31) of Ref. [12]. We now compare this perturbative
result with our nonperturbative, lattice calculation of the
same box topology and for the same quark masses.
In our lattice calculation, we determine�MK for a series

of charm quark masses. We can exploit this mass depen-
dence to attempt to separate the complete lattice result into
short and long distance parts as follows. As is discussed in
Appendix A, the dominant contribution to �MK is propor-
tional to the CKM matrix element product jVcdV

�
csj2 and

for largemc grows asm
2
c as is suggested by the perturbative

result in Eq. (30). As is also implied by that equation,
additional factors of ln ðm2

cÞ will appear in higher order
perturbation theory. If �MK is examined for mc � �QCD,

in addition to suchm2
cln

nðm2
cÞ terms, we should also expect

a constant piece, coming from long distance effects in
which the charm quark mass plays a negligible role, with
the remaining mass dependence behaving as 1=m2

c for large
mc. As explained in the discussion of the GIM subtraction
in Sec. VC, the charm quark mass enters only asm2

c which

CHRIST et al. PHYSICAL REVIEW D 88, 014508 (2013)

014508-18



implies there are no terms behaving as mc or 1=mc. Note
that the nonzero density of Dirac eigenvalues, �ð	Þ at zero
eigenvalue 	 ¼ 0, would induce a nonperturbative, chiral
symmetry breaking mc term in the limit of small mc, but
has no effect on the large mc limit being considered here.
This limit is determined only by the large 	 behavior of �.

We use this large mc expansion to parametrize the
dependence of �MK on mc by adopting the ansatz:

�MKðmcÞ ¼ aþ bm2
c þ cm2

c ln ðmcÞ; (31)

where we drop the possible 1=m2
c term. The quadratic plus

quadratic times logarithmic form of the terms with coef-
ficients b and c can be found in the NLO perturbative
expansion Eq. (30) if we use a fixed value of �c as mc

varies. Thus, the constants b and c are determined by short
distance physics, arising from length scales of order 1=mc

and should be accessible to a perturbation theory calcula-
tion. In contrast the a term involves nonperturbative
phenomena and long distances. The perturbative calcula-
tion also contains a long distance part which contributes to
the constant a. However, this is suppressed by a factor of
ðmud=mcÞ2 which is at most 0.5% for our lightest charm
quark mass.
In Fig. 18 we plot our results for �MK as a function of

the charm quark mass as well as the result from the fit to the
ansatz given in Eq. (31). The upper solid curve shows the
entire fitting function given in Eq. (31) while the lower
solid curve has the nonperturbative terms proportional to a
removed. A comparison of these two solid curves in Fig. 18
suggests that for unphysically massive M� ¼ 421 MeV
and MK ¼ 563 MeV and a charm quark mass of
1.2 GeV, approximately 50% of �MK comes from long
distance effects.
Also shown in Fig. 18 are the perturbative results for a

number of different choices of the matching scale �c.
Numerical values for the lattice and perturbative calcula-
tions are given in Table VII for the case in which the
matching scale is taken to be the charm quark mass,
�c ¼ mc. The errors given in the table are statistical
only. Since there is no degenerate two-pion channel for
these kinematics and the disconnected diagrams are ne-
glected in both the lattice and NLO perturbation theory
calculation, we expect that the discretization error is the
most important systematic error affecting this comparison.
We list the values of ðmcaÞ2 in Table VII to give an estimate
for the size of the discretization error. From Fig. 18 we see
that the NLO perturbative results depend dramatically on
the choice of �c, a well-known difficulty with the NLO
calculation. This dependence should be small if both mc

and �c are sufficiently large that NLO perturbation theory
is a good approximation. In fact, the NNLO result com-
puted by Brod et al. gives a large, 36% correction to the
NLO result for �cc at the physical charm quark and the
large �c dependence is not reduced at NNLO. Aside from
these ambiguities arising in the perturbative calculation,
we do see a very large gap between the lattice and both the
NLO results and the mass-dependent terms in our fit an-
satz. If we focus on the three heaviest charm quark masses
shown in Fig. 18, we see a 130%–150% shift compared to
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FIG. 18 (color online). The lattice results for �MK plotted as a
function of mc for the single kaon mass MK ¼ 563. Here the
charm quark mass is defined in the MS scheme at a scale � ¼
2 GeV. The top solid curve is the result of a correlated fit to the
ansatz given in Eq. (31). The same result but with the long
distance constant a omitted gives the lowest, solid curve. The
dotted and dashed lines give the perturbative result for the
choices of matching scale �c ¼ 1 and 1.5 GeV respectively.
Finally the dash-dot curve corresponds to the choice � ¼ mc.

TABLE VII. The quantity �MK for various charm quark masses and MK ¼ 563 MeV. Here
the charm quark mass is given in the MS scheme at a scale � ¼ 2 GeV. The third and fourth
rows give the lattice results and NLO perturbation result respectively. For the perturbative result,
the matching between four and three flavors is done at �c ¼ mcðmcÞ. The first row contains the
values of ðmcaÞ2 as an indication of the size of finite lattice spacing errors which may corrupt the
comparison between the lattice and NLO perturbative results.

mc (MeV) 350 435 521 606 692 863 1086 1449

ðmcaÞ2 0.04 0.06 0.09 0.12 0.16 0.25 0.39 0.70

�MKð10�15 GeVÞ 4.76(27) 5.06(29) 5.36(31) 5.66(32) 5.96(33) 6.58(35) 7.37(38) 8.61(41)

�MNLO
K ð10�15 GeVÞ 3.24 2.82 2.63 2.56 2.56 2.68 2.99 3.67
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the NLO results. This number is much larger than the 30%
long distance contribution deduced at physical kinematics
by comparing the NLO perturbative result with the experi-
mental value for �MK or the 11% discrepancy seen at
NNLO. We view this as strong evidence that nonperturba-
tive methods are needed to determine the contributions to
�MK from distances of 1=mc and larger. Of course, we
must bear in mind the potentially large finite lattice spacing
errors suggested by the values of ðmcaÞ2 given in the first
row of Table VII which may be as large as 40%–70% for
the two largest values of mc.

IX. CONCLUSION AND DISCUSSION

We have addressed two objectives in this paper. The first
is the presentation of techniques needed to compute the
KL � KS mass difference with controlled systematic errors
using the methods of lattice QCD. We demonstrate that
such a calculation should be possible if a lattice spacing
is used which is sufficiently small that an explicit charm
quark can be included in the calculation without intro-
ducing unacceptably large discretization errors. Such a
second-order weak calculation can be performed using
effective, four-quark weak operators provided explicit sub-
tractions are performed for specific exponentially growing
terms that arise from intermediate states which are lighter
than the kaon. While we have been unable to study the
contribution of two-pion states that are approximately
degenerate with the kaon and the resulting finite volume
effects, these can be controlled [4,7] and will be the subject
of future work.

Our second objective has been to demonstrate these
methods by carrying out a first calculation of the long
distance contributions to the KL � KS mass difference.
Although this calculation suffers from uncontrolled
systematic errors caused by unphysical kinematics and
a failure to include all relevant graphs, it is of some
physical interest. The experimental value of KL � KS

mass difference is 3:48� 10�12 MeV. Our result ranges
from 6:58ð30Þ � 10�12 MeV to 11:89ð81Þ � 10�12 MeV.
Since our kinematics are far from the physical and we have
not included all possible diagrams, we are not able to
compare with the experimental value directly. However,
we do find that as the kaon mass decreases from 834 to
563 MeV, the mass difference shrinks by nearly a factor of
2. This implies that the result depends strongly on the
kinematics. Currently we are using a pion mass of
421 MeV, which leaves open a possibly large decrease
were we to use a physical 135 MeV pion mass. Thus, our
results are consistent with the conclusions drawn from the
continuum, NNLO calculation of Brod and Gorbahn [3]
whose central value for the short distance part of �MK

accounts for 89% of the experimental value.
However, as Brod and Gorbahn point out, the apparent

slow convergence of the perturbation series reflects large
uncertainties in this application of perturbation theory at

the energy scale of the charm quark mass, giving strong
motivation for the sort of nonperturbative approach to the
full calculation being developed here. This conclusion is
supported by the comparison between the NLO perturba-
tive calculation of Herrlich and Nierste [2] and our calcu-
lation of the same diagrams, a comparison that can be
made for the same quark masses. We find poor agreement,
with the lattice result twice as large as those found from
perturbation theory using a variety of prescriptions for
treating the perturbative matching at the charm quark
threshold.
We have neglected type 3 and type 4 diagrams in this

calculation. Although this is a convenient choice in this
first study of long distance effects, we must of course
include these diagrams in a full calculation. We will need
to calculate extra stochastic source propagators in order to
evaluate type 3 and type 4 diagrams. This will make the
calculation more expensive and noisier. More importantly,
the type 4 disconnected diagrams pose the greatest chal-
lenge to a full calculation. Disconnected diagrams are
extremely noisy and require very large statistics. Instead
of analyzing more configurations, we can try to improve
our method. In this work, we have fixed the spatial location
of one operator and integrated only the position of the
second operator over the whole spatial volume. To improve
this, we can try to locate the first operator at more than one
spatial point and then average the result over those added
locations. The all mode averaging technique [25] may
make it possible to include the calculation of these extra
points with only a modest increase in computational cost.
This calculation is also a promising candidate for the use of
all-to-all propagators which would make the integration
over the entire space-time volume for both operators pos-
sible and also allow us to vary the source-sink separation,
tf � ti, which was fixed at 27 in the present calculation.

Based on the results presented here, we have begun a
more ambitious calculation with a lighter pion and larger
volume which includes all diagrams. This calculation
should yield increased insight into the physics of the
KL � KS mass difference and a better understanding of
the numerical requirements of a physical calculation.
If the substantially increased statistics in this next calcu-
lation, provided by the use of deflation and all mode
averaging, are sufficient to give an accurate answer, then
a follow-up calculation with physical kinematics should be
possible. However, substantially more computer resources
than are presently available will be needed if we are to use
a sufficiently small lattice spacing for the proper treatment
of the charm quark.

ACKNOWLEDGMENTS

We thank Laurent Lellouch, Guido Martinelli and
Steve Sharpe for very helpful discussions at the beginning
of this work and our RBC and UKQCD colleagues for
many valuable suggestions and encouragement. We are

CHRIST et al. PHYSICAL REVIEW D 88, 014508 (2013)

014508-20



particularly indebted to Christoph Lehner and Christian
Sturm for providing us with their results for the one-loop,

four-flavor RI/MOM toMS conversion factors before pub-
lication. These results were obtained using the DOE
USQCD and RIKEN BNL Research Center QCDOC
computers at the Brookhaven National Laboratory.
N. H. C. and J. Y. were supported in part by the U.S.
DOE Grant No. DE-FG02-92ER40699, C. T. S. by STFC
Grant No. ST/G000557/1, T. I. and A. S. by U.S. DOE
Contract No. DE-AC02-98CH10886 and T. I. also by
JSPS Grants No. 22540301 and No. 23105715.

APPENDIX A: CALCULATING �MK AND �K IN
THE STANDARD MODEL

In this appendix we review the various electroweak
diagrams that contribute to �MK and �K in the standard
model and their expected sizes. We then describe a frame-
work for a combined perturbative and lattice QCD calcu-
lation of these quantities to subpercent accuracy. As in the
body of this paper, we consider a four-flavor lattice calcu-
lation which includes an explicit charm quark. This allows
a separation between the perturbative (short distance) and
lattice QCD (long distance) parts of the calculation at a
sufficiently large scale � that both the lattice and pertur-
bative errors can be controlled. This discussion provides a
basis for the complete calculation of �MK begun in this
paper and also identifies the ingredients that would be
needed for a similar calculation of �K [7] with accurate
control of both long and short distance phenomena,
addressing the issues raised in Ref. [9].

Recall that �MK and �K are derived from CP conserv-

ing and CP violating parts of the off-diagonal K0-K0

mixing matrix. Here we focus on the so-called ‘‘dispersive
part’’ of the matrix which involves a sum over off-shell
states such as found in Eq. (1). We are not considering the
on-shell ‘‘absorptive part’’ which can be determined di-
rectly from first-order, on-shell K ! �� matrix elements
that can be evaluated by more familiar lattice methods. To

provide context for this discussion we show in Fig. 19 the
two types of graphs which contribute to M�00, the
off-diagonal mass term in the standard model, a box diagram
on the left, Fig. 19(a), and a disconnected graph on the right,
Fig. 19(b). In the former, each of the two exchanged W
bosons connects to both of the two quark lines carrying
external flavor. In the latter each W boson is emitted and
absorbed from a single quark line and only gluons join the
two quark lines. Diagrams of the sort which appear in
Fig. 19(a) will contribute to contractions of types 1 and 2
shown in Figs. 3 and 4, depending on how the external quark
lines in Fig. 19(a) are combined to form the kaon states.
Diagrams of the sort which appear in Fig. 19(b) will
contribute to contractions of types 3 and 4 shown in
Figs. 5 and 6, depending on how the external quark lines
in Fig. 19(b) are arranged, making the resulting diagram
disconnected in the t or s channel, respectively. Throughout
this paper a disconnected diagram is one which can be
separated into two disjoint pieces by cutting only gluon
lines. In the case of the t-channel disconnected graphs enter-
ing the type 3 contractions of Fig. 5, this must include
cutting the gluon lines joining the s and d quarks making

up the K0 and K0 mesons.
The internal quark lines appearing in both types of

diagrams between the weak vertices are of the up type,
i.e. u, c and t, and couple to the external s and d by the
product of CKM matrix elements 	i ¼ V�

idVis where

i ¼ u, c or t. Conventionally [26] the u quark coupling is
eliminated by using the orthogonality of the first and
second columns of the CKM matrix, allowing the sum
over the three types of up quarks in each quark line of
Fig. 19(a) to be written in the GIM-subtracted form:

X
i¼u;c;t

	i 6p
p2 þm2

i

¼ 	c

� 6p
p2 þm2

c

� 6p
p2 þm2

u

�

þ 	t

� 6p
p2 þm2

t

� 6p
p2 þm2

u

�
; (A1)

FIG. 19. Examples of the two types of Feynman diagrams that can contribute to K0- �K0 mixing: a box graph (a) and a disconnected
graph (b). The box graph shows only the quarks and W’s with gluons to be included in all possible ways. The disconnected graph
shows a particular choice of gluon lines which will give a nonvanishing contribution. Of course, many other arrangements of gluon
lines are possible.
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where we have dropped the usual mass term in the numera-
tor because of the V � A structure of the weak vertices.
Cancellation between the two propagators within the curly
brackets reduces the degree of divergence of each subgraph
containing such a GIM-subtracted combination by two
units. (Note that this reduction of the degree of divergence
by two units for each GIM-subtracted propagator is a
consequence of chiral symmetry and holds more generally,
even if additional intermediate gluon lines are coupled to
that propagator.) Using this scheme the resulting expres-
sion for the box diagram has been worked out at leading
order (LO) [26], next-to-leading order (NLO) [2] and next-
to-next-to-leading order (NNLO) [3,27] in QCD perturba-
tion theory and the results through NLO are summarized
in Ref. [12].

For our calculation we find this standard approach un-
necessarily awkward in two ways. First, both 	t and 	c

have imaginary parts, giving two partially related contri-
butions to �K. Second, the term which involves a top-up
subtraction combines short and long distance quantities in
a fashion that is easily accommodated in neither a lattice
nor a perturbative calculation. The top quark is too massive
to be treated directly using lattice methods while the up
quark contribution can be sensitive to infrared effects that
cannot be evaluated using perturbation theory. These two
features are neatly avoided if CKM unitarity is instead used
to eliminate 	c:

X
i¼u;c;t

	i 6p
p2 þm2

i

¼ 	u

� 6p
p2 þm2

u

� 6p
p2 þm2

c

�

þ 	t

� 6p
p2 þm2

t

� 6p
p2 þm2

c

�
: (A2)

With this approach 	u is real and all CP violation requires
the presence of 	t. In addition, the propagator constructed
from the difference of top and charm propagators will
substantially suppress the contribution from low momen-
tum, p � mc, because of the relatively large mass of both
the top and charm quarks. This should make the perturba-
tive calculation of amplitudes involving this difference
more reliable and allow factors containing this difference
to be treated as local in a lattice calculation with greater
accuracy. Since the real parts of 	u and �	c are nearly
identical, the structure of the �MK calculation is affected
very little by this change. A similar construction with
similar consequences can be performed separately for
each of the two vertex subgraphs appearing in Fig. 19(b).

Using this framework �MK and �K, including both the
perturbative calculation of short distance contributions and
the nonperturbative calculation of long distance parts, can
be naturally separated into six terms associated with the
three factors 	2

u, 	u	t and 	
2
t (which we will refer to as uu,

ut and tt respectively) for each of the box and disconnected
topologies. We will now discuss the techniques that can be
used to compute each of these six terms and the size

expected for each. Before the factors of 	i	j have been

applied, these six amplitudes, which must be determined
by a combination of perturbative and lattice methods, are
common to both �MK and �K. Finally these six size
estimates can be combined with the known values of the
real and imaginary parts of the three 	i	j factors to re-

produce the standard expectations for the relative contri-
bution of each of these six terms to �MK and �K, allowing
us to anticipate the precision that may be eventually
achieved with the methods proposed here.
Of course, these 	i	j factors play a large role in deter-

mining which of the uu, ut and tt pieces will be important
and which can be neglected when computing�MK and �K.
The very different scale of the top and charm quark masses
also affects the ultimate importance of these six ampli-
tudes, where a factor of ðmt=mcÞ2 can produce a more than
104 enhancement. We will use the following values
extracted from Ref. [28]:

	u ¼ 0:22 (A3)

	c ¼ �0:22þ 1:34� 10�4i (A4)

	t ¼ 3:2� 10�4 � 1:34� 10�4i (A5)

�
mt

mc

�
2 ¼ 2:4� 104; (A6)

where 	c is also given for completeness.
Box topology, uu: We first discuss the uu, ut and tt

contributions coming from amplitudes with the box topol-
ogy. The uu piece is simple to discuss. The difference
between up and charm quark propagators produces the
GIM suppression needed for convergence for the box
topology. If the W propagators are contracted to points,
the resulting diagrams have a degree of divergence of þ2.
For the uu piece, as discussed above, the double c� u
difference reduces the degree of divergence to�2. Thus, in
a lattice calculation such as that undertaken in this paper,
the uu piece can be accurately determined from products of
pairs of four-quark operators. Since only momenta of the
order of mc will enter, power counting implies that the uu
contribution will be of order m2

c=M
4
W ¼ xc=M

2
W , were we

adopt the conventional notation xi ¼ ðmi=MWÞ2 for i ¼ u,
c and t.
Box topology, ut: The ut contribution to diagrams with

the box topology is more complex. Since only one quark
line involves both up and charm quarks, we now have a
single GIM subtraction and the diagram that results if the
W propagators are each contracted to a point will be
logarithmically divergent. Thus, if a lattice calculation is
attempted including up and charm quarks using products of
the two four-quark operators given in Eq. (8), there will be
an incorrect, short distance contribution in which this
logarithmic divergence is regulated not by the difference
of the top and charm quark mass but by the lattice cutoff.
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However, this difficulty can be accurately overcome by
introducing the additional �S ¼ 2 four-quark operator
OLL, defined in Eq. (28), and adjusting its coefficient so
that an appropriate off-shell, gauge-fixed four-quark
Green’s function which includes both this new OLL inser-
tion and the original operator product takes the value of the
continuum amplitude instead of that given by the lattice
cutoff [4,11]. If the scale�where this condition is imposed
is sufficiently small (� � 1=a) that the lattice evaluation
is accurate and sufficiently large (�QCD � �) that the

perturbative value of the continuum amplitude can be
reliably computed, then this ut box contribution can be
computed with controlled errors. Since the most singular
short distance behavior is logarithmic, power counting
implies that the ut box piece has the same xc=M

2
W scale

as was found for the uu contribution, up to logarithmic
factors.

Box topology, tt: Next consider the tt contribution to the
box topology. The natural momentum cutoff in this t� c,
GIM-subtracted amplitude is mt so this amplitude is domi-
nated by short distances and has a natural size of xt=M

2
W ,

more than 104 larger than the uu and ut pieces just con-
sidered. Thus, this piece can be computed at an ultimate
accuracy of 10�4 by the standard evaluation of the product
of a perturbative Wilson coefficient and a lattice matrix
element of OLL.

Disconnected topology, uu: The uu contribution from
the disconnected graphs is similar in structure to the box
case discussed above. The double GIM, u� c subtractions
make finite the diagrams resulting from reducing the W
propagators to points. Thus, this piece also can be directly
computed using lattice methods and the four-quark opera-
tors of Eq. (8). However, the size of such a disconnected uu
piece is more difficult to estimate. A phase space compa-
rable to that present in the box contribution results if the
momentum carried by the exchanged gluons in Fig. 19(b)
is on the order ofmc, giving the estimate xc=M

2
W . However,

since momenta of the order of mc must be carried by
gluons, these may be suppressed by �2

sðmcÞ. In contrast,
the lower momentum region may receive some I ¼ 0
enhancement. However, the smaller momentum suggests
a ðmK=mcÞ2 phase space suppression factor. As mentioned
previously, such contributions are often described as Zweig
suppressed. Nevertheless, such a disconnected uu contri-
bution can be precisely defined in a lattice calculation
which includes explicit charm quarks and its inclusion is
the natural next step, following the calculation presented
here. Of course, such a lattice calculation would automati-
cally include all diagrams with this disconnected topology
and two, GIM-subtracted, u� c internal quark propaga-
tors, not only the specific diagram shown in Fig. 19(b).

Disconnected topology, ut: The disconnected ut piece
can also be included in a lattice calculation. Such a con-
tribution can be viewed as arising from the product of two
factors. One factor is associated with 	u and involves the

GIM-subtracted difference of up and charm quark lines
connected to one of the current-current operators Q��

i

given in Eq. (8) for i ¼ 1, 2 and � ¼ c, u, obtained by
shrinking to a point the W propagator, shown for example
in Fig. 19(b), which is associated with the factor 	u. The
second factor, associated with 	t, must be viewed as the
sum of separate contributions of the top and charm quark
propagators. The large mass of the top quark implies that
the dominant contribution involving the top quark will
come from a gluonic vertex such as one of those shown
in Fig. 19(b), with the vertices of the W and top propaga-
tors treated as coincident. This part can be accurately
represented in a lattice calculation by the four standard,
four-flavor ‘‘QCD penguin’’ operators

P3 ¼
X

q¼u;d;c;s

ðsidiÞV�AðqjqjÞV�A;

P4 ¼
X

q¼u;d;c;s

ðsidjÞV�AðqjqiÞV�A;
(A7)

P5 ¼
X

q¼u;d;c;s

ðsidiÞV�AðqjqjÞVþA

P6 ¼
X

q¼u;d;c;s

ðsidjÞV�AðqjqiÞVþA;
(A8)

using the same notation as in Eq. (8). Such a dimension-6,
QCD penguin operator will have a coefficient of order
1=M2

W that can be computed in perturbation theory if that
operator is renormalized at an appropriately large scale
� � �QCD. The combined ut amplitude will be of order

xc=M
2
W with the same uncertainties associated with the

scale of gluon momentum described above—uncertainties
that can be definitively resolved by a lattice calculation.
The charm quark part of this second factor requires more

care. While a portion can be reproduced by the lattice
charm quark and a four-quark vertex representing the W
exchange, lacking the GIM subtraction, this contribution
will contain a logarithmically divergent gluon vertex sub-
graph which will also require the introduction of a QCD
penguin subtraction. As described in the discussion above
of the ut contribution to the box diagrams, this subtraction
can be chosen to remove the short distance artifacts intro-
duced by this divergence and to replace them with the
correct short distance part which can be computed in
perturbation theory. While somewhat involved, the neces-
sary short distance artifact subtraction can be determined
nonperturbatively using Rome-Southampton methods and
the perturbative short distance replacement included with
accurately controlled errors.
Thus, an accurate lattice representation for the two W

loops appearing in the disconnected diagrams, such as that
of Fig. 19(b), can be obtained for the ut piece. However,
one final complexity arises because the product of the
four-quark operators associated with each of the two W
exchanges will lead to a logarithmic singularity as their
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locations collide in the integral over their space-time posi-
tions. (This singularity is not quadratic because of the GIM
subtraction present in the factor associated with 	u.) This
difficulty can also be handled by Rome-Southampton tech-
niques and, as in the case of the ut contribution to the box
diagram, requires the introduction of the operator OLL to
both remove the short distance artifacts associated with this
divergence in the product evaluated on the lattice and to
provide the correct short distance contribution [4,11].

To summarize, both the divergence associated with the
charm quark loop appearing in the factor associated with 	t

in this ut product and the overall divergence resulting from
the collision of the two four-quark operators representing
the two exchangedW bosons can be removed by imposing
an off-shell, gauge-fixed, RI/MOM, Rome-Southampton
condition on a four-quark Green’s function containing
the singular loop or product. Such a condition is imposed
at a scale �. In each case a perturbative calculation of this
same four-quark Green’s function in the continuum theory,
including any needed top charm GIM cancellation, must be
carried out and the result at this same scale � determined.
The required operator, either a combination of the QCD
penguin operators in Eq. (A8) or OLL, must then be added
to the lattice calculation to replace the lattice-regulated
short distance part with the correct, continuum short
distance contribution.

Disconnected topology, tt: Finally the disconnected tt
contributions are suppressed by two powers of 	t. As in the
case of the box diagram, the GIM cancellation takes place
at the scale of mt allowing the integration momentum to
increase up to p 
 mt giving this disconnected tt also an
expected size of xt=M

2
W , resulting in a contribution whose

nominal size is the same as the tt contribution to the box
graph. Of course, this is a short distance contribution and
can be viewed as a NNLO correction to the usual tt portion
of the box diagram.

We conclude that the six uu, ut and tt contributions with
box and disconnected topologies can be accurately deter-
mined by a combination of QCD and electroweak pertur-
bation theory and four-flavor lattice calculations. While the
specific operators that must be included and subtractions
required vary between the box and disconnected topologies
and in some cases extra suppression factors of ðmK=mcÞ2
may arise, these have the relative nominal size of xc=M

2
W ,

xc=M
2
W and xt=M

2
W respectively.

We can combine these estimates with the experimental
values of 	u, 	t, xt=xc given in Eq. (A6) to determine
which terms must be computed to obtain accurate results
for �MK and �K. The result is summarized in Table VIII.
As described earlier in this paper, the largest contribution
to �MK comes from uu pieces with box and disconnected
topologies and can be computed directly in a four-quark
theory such as that being used here. The largest contribu-
tion likely comes from the uu box piece which is the
subject of the present calculation. However, a disconnected

uu contribution should be included through the type 3 and
4 diagrams shown in Figs. 5 and 6. The tt contribution
to �MK is on the few percent level and can be deter-
mined from the usual product of a perturbatively
determined Wilson coefficient times the matrix element

hK0jOLLjK0i, analogous to the usual calculation of the
dominant, short distance contribution to �K. The more
challenging ut piece, while accessible to lattice methods,
is expected to contribute only at the fraction of a percent
level.
For �K the situation is different. As can be seen from

Table VIII the dominant piece comes from the familiar tt
contribution giving the usual product of BK and a Wilson
coefficient. The ut term may contribute at the few percent
level, involves long distance contributions and should be
accessible to a combination of lattice and perturbative
techniques. The first piece to compute would likely be
the box contributions which can be obtained in a four-
flavor theory from a product of four-quark operators such
as being studied here. However, in contrast to the present
calculation of �MK, an overall logarithmic divergence
must be removed and a compensating short distance, OLL

matrix element included. A consistent calculation would
also require the inclusion of disconnected graphs with the
new QCD penguin operators and two levels of short
distance corrections, discussed above.
In summary, this examination of the various terms that

contribute to both �MK and �K suggests that both quanti-
ties, including their long distance contributions, should be
accessible to lattice methods with controlled systematic
errors, ultimately at the subpercent level.
It should be emphasized that the lattice calculation of the

leading contributions to �MK presented in this paper, and
the extension of these methods to percent-level, subleading
terms as discussed in this appendix depend critically on the
ability of lattice methods to describe accurately the four-
flavor, effective theory of the standard model. A calcula-
tion of these quantities with controlled systematic errors
must seamlessly combine continuum perturbation theory
with lattice calculation and it is essential that both ap-
proaches give the same result for kinematic regions in
which they both apply. This is made possible by the use
of chiral lattice fermions which respect the full chiral

TABLE VIII. Explicit factors of CKM matrix elements and
powers of quark masses which multiply the various terms
considered here as they contribute to �MK and �K. We adopt
the standard notation, using xi ¼ m2

i =M
2
W for the ratio of the

mass squared of the up-type quark i ¼ u, c and t to the square of
the mass of the W boson.

Quarks M�00 ReðM�00Þ ImðM�00Þ
uu 	2

uxc 1:1� 10�5 0

tt 	2
t xt 4:0� 10�7 4:1� 10�7

ut 	u	txc 1:6� 10�8 6:6� 10�9

CHRIST et al. PHYSICAL REVIEW D 88, 014508 (2013)

014508-24



symmetry of the effective four-flavor theory and by the
Rome-Southampton renormalization methods which
define a single set of renormalization conditions which
can be applied using both methods. For example, the
resulting close relation between continuum and lattice
methods makes it entirely practical to introduce a subtrac-
tion which removes a ln ð�aÞ term in a lattice calculation
and to replace that subtracted term by the matrix element of
a local operator whose coefficient is computed in pertur-
bation theory giving, in the end, a physical result with
controlled systematic errors.

APPENDIX B: SECOND ORDER ENERGY SHIFT
FROM EUCLIDEAN FOUR-POINT FUNCTIONS

In Sec. II we introduced an integrated, Euclidean
four-point function, given in Eq. (4) and showed in
Eq. (5) how the finite-volume, second-order energy shift
could be extracted from this integrated correlator. In this
appendix, we provide added insight into this result by
showing how the various terms in Eq. (5) naturally arise
from an application of standard perturbation theory to the
time evolution operator generated by the sum of the QCD
and weak interaction Hamiltonians, HQCD þHW . We will

also discuss other constructions that could be used to
achieve a similar result and explain why we chose to use
the integrated correlator given in Eq. (4).

The integrated correlator used in this paper to determine
the finite-volume,KL � KS mass shift can be interpreted as

a term in the expansion of the K1=2 ¼ ðjK0i � jK0iÞ= ffiffiffi
2

p
matrix elements of the following hybrid time evolution:

W � ¼ h0je�HQCDðTtot�tfÞK�e
�HQCDðtf�tbÞe�ðHQCDþHW Þðtb�taÞ

� e�HQCDðta�tiÞK�e
�HQCDðtiÞj0i (B1)

for � ¼ 1 or 2. In this appendix we use Ttot to represent the
time extent of the lattice. We can expand this matrix
element in powers of HW , and evaluate the second-order
term for � ¼ 1 and 2. The difference between the CP even
� ¼ 1 andCP odd � ¼ 2 results is precisely the integrated
correlator given in Eq. (4). The four terms appearing in the
expression for this integrated correlator given in Eq. (5)
can then be easily understood by considering the all-orders
time evolution given above in Eq. (B1) as follows.

As in Eq. (2) we assume that the times ti and Ttot � tf
are sufficiently large that Euclidean time evolution with the
QCD Hamiltonian HQCD projects onto the vacuum state.

We also assume that the separations ta � ti and tf � tb are

sufficiently large that only the QCD eigenstates jK�i
propagate over this interval. We can then use the sudden
approximation to evaluate the expression in Eq. (B1) in
terms of a sum over eigenstates j�ni of the combined
Hamiltonian HQCD þHW with eigenvalues En:

W ¼ N2
Ke

�MKðtf�tbÞ
X
n

hK�j�nie�Enðtb�taÞ

� h�njK�ie�MKðta�tiÞ: (B2)

The target of these considerations is the second-order,

finite-volume energy shift Eð2Þ
K�

for the state jK�i given in

standard perturbation theory by

Eð2Þ
K�

¼ X
n�K�

hK�jHW jnihnjHW jK�i
MK � En

; (B3)

where jni and En are the eigenstates and corresponding
eigenvalues of the QCD Hamiltonian HQCD. When

Eq. (B2) is expanded to second order in HW , this second-
order energy shift will appear as the term:

N2
Ke

�MKðtf�tiÞEð2Þ
K�
ðtb � taÞ (B4)

which corresponds to the term proportional to T in Eq. (5).
A second type of term appearing in an expansion of

Eq. (B2) to second order in HW comes from expanding the
HQCD þHW eigenstates j�ni in terms of the eigenstates

jni of HW . To first order in HW , a general state j�ni will
overlap with the state jK�i as given in standard first-order
perturbation theory:

hK�j�ni ¼ hK�jHW j�ni
En �MK

: (B5)

This mixing with nonkaon states will introduce additional
exponential time dependence in Eq. (B2) through the
terms:

N2
Ke

�MKðtf�tiÞ
X

n�K�

jhK�jHW j�nij2
ðEn �MKÞ2

e�ðEn�MKÞðtb�taÞ: (B6)

This is the origin of the eðMK�EnÞT term in Eq. (5). In a

similar fashion, the �1 accompanying the eðMK�EnÞTtot in
that equation comes from the standard second-order
correction to the normalization of the state j�K�

i:

hK�j�K�
i ¼ 1� 1

2

X
n�K�

jhnjHW jK�ij2
ðMK � EnÞ2

; (B7)

where j�K�
i is the eigenstate of HQCD þHW which is

equal to jK�i to zeroth order in HW .
Finally if the volume is chosen so that one of the ��

eigenstates ofHQCD, jn0i is degenerate with the kaon state,
there will be a first-order energy shift in the CP even state
jK1i given by standard degenerate perturbation theory as

Eð1Þ
K1

¼ �hn0jHW jK1i: (B8)

This energy shift will contribute a term proportional to
ðtb � taÞ2 when the expression in Eq. (B2) is expanded to
second order in HW . This accounts for the final T2 term
in Eq. (5).
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Given this straightforward interpretation of result in
Eq. (5) in terms of standard perturbation theory we can
easily analyze alternative Green’s functions that might be
used to determine�MK. For example, a simpler alternative
integrates the twoweak operators over the full time interval
½ti; tf� between the kaon source and sink instead of the

restricted interval ½ta; tb� used here:

A0 ¼ 1

2

Xtf
t2¼ti

Xtf
t1¼ti

h0jTfK0ðtfÞHWðt2ÞHWðt1ÞK0ðtiÞgj0i:

(B9)

Following the above discussion, this Green’s function can
be recognized as a second-order term in the HW expansion
of the following matrix elements:

W 0
�¼h0je�HQCDðTtot�tfÞK�e

�ðHQCDþHW Þðtf�tiÞK�e
�HQCDðtiÞj0i

(B10)

¼ X
n

h0jK�j�nie�Enðtf�tiÞh�njK�j0i: (B11)

An expansion of this equation to second order in HW con-

tains the term of interest, N2
K�MKðtf�tiÞe�MKðtf�tiÞ=2.

However, this expression has two disadvantages when
compared to the quantity which we use. The first is the
need to vary the location of the source and sink positions if
the linear dependence on tf � ti is to be identified. For the

Green’s functions which we consider we are able to work
with fixed tf and ti and simply vary the interval ½ta; tb� over
which the weak operator insertions are integrated. Having
fixed kaon source and sink locations reduces the number of
propagators which must be evaluated in the calculation
presented here.

A second, far more serious difficulty with the expression
in Eq. (B11) arises from the analogue of the exponentially
increasing terms given in Eq. (B6) for our method of
choice. In that previous case the coefficient of an exponen-
tially increasing term coming from a QCD energy eigen-
state jni with energy En lower than MK is a simple matrix
element of HW between that state and a physical kaon

state, a quantity easily determined in a separate lattice
calculation. However, for the matrix element W 0

� above
these unwanted terms come with coefficients that are very
difficult to determine and hence cannot be easily sub-
tracted. Specifically for W 0

� the term analogous to that
in Eq. (B6), involving energy eigenvalues of HQCD þHW

that are zeroth order in HW and energy eigenstates that are
expanded to first order in HW , gives the expression:

X
n00;n0�n

h0jK�jn00i hn
00jHW jni

En � En00
e�Enðtf�tiÞ hnjHW jn0i

En � En0
hn0jK�j0i:

(B12)

Here a term with energy En <MK which must be removed
has a complicated coefficient given by a sum over matrix
elements of HW between that state jni and a series of
excited states jn0i, a combination apparently inaccessible
to a lattice QCD calculation. Thus, a separate determina-
tion of the terms to be subtracted, such as was done for the
pion state in the calculation presented here, appears very
difficult. Note this second difficulty only arises when
there exist states of lower energy than that of the state
being studied, in our case the kaon. All of these unwanted
terms with En > mK will not contribute for sufficiently
large tf � ti.

Finally, a third alternative that we can examine integra-
tes the product of the two weak operators HWðt2ÞHWðt1Þ
over the entire time interval ½0; Ttot�:

A00 ¼ 1

2

XTtot

t2¼0

XTtot

t1¼0

h0jTfK0ðtfÞHWðt2ÞHWðt1ÞK0ðtiÞgj0i:

(B13)

Since a strangeness change of two units, caused by the
presence of HWðt2ÞHWðt1Þ acting between the operators

K0ðtfÞ and K0ðtiÞ is required to obtain a nonzero result, the
amplitudes A0 and A00 must be equal and expanding
the region of integration in this way should not affect the
result. Thus, A0 and A00 will also suffer from the same
shortcomings.
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