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The susceptibilities of the real and imaginary parts, as well as of the modulus, of the Polyakov loop, are

computed in SU(3) lattice gauge theory. We show that the ratios of these susceptibilities are excellent

probes of the deconfinement transition, independent of the renormalization of the Polyakov loop and only

weakly dependent on the system size. The ratios are almost temperature independent above and below the

transition and exhibit a discontinuity at the transition temperature. This characteristic behavior can be

understood in terms of the globalZ3 symmetry of the Yang-Mills Lagrangian and the general properties of

the Polyakov loop probability distribution.
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Systems described by a pure SUðNcÞ gauge theory in
(dþ 1) dimensions undergo a phase transition at finite
temperature. Owing to the conjectured universality with
d-dimensional ZNc

spin systems [1], this transition is of

general interest.
For Nc ¼ 3, the transition is first order and is charac-

terized by spontaneous breaking of the global Z3 center
symmetry of the Yang-Mills Lagrangian [2–6].

The Polyakov loop, which is linked to the free energy of
a static quark immersed in a hot gluonic medium [7,8], can
be used to define an order parameter of the deconfinement
transition. At low temperatures its thermal expectation
value vanishes, implying color confinement, while at
high temperatures it is nonzero, resulting in a finite energy
of a static quark and consequently the deconfinement of
color. While the basic thermodynamic functions of SU(3)
pure gauge theory are well established within the lattice
approach [2–6,9–12], the situation is less satisfactory for
the renormalized Polyakov loop and, in particular, for the
corresponding susceptibilities.

In a pure SU(3) gauge theory, the temperature of the
confinement-deconfinement transition is uniquely defined
by the discontinuity of the order parameter, since the
transition is first order. More generally, for systems where
the transition is continuous, e.g. QCD, the transition
temperature is identified by a maximum of the fluctuations,
quantified e.g. by one of the Polyakov loop susceptibilities.
For Nc � 3, the Polyakov loop operator is complex-
valued. Correspondingly, one can define susceptibilities
of the real and imaginary parts as well as of the modulus
of the Polyakov loop.

In a Yang-Mills theory, formulated on the lattice, the
ultraviolet divergence of the bare quark-antiquark free
energy implies that, in the continuum limit, the bare
Polyakov loop vanishes at any temperature. Thus, in order
to obtain a physically meaningful continuum limit, the

Polyakov loop must be renormalized [13,14]. The renor-
malization of gluon correlation functions in general, and
the Polyakov loop susceptibility in particular, are still
subject to uncertainties.
In this paper we bypass these ambiguities by considering

the ratios of Polyakov loop susceptibilities. In particular,
we focus on their properties near the deconfinement tran-
sition. To this end, we compute the temperature depen-
dence of the Polyakov loop susceptibilities within SU(3)
lattice gauge theory on different-sized lattices and examine
the relevance of the susceptibility ratios as probes of the
deconfinement transition.
We argue that these characteristics are naturally

understood in terms of the global Z3 symmetry and the
general properties of the Polyakov loop probability dis-
tribution. Moreover, they are independent of the renormal-
ization of the Polyakov loop and depend only weakly on
the volume. This implies that the susceptibility ratios
are excellent observables for identifying the confinement-
deconfinement phase transition in SU(3) pure gauge
theory.
The Polyakov loop susceptibilities on the lattice.—On an

N3
� � N� lattice, the Polyakov loop is defined as the trace

of the product over temporal gauge links,

Lbare
~x ¼ 1

Nc

Tr
YN�

�¼1

Uð ~x;�Þ;4; (1)

Lbare ¼ 1

N3
�

X
~x

Lbare
~x : (2)

Due to the Z3 symmetry of the pure gauge action, this
quantity vanishes, when averaged over all gauge field
configurations. Furthermore the Polyakov loop is strongly
N� dependent and must be renormalized.
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These problems are avoided by considering the renor-
malized Polyakov loop [13],

Lren ¼ ðZðg2ÞÞN�Lbare; (3)

and introducing the ensemble average of the modulus
thereof, hjLrenji. The latter is well defined in the continuum
and thermodynamic limits and is an order parameter for the
spontaneous breaking of the Z3 center symmetry. The
lattice gauge theory result for hjLrenji, as a function of
temperature, is shown in Fig. 1.

As noted above, the location of the phase transition
is correlated with a maximum (or divergence) of the fluc-
tuations of the order parameter. For the confinement-
deconfinement transition, these fluctuations are reflected
in the renormalized Polyakov loop susceptibility,1

T3�A ¼ N3
�

N3
�

ðhjLj2i � hjLji2Þ: (4)

In the SU(3) gauge theory, the Polyakov loop operator
is complex. Consequently, in addition to �A, one can
also explore independent fluctuations of the real and imagi-
nary parts of the Polyakov loop. Taking the Z3 symmetry
into account, we define a longitudinal and a transverse
susceptibility,2

T3�L ¼ N3
�

N3
�

½hðLLÞ2i � hLLi2�; (5)

T3�T ¼ N3
�

N3
�

½hðLTÞ2i � hLTi2�; (6)

where LL ¼ Reð ~LÞ and LT ¼ Imð ~LÞ. Here we have intro-

duced the Z3 transformed Polyakov loop, ~L ¼ Le2�ni=3,

with n ¼ 0, �1. The phase of the transformation is
chosen such that for T > Tc the expectation value of the
transformed Polyakov loop, h ~Li, is real. For T < Tc the
expectation value of the Polyakov loop vanishes, and
we take n ¼ 0. Thus, in the latter case LL ¼ ReðLÞ and
LT ¼ ImðLÞ.
We have computed the Polyakov loop susceptibilities,

Eqs. (4)–(6), within SU(3) lattice gauge theory, using the
(1,2)-tree-level Symanzik improved gauge action on an
N3

� � N� lattice. We consider lattices of temporal size
N� ¼ 4, 6 and 8 and spatial extent N� varying from 16
to 64. However, in order to make the figures more trans-
parent, we show results only for the largest volumes,
i.e. for N� ¼ 48 and 64. We set the temperature for the
three temporal lattice extents by varying the bare coupling
and use the temperature scale determined by the zero-
temperature string tension, as well as the critical couplings
of the deconfinement transition [10,15]. The gauge field
configurations were generated using one heatbath and four
overrelaxation updates per sweep with 15 000 sweeps in
general and up to 100 000 sweeps close to the critical
temperature, Tc.
The ratios of susceptibilities.—In Figs. 2 and 3 we

show SU(3) lattice gauge theory results for the ratios RA ¼
�A=�L and RT ¼ �T=�L, as functions of temperature.
Since renormalization as well as volume and temperature
factors cancel in these ratios, they provide robust probes of
the deconfinement transition. Indeed, both ratios exhibit a
strong discontinuity at the deconfinement phase transition
and are almost temperature and volume independent. A
straightforward interpretation of the properties of RA and
RT is obtained by using general considerations and the Z3

center symmetry.
Consider first the ratio RT for T < Tc. In the

Z3-symmetric phase, the expectation value of any
symmetry-breaking operator, e.g. ~L or ~L2, must vanish.
Hence,
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FIG. 1 (color online). The modulus of the renormalized
Polyakov loop hjLrenji obtained in SU(3) lattice gauge theory.
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FIG. 2 (color online). The ratio of the modulus �A and longi-
tudinal �L Polyakov loop susceptibilities obtained in SU(3)
lattice gauge theory. The lines shows �A=�L ¼ 1 for T > Tc

and �A=�L ¼ 2� �=2 for T < Tc (see text).

1In the following we deal only with the renormalized Polyakov
loop, and hence drop the superscript on Lren.

2There is no mixing between longitudinal and transverse
susceptibilities.
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Vðh ~L2i � h ~Li2Þ ¼ �L � �T ¼ 0; (7)

which implies that �L ¼ �T . Since �L and �T are both
nonzero, it follows that RT ¼ 1, as shown in Fig. 3.

The fact that RA ’ 1 in the deconfined phase, as shown
in Fig. 2, follows from the following argument. In the
broken-symmetry phase, we introduce shifted operators
�LL and �LT ,

LL ¼ L0 þ �LL; (8)

LT ¼ �LT; (9)

where L0 ¼ h ~Li ¼ hLLi is the (real) expectation value of
the transformed Polyakov loop and the shifted operators
�Li, with i ¼ ðL; TÞ, describe the fluctuations about the
mean. The thermal average of the shifted operator squared
yields the corresponding susceptibility, Vhð�LiÞ2i ¼ �i,
i ¼ L, T. We then expand the modulus of the Polyakov
loop jLj ¼ j ~Lj in the shifted operators,

jLj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
L þ L2

T

q
� L0

�
1þ �LL

L0

þ 1

2

ð�LTÞ2
L2
0

�
: (10)

Using the fact that by definition h�Lii ¼ 0, we find

hjLji ’ L0

�
1þ 1

2

hð�LTÞ2i
L2
0

�
; (11)

while

hjLj2i ¼ L2
0

�
1þ hð�LTÞ2i

L2
0

þ hð�LLÞ2i
L2
0

�
: (12)

This implies that to leading order in the expansion of jLj,
�A ’ �L and hence RA ’ 1 for T > Tc, as shown in Fig. 2.

The properties of RT in the deconfined and RA in the
confined phase cannot be directly linked to the center
symmetry. Using Eq. (11), we find that

�T ’ VðhjLji2 � hLLi2Þ: (13)

Thus, in general, �T can be nonvanishing in the Z3-broken
phase. However, its value in the high-temperature phase is
not constrained by symmetries or general principles.
In Fig. 3 we show that, above the phase transition, �T is

in fact much smaller than �L. In the temperature range
considered, we find that, for T > Tc, the ratio RT is weakly
dependent on the temperature and does not exceed ’ 0:2. It
has been argued [16,17] that in the broken Z3 symmetry
phase of the SU(3) gauge theory, RT can be as large as 0.4.
We note that in our results, a dependence of RT on N�

remains. Hence, we cannot at present draw firm conclu-
sions on the continuum extrapolation of this quantity.
Finally, we turn to the value of RA in the confined phase.

In Fig. 2 we show that, for T < Tc, RA is approximately
temperature independent, with the lattice results clustering
around a value slightly larger than 0.4. This property of RA

can be understood by assuming that in the symmetric phase,
the probability distribution for the Polyakov loop is, to a
good approximation, Gaussian, with the partition function3

Z ¼
Z

dLLdLTe
�VT3½�ðTÞðL2

LþL2
T Þ�; (14)

where the integrations extend from �1 to 1. The
susceptibilities are then obtained by performing elementary
integrals

�L¼ 1

2�T3
; �T ¼ 1

2�T3
; �A¼ 1

2�T3

�
2��

2

�
: (15)

Consequently, RA ¼ ð2� �=2Þ ’ 0:429, in good
agreement with the lattice results, shown in Fig. 2. We
note that the Gaussian approximation is not expected to
be valid close to Tc, where the coefficient �ðTÞ in Eq. (14)
is small and hence higher-order terms cannot be neglected.
In SU(2) gauge theory the Polyakov loop is real, so

the corresponding integrals are one-dimensional, which

implies a slightly different ratio, RSUð2Þ
A ¼ ð1� 2=�Þ ’

0:363. This value is indeed in agreement with lattice results
for the SU(2) Polyakov loop susceptibilities below Tc,
outside of the critical region [18]. These results indicate
that in the symmetric phase, the effective Polyakov loop
potential is well approximated by a Gaussian both in SU(2)
and SU(3) lattice gauge theories.
Conclusions.—We have shown that the ratios of

Polyakov loop susceptibilities provide an excellent signal
for the deconfinement phase transition in SU(3) gauge
theory. The ratios are discontinuous at the phase transition
and only weakly temperature dependent on either side of Tc.
Moreover, they are independent of the Polyakov loop renor-
malization and only weakly dependent on the system size.
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FIG. 3 (color online). The ratio of the transverse �T and
longitudinal �L Polyakov loop susceptibilities. The line shows
�T=�L ¼ 1 for T < Tc (see text).

3More precisely, the quadratic terms of the effective action are
responsible for the dominant contribution to the Polyakov loop
susceptibility. However, higher-order, non-Gaussian terms are
decisive for the determination of higher-order cumulants.
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We have also shown that, with one exception, the ratios
obtained outside of the transition region can be understood
in terms of general symmetry arguments and the observa-
tion that, in the confined phase, the Polyakov loop proba-
bility distribution is well approximated by a Gaussian.
There is, however, no restriction by symmetry on the ratio
of the transverse to longitudinal susceptibility, �T=�L, in
the deconfined phase. We find that, above Tc this ratio is
fairly small and varies weakly with temperature.

In QCD, the global Z3 symmetry is explicitly broken
by finite quark masses. Hence, the properties of the
susceptibility ratios in QCD can differ from those in
pure gauge theory. In particular, the discontinuity will
most likely be smoothened, since in QCD the transition
is continuous. Nevertheless, outside of the transition

region, the ratios may approximately reflect the con-

straints from center symmetry and thus also provide a

useful probe of the confinement-deconfinement transi-

tion in full QCD.

We acknowledge stimulating discussions with Frithjof

Karsch. P.M. L. acknowledges the support of the Frankfurt

Institute for Advanced Studies (FIAS). B. F. is supported

in part by the Extreme Matter Institute EMMI. K. R.

acknowledges partial support of the Polish Ministry of

National Education (NCN). The work of C. S. has been

partly supported by the Hessian LOEWE initiative through

the Helmholtz International Center for FAIR (HIC for

FAIR). The numerical calculations have been performed

on the Bielefeld GPU Cluster.

[1] B. Svetitsky and L.G. Yaffe, Nucl. Phys. B210, 423
(1982).

[2] L. G. Yaffe and B. Svetitsky, Phys. Rev. D 26, 963 (1982).
[3] G. Boyd, J. Engels, F. Karsch, E. Laermann, C. Legeland,

M. Lutgemeier, and B. Petersson, Phys. Rev. Lett. 75,
4169 (1995).

[4] G. Boyd, J. Engels, F. Karsch, E. Laermann, C. Legeland,
M. Lutgemeier, and B. Petersson, Nucl. Phys. B469, 419
(1996).

[5] M. Fukugita, M. Okawa, and A. Ukawa, Nucl. Phys.
B337, 181 (1990).

[6] S. Borsanyi, G. Endrodi, Z. Fodor, S. D. Katz, and K.K.
Szabo, J. High Energy Phys. 07 (2012) 056.

[7] L. D. McLerran and B. Svetitsky, Phys. Lett. B 98, 195
(1981); Phys. Rev. D 24, 450 (1981).

[8] A.M. Polyakov, Phys. Lett. B 72, 477 (1978); G. ’t Hooft,
Nucl. Phys. B138, 1 (1978); L. Susskind, Phys. Rev. D 20,
2610 (1979).

[9] Y. Iwasaki, K. Kanaya, T. Yoshié, T. Hoshino, T.
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