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We calculate the transition form factor of the neutral pion where one photon is virtual and another

photon is real in the model where the light constituent quark mass and the quark-pion vertex are taken to

be momentum independent. Radiative corrections to the lowest order triangle quark Feynman amplitude

are calculated. The resummation of the lowest radiative corrections to the virtual photon vertex is done by

applying the Sudakov exponential hypothesis. By using fitting parameters, the quark mass and the strong

coupling constant, the results on the pion transition form factor are compared with existing data published

by CELLO, CLEO, BABAR, and Belle collaborations.
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I. INTRODUCTION

Much attention has been paid to the problem of describ-
ing the transition form factor of neutral pion. To get new
information about the wave function of the neutral pion
[1–3], namely, the distribution of the neutral pion light-
cone momentum fractions between light u and d quarks, is
the motivation for numerous theoretical approaches to
describe the transition form factor. Experimental informa-
tion on the form factor is obtained in the process eþe� !
eþe��0 (Fig. 1). The kinematics, when one photon is
almost real and the other is highly virtual with spacelike
momentum transfer squared Q2,

jq21j � 0 � �q22 ¼ Q2; (1)

was measured by several experimental collaborations:
CELLO [4], CLEO [5] at low and intermediate Q2, and
more recently by BABAR [6] and Belle [7] at higher Q2.

The BABAR collaboration fitted their experimental
results for the form factor multiplied by Q2 as an increas-
ing function of momentum transfer squared (Fig. 5),

Q2FA
��ðQ2Þ ¼ A

�
Q2

10 GeV2

�
�
; (2)

with

ABABAR ¼ 0:182 GeV; �BABAR ¼ 0:251;

�2
BABAR=½15� ¼ 1:04;

(3)

ABABARþ ¼ 0:182 GeV; �BABARþ ¼ 0:252;

�2
BABARþ=½35� ¼ 0:87;

(4)

where in square brackets we point out the number of
degrees of freedom. In the first line, only BABAR data
are taken into account while in the second line the full

set from BABAR, CLEO and CELLO data are taken into
account.
The Belle collaboration considered two parametriza-

tions providing very similar goodness of fit. One is the
same as (2) (Fig. 6) and the other corresponds to the
constant asymptotic behavior

Q2FB
��ðQ2Þ ¼ B

1þ C
Q2

: (5)

The corresponding parameters are

ABelle ¼ 0:169 GeV; �Belle ¼ 0:18;

�2
Belle=½13� ¼ 0:429;

(6)

ABelleþ ¼ 0:172 GeV; �Belleþ ¼ 0:221;

�2
Belleþ=½33� ¼ 0:637;

(7)

BBelle ¼ 0:209 GeV; CBelle ¼ 2:2 GeV2;

�2
Belle=½13� ¼ 0:435;

(8)

BBelleþ ¼ 0:186 GeV; CBelleþ ¼ 0:948 GeV2;

�2
Belleþ=½33� ¼ 0:733:

(9)

The data on the pion-photon transition form factor
obtained by CELLO, CLEO, BABAR, and Belle collabo-
rations attract much attention [8–14] with the aim to
extract the pion distribution amplitude, a nonperturbative
quantity important in the description of hard exclusive
hadronic processes.
The growing behavior of the form factor (2) is in clear

contradiction with the prediction of the approach based on
the factorization theorem applied to this process (see [8]
and references therein). On the other hand, this behavior
might indicate a logarithmically enhanced asymptotic
behavior of the form factor, as has been argued in [15–19].
In [15], the neutral pion transition form factor was

considered in the model with momentum-independent
light quark mass and quark-pion vertex. In this model,
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the leading order contribution to the form factor is given
by the triangle diagram of Fig. 2. Its asymptotic behavior
for the kinematics (1) is a double-logarithmic one [15,18],
ln 2ðQ2=M2

qÞ, where Mq is the quark mass serving as an

infrared cutoff parameter. In order to fit the BABAR data,
one needs to tune the value of the mass parameter around
Mq � 135 MeV (see below). In [19–21], a more realistic

model was considered with the quark mass and quark-pion
vertex being momentum dependent. Due to the latter
property, the asymptotics of the form factor becomes
a single-logarithmic one, ln ðQ2=M2

qÞ, in the case of

so-called ‘‘flat’’ pion distribution amplitude. In [18], the
neutral pion transition form factor has been considered in
the leading double-logarithmic approximation in the scat-
tering and annihilation channels.

In the present work, we consider the effect of the lowest-
order gluon radiative corrections in the above model. To
simplify calculations, only the model with the constant
quark mass and quark-pion vertex will be explored. We
shall use the well-known expression for the virtual photon-
quark vertex (the so-called Sudakov form factor [22])
which enters into the triangle Feynman diagram describing
the conversion of two photons to the neutral pseudoscalar
meson. The motivation of this and other similar studies is,
first, to describe the existing data in the interval of
Q2 * 1 GeV2 and, second, to understand if there are any
inconsistencies between BABAR and Belle data at large
Q2 � 10 GeV2.

In Sec. II, both channels of pseudoscalar meson produc-
tion in electron-proton e�p ! e�p�0 and electron-
positron eþe� ! �0e

þe� collisions are considered. The
second process could be the subject of future experimental
investigation. In Secs. III, IV, and V, we discuss the leading
order (LO), next-to-leading order (NLO), and the Sudakov
exponentiation calculations of the amplitude for the pion-
photon transition. In Sec. VI, we compare our model
calculations with the existing experimental data.

II. SCATTERING CHANNEL

The matrix element for the neutral pion production in the
high-energy electron-proton scattering (replacing the eþ
line in Fig. 1 by the proton p line),

e�ðp1Þ þ pðp2Þ ! e�ðp0
1Þ þ pðp0

2Þ þ �0ðp�Þ;
can be written as

Mep!ep�0 ¼ FðQ2Þ
q22q

2
1

8�2

f�
NeJ�ðq2Þ���	
p

�
1 q

	
2q



1 ; (10)

for the kinematics of almost forward electron scattering

jq21j ¼ jðp1 � p0
1Þ2j � Q2 ¼ �q22 ¼ �ðp2 � p0

2Þ2 � s

¼ ðp1 þ p2Þ2: (11)

In (10), f� ¼ 92:2 MeV is the pion decay constant,
Ne ¼ ð1=sÞ �uðp0

1Þp̂2uðp1Þ, and FðQ2Þ is the pion transition
form factor.
In the lowest order, the form factor is given by the

triangle quark loop integral (Fig. 2)

F0ðQ2Þ

¼
Z d4k

i�2

�M2
q

ðk2�M2
qÞððkþq1Þ2�M2

qÞððk�q2Þ2�M2
qÞ
;

(12)

F0ð0Þ ¼ �2
M2

q

m2
�

Z 1

0

dx

x
ln

 
1� xð1� xÞm

2
�

M2
q

!
;

F0ð0Þ ¼m�!0
1;

(13)

where m� is the pion mass, Mq is the light quark mass

parameter, and J�ðqÞ is the current corresponding to the
proton vertex

J�ðqÞ ¼ �uðp0
2Þ
�
2MPðFeðq2Þ � Fmðq2ÞÞ 1

4M2
P � q2

� ðp2 þ p0
2Þ� þ Fmðq2Þ��

�
uðp2Þ; (14)

where MP is the proton mass. Fe and Fm are the Sachs
electric and magnetic form factors of the proton.
The differential cross section for the process ep !

ep�0 has the form

FIG. 1. Neutral pion production in the eþe� scattering.

FIG. 2. Lowest-order QCD amplitude—the triangle vertex for
��� ! �0 process.
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d
 ¼ �4

�5f2�

jFðQ2Þj2
ðq22q21Þ2

�ðQ2Þ 1
s

d3p0
1

2E0
1

d3p0
2

2E0
2

d3p�

2E�

� �4ðp1 þ p2 � p0
1 � p0

2 � p�Þ; (15)

with

�ðQ2Þ ¼
2
4
0
@ 1

1þ Q2

4M2
p

ðFe � FmÞ2 þ F2
m

1
A

� ðp2 þ p0
2Þ�ðp2 þ p0

2Þ�1
þ F2

mg��1

3
5

� ð�; p1; q; q1Þð�1; p1; q; q1Þ; (16)

where ð�; p1; q; q1Þ ¼ �����p1�q�q1�. In the limit of

large Q2 � s, one has

�ðQ2 � sÞ ¼ 1

4
ðsQ2Þ2

0
@ 1

1þ Q2

4M2
p

ðFeðQ2Þ

� FmðQ2ÞÞ2 þ F2
mðQ2Þ

1
A: (17)

In (15), we use the normalization of the matrix element for
the subprocess ��� ! �0 in accordance with the current
algebra in the case of two real photons (q22 ¼ q21 ¼ 0) [23],

M�0!�1ðq1�1Þ�2ðq2�2Þ ¼ i
�

�f�
ðq1; q2; �1; �2Þ; (18)

corresponding to the width

��0!2� ¼ �2m3
�

64�3f2�
� 7:1 KeV: (19)

For the e	e� ! �0e
	e� collisions

eðp	
1 Þ þ eðp2Þ ! eðp	0

1 Þ þ eðp0
2Þ þ �0ðp�Þ;

one should put FeðQ2Þ ¼ FmðQ2Þ ¼ 1 in the above
expressions for �.

III. BORN APPROXIMATION

Let us now consider the amplitude ��� ! �0 in the
context of the constituent quark model with momentum-
independent quark mass Mq [24]. Within this model, the

pion form factor is given by the quark-loop (triangle)
diagram (Fig. 2). The result for the form factor in the
considered asymmetric kinematics (q21 ¼ 0, q22 ¼ �Q2)
is given by [25]

F0ðQ2Þ ¼ 1

Q2

m2
�

1þ m2
�

Q2

"
1

4arcsin 2ð m�

2Mq
Þ ln

2
�q þ 1

�q � 1
þ 1

#
;

(20)

with �q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M2

q

Q2

r
and the normalization is

F0ðQ2 ¼ 0Þ ¼ 1
In [15], this LO expression was used to explain a

growing-type form factor as it was measured by the
BABAR collaboration [6]. The quark mass was used as the
only fitting parameter with the result (see below Table I)

Mq � 135 MeV: (21)

The expansion of the log term in the form factor (20) at
large Q2 
 M2

q leads to

Fas
0 ðQ2Þ ¼ 1

Q2

m2
�

2arcsin 2ð m�

2Mq
Þ

�
�
1

2
L2 þ 2arcsin 2

�
m�

2Mq

�
þO

�
M2

q

Q2

��
; (22)

where the large logarithm is

L ¼ ln
Q2

M2
q

:

Numerically, Fas
0 ðQ2Þ and F0ðQ2Þ become indistinguish-

able at Q2 > 1 GeV2.
In the following, we would like to understand the role of

radiative QCD corrections to the L2 term in the form factor
which are more important at large Q2 than neglected
in (22) power corrections. To this end, we first reproduce
the leading L2 asymptotic term in (22) by using two
different techniques which become useful when consider-
ing the radiative corrections in the leading logarithmic
approximation.
One of these methods consists in joining the denomina-

tors of the integrand in (12) by using Feynman parameters
and performing the loop momentum integration. In the
case of q21 ! 0, one obtains

F0ðQ2Þ ¼ 2
Z

d3x�

 X3
i¼1

xi � 1

!
M2

q

M2
q �m2

�x1x3 þQ2x2x3

¼ 2M2
q

Q2 þm2
�

Z 1

0

dx

x
ln
1þ Q2

M2
q
xð1� xÞ

1� m2
�

M2
q
xð1� xÞ

;

¼ M2
q

Q2
L2

�
1þO

�
m2

�

M2
q

;
M2

q

Q2

��
: (23)

TABLE I. One-parameter fit of the BABAR and Belle data. In
square brackets, the number of degrees of freedom is pointed
out.

BABAR Belle

Mq �2/[16] ��2 Mq �2/[14] ��2

LO 0.135 1.697 1.629 0.126 0.696 1.611

NLO 0.149 1.185 1.137 0.142 0.434 1.005

Exp. 0.147 1.196 1.148 0.140 0.478 1.106
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An alternative calculation is based on the use of the
Sudakov parametrization of the loop momentum

k ¼ �~q1 þ �~p� þ k?;

with ~q1, ~p� being the lightlike four vectors constructed
from the external momenta, k?~q1 ¼ k? ~p� ¼ 0. By using
the known relations

d4k ¼ Q2

2
d�d�d2k?;

k2? ¼ � ~k2;

k2 �M2
q þ i0 ¼ Q2��� ~k2 �M2

q þ i0;

ðkþ q1Þ2 �M2
q ¼ �Q2�ð1� �Þ � ~k2 �M2

q;

ðk� qÞ2 �M2
q ¼ �Q2�ð1� �Þ � ~k2 �M2

q;

(24)

and performing the integration in ~k2 by the relation

Z d ~k2

Q2��� ~k2 �M2
q þ i0

¼ �i��ðQ2���M2
qÞ;

we obtain

Fas
0 ðQ2Þ ¼ 2M2

q

Q2

Z 1

M2
q=Q

2

d�

�

Z 1

M2
q=ðQ2�Þ

d�

�
¼ M2

q

Q2
L2:

Here, we also take into account both possibilities of posi-
tive and negative values of the Sudakov parameters �, �.
Below, we shall use both the Feynman and Sudakov
approaches.

IV. LOWEST-ORDER QCD RADIATIVE
CORRECTIONS

The lowest-order QCD corrections include three vertex
subgraphs and three quark self-energy subgraphs (Fig. 3).
The kinematics of the main contributions of the Feynman
triangle amplitude correspond to the ‘‘almost on-mass-
shell’’ quark connecting the almost on-mass-shell photon
and the emission of a real pion, while the two other quark
lines are essentially off mass shell. Thus, one of the vertex
functions associated with the off-mass-shell external pho-
ton underlies the Sudakov conditions: both quarks are off
mass shell. The two other vertices describe the situation
when the photon and one of the quarks are almost on mass
shell, while the other quark is off mass shell. This configu-
ration corresponds to the so-called Landau case [26].
The contribution from the triangle amplitude with a mass
operator insertion to the ‘‘almost real’’ quark line does not
contain logarithmically enhanced terms.

Consider first the vertex subgraph with an external
highly virtual photon with momentum q2. The correspond-
ing vertex function has the form [see Fig. 4(a)]

V�ðQ2Þ ¼ �sCF

4�

Z d4�

i�2

� N�

�2ððp1 � �Þ2 �M2
qÞððp2 � �Þ2 �M2

qÞ
;

(25)

N� ¼ �uðp2Þ�	ðp̂2 � �̂þMqÞ��ðp̂1 � �̂þMqÞ�	uðp1Þ;
Q2 ¼ 2p1p2 
 jp2

1j; jp2
2j 
 M2

q: (26)

Here, CF ¼ 4=3 is the Casimir invariant of the SU(3) color
group.
The logarithmically enhanced contributions arise from

two kinematically different regions of virtual gluon
momentum squared j�2j, corresponding to small and large
values of j�2j. Using the Sudakov parametrization

� ¼ �1p
0
2 þ �1p

0
1 þ ~�?; �2 ¼ Q2�1�1 � ~�2;

d4� ¼ �
Q2

2
d�1d�1d ~�

2;

with p0
1, p

0
2 lightlike 4 vectors built from p1, p2, we write

N�, in the limit (26), as

FIG. 3. Next-to-leading QCD radiative corrections to the
triangle amplitude for the ��� ! �0 process.

FIG. 4. Lowest-order QCD radiative correction to the sub-
graphs with vertices and mass operators.
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N� ¼ ½2Q2ð1� �1Þð1� �1Þ þ �2�J�;
with

J� ¼ �uðp2Þ��uðp1Þ:
For the first term in the square brackets of N�, we obtain

(small j�2j region)

V1�ðQ2;�;�Þ ¼ �2
�sCF

4�
J�

Z 1

0

d�1ð1� �1Þ
�1 þ �

�
Z 1

0

d�1ð1� �1Þ
�1 þ �


ðQ2�1�1 �M2
qÞ

¼ ��sCF

2�
½ln� ln�þ ln ð��Þ�J�; (27)

where factor 2 is due to the two regions of negative and
positive values of the Sudakov parameters. In the deriva-
tion of (27), we used the relations jp2

1=Q
2j ¼ j�j,

jp2
2=Q

2j ¼ j�j, with �, � being the Sudakov variables
associated with the loop momentum of the quark loop.

The contribution from the region with large j�2j comes
from the second term in the square brackets of N�,

V2�ðQ2Þ ¼ ��sCF

4�
J�

Z d4�

i�2

� 1

ððp1 � �Þ2 �M2
qÞððp2 � �Þ2 �M2

qÞ
:

Here we have to introduce the ultraviolet cutoff
parameter �, such as j�2j<�2. The usual procedure
of joining the denominators and performing the integra-
tion leads to

V2�ðQ2Þ ¼ ��sCF

4�
J�

Z 1

0
dx
Z d4�

i�2

� 1

½ð�� pxÞ2 �Q2xð1� xÞ�2

¼ ��sCF

4�
J� ln

�2

Q2
; (28)

where px ¼ xp1 þ ð1� xÞp2. Note that we systemati-
cally omit the logarithmically suppressed terms. After
regularization, the cutoff parameter must be replaced by
the quark mass.

The total answer for V� is

V�ðQ2;�;�Þ ¼ � �s

2�
CF

�
ln� ln�þ ln ð��Þ þ 1

2
L

�
J�:

(29)

The contribution of other Feynman amplitudes
[Figs. 4(b) and 4(c)] does not contain logarithmic enhance-
ment. We will illustrate this statement in the framework of

QED [26,27]. Let us consider the contribution of two
remaining diagrams with one vertex function [Fig. 4(b)]
and mass operator insertion [Fig. 4(c)],

V�;� ¼ �4��sCF �uðp2Þ��

�
1

t
ðp̂2 � q̂2 þMqÞ�̂�

þ M̂ðp2 � q2Þ
ðp̂2 � q̂2 �MqÞ2

��

�
uðkÞ;

t ¼ ðp2 � q2Þ2 �M2
q; p2 � q2 ¼ q1 � k: (30)

Using the explicit expressions for the vertex �� and mass

operator M̂ðpÞ given in the Appendix, we obtain

V�� ¼ � 2�2i

Mq

�uðp2Þ��

�
�
A1

�
�� � q̂1

1

kq1
k�

�
þ A2

1

Mq

q̂1��

�
;

where

A1 ¼ 1

2ð~tþ 1Þ
�
1� ~t

~tþ 1
lt

�
; ~t¼ t

M2
q

; lt ¼ ln
�t

M2
q

:

We see that the relevant contribution is suppressed by a
small factor 1=~t. Other terms do not contribute to the
amplitude. A similar statement is valid for two remaining
diagrams [see Figs. 3(b) and 3(e)].
Collecting all logarithmically enhanced contributions,

we finally obtain

Z 1

M2
q=Q

2

d�

�

Z 1

M2
q=ðQ2�Þ

d�

�

�
1� �s

2�

� CF

�
ln� ln�þ ln ð��Þ þ 1

2
ln

Q2

M2
q

��

¼ 1

2
L2 � �sCF

2�

1

12
L3

�
1

2
L� 1

�
: (31)

Thus, the form factor at large Q2 (22), modified by the
NLO radiative QCD corrections, becomes

Fas
1 ðQ2Þ ¼ 1

Q2

m2
�

2arcsin 2ð m�

2Mq
Þ
�
1

2
L2 � �s

24�
CFL

3

�
1

2
L� 1

�

þ 2arcsin 2

�
m�

2Mq

��
: (32)

V. HIGHER-ORDER QCD GENERALIZATION

In order to estimate the effect of the higher orders of the
QCD perturbation theory, we apply to the next-to-leading
logarithmic approximation (31), the Sudakov exponentia-
tion hypothesis, with the result
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Z 1

M2
q=Q

2

d�

�

Z 1

M2
q=ðQ2�Þ

d�

�
exp

�
� �s

2�
CF

�
ln� ln�

þ ln ð��Þ þ 1

2
L

��
(33)

¼ 1

�
e�1

2L�
Z 1

0

dx

x� 1
L

exL�ð1� e�L2�ð1�xÞðx�1
LÞÞ; (34)

where � ¼ �s

2�CF. For the form factor, the resummation

effects lead to the generalization of (32) as

Fas
exp ðQ2Þ¼ 1

Q2

m2
�

2arcsin2ð m�

2Mq
Þ �
�
1

�
e�1

2L�
Z 1

0

dx

x� 1
L

�exL�ð1�e�L2�ð1�xÞðx�1
LÞÞþ2arcsin2

�
m�

2Mq

��
:

(35)

It is important to note that the exponent factor under
integral in (33) is in full agreement with the results
obtained in QED [22,28] and QCD [29,30] for the summa-
tion of the leading and next-to-leading double logarithmic
corrections to the Sudakov form factor. This fact confirms
the correctness of our calculations.

VI. THE RESULTS AND DISCUSSION

There are two parameters within the parametrization of
the pion transition form factor suggested by the quark
model with radiative corrections. They are the quark
mass Mq and the strong coupling constant �s. We try to

fit the experimental data for the form factor by varying
these parameters. The results of the fit are presented in
Tables I, II, and III and Figs. 5 and 6.

In the fitting procedure, we use the parametrizations (2)
and (5) as reference parametrizations. From the corre-
sponding goodness of fit (3), (4), (6), and (7), one con-
cludes, first, that �2

BABAR > �2
Belle and, second, that the data

set extended by experimental points of CELLO and CLEO
is �2

BABAR > �2
BABARþ and �2

Belle <�2
Belleþ. The first fact is

due to systematically lower error bars for the BABAR point
set than for the Belle. The second property is interpreted as
an indication of better consistency of the BABAR data with
the previous data at lower Q2 than for the Belle data.1

First of all, let us use our model to fit the BABAR and
Belle data considering the quark mass as a free parameter
and the strong coupling to be fixed at �s ¼ 0:35, which
corresponds to a renormalization scale of about 1 GeV. The
results are given in Table I. For the LO fit, we use expres-
sion (22), for the NLO fit we use expression (32), and the
Sudakov resummed expression (Exp.) is (35). In order to
compare goodness of fit based on data used from different
collaborations we introduce the relative parameter

�� 2 ¼ �2=�2
a; (36)

where a is for BABAR or Belle based data set. In (36), �2 is
for our model and for the powerlike fits �2

a is from (3), (4),
(6), and (7), respectively.
From Table I, one finds that the goodness of fit becomes

better when going from the LO fit to the NLO fit and
almost does not change after the Sudakov resummation.

TABLE II. One-parameter fit of the BABAR and Belle data
including also the data from the CELLO and CLEO collabora-
tions. In square brackets, the number of degrees of freedom is
pointed out.

BABARþ Belleþ
Mq �2/[36] ��2 Mq �2/[34] ��2

LO 0.136 2.377 2.732 0.133 2.891 4.538

NLO 0.150 1.487 1.709 0.147 1.684 2.644

Exp. 0.148 1.587 1.824 0.145 1.878 2.948

TABLE III. Two-parameter fit of the BABAR and Belle data. In
square brackets, the number of degrees of freedom is pointed
out.

BABAR Belle

Mq �s �2/[15] ��2 Mq �s �2/[13] ��2

NLO 0.149 0.349 1.264 1.215 0.149 0.505 0.428 0.998

Exp. 0.152 0.513 1.187 1.196 0.159 0.963 0.422 0.984

FIG. 5 (color online). The fit of our model for the cases of the
LO approximation [Eqs. (22), dotted line]; the NLO approxima-
tion [Eq. (32), dashed line); the resummation approximation
[Eq. (35), solid line) for the �0 form factor and its comparison
with the experimental data of the CELLO [4] (open boxes),
CLEO [5] (open triangles), and BABAR [6] (filed boxes) collab-
orations. The dashed-dotted line shows the fit of the data by the
BABAR collaboration.1At this point, we disagree with the conclusions made in [31].
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This justifies our model with radiative corrections. At the
same time, the parameter Mq becomes higher.

In Table II, we made a fit of the BABAR and Belle data
including also the set of points from the CELLO and
CLEO collaborations. We see that, qualitatively, for our
model, the situation does not change too much and the
value of Mq is practically the same for both the cases. The

latter fact is rather important. It means that the fit proce-
dure is basically related to the data points at intermediate
Q2 in the region from 5 to 10 GeV2 where the data are
more precise and consistent for all collaborations. At the
same time, the region of higher Q2 (15–40 GeV2) is less
important for the fit. The form factor F���� ðQ2Þ in accor-

dance with different parameterizations given in Table II is
drawn in Figs. 5 and 6. In these figures, we also present
powerlike fits to the BABAR and Belle data (3) and (6),
respectively.

In Table III, we made a two-parametric fit to the BABAR
and Belle data. We see that such a two-parametric fit has
equal or even lower �2 with respect to the corresponding
numbers in Table I. However, the price for that is the
growth of the parameter �s, especially in the case of
Belle data. We consider such parametrization as not very
physical.

VII. CONCLUSIONS

In the present work, we calculated the transition form
factor of the neutral pion where one photon is virtual and
the other photon is real in the framework of the model
where the light constituent quark mass and the quark-pion

coupling are momentum independent.2 We generalized the
previous leading order results [15,18] obtained by consid-
ering the triangle diagram by including the radiative
gluonic corrections to the first order in perturbation
theory.3 The effect of higher-order radiative corrections
to the virtual photon vertex is estimated by applying the
Sudakov exponentiation hypothesis. The results obtained
are compared with the existing experimental data on the
pion transition form factor published by the CELLO,
CLEO, BABAR, and Belle collaborations.
In general, the model considered contains two parame-

ters: the quark mass Mq and the strong coupling

constant �s.
First, we fit the data at fixed �s varying onlyMq. Taking

into account the radiative corrections increases the fitting
parameter a little up to Mq � 150 MeV and improves the

goodness of fit. Considering separately the fit of BABAR
and Belle data (Table I), one gets very close ��2 and the
difference inMq is less than 10 MeV. Including also lower

momentum data from CELLO and CLEO (Table II) leads
to the inequality ��2

BABARþ < ��2
Belleþ and almost coinciding

Mq. In our opinion, it means that the fitting procedure is

most sensitive to the intermediate momentum interval,
where both the sets of data are in agreement. As for
parametrizations discussed in Introduction, BABAR data
turn out to be more in accordance with lower momentum
data than the Belle data. Our model is closer to the ten-
dency of the BABAR data. The resummation effects do not
lead to significant changes in the goodness of fit comparing
with the NLO results.
Second, we try to fit data varying both the model

parameters (Table III). The fit of data becomes better,
especially in the region of large Q2. However, �s has a
tendency to be close to unity. This fact is considered as not
physically justified and thus not taken into account in our
final results.
Let us emphasize that at the moment there are two sets of

experimental data (BABAR and Belle) on the pion-photon
transition form factor at high Q2. They are fully consistent
in the range of momentum transfer squared Q2�
½5� 10� GeV2, but have a different tendency at higher
Q2. Conditionally, the BABAR data show ‘‘growing’’
behavior at large Q2 [see (2)], while the Belle data can
be interpreted in a two-fold way as ‘‘quasigrowing-
quasiconstant’’ [see (2) and (5)]. From an experimental
point of view, the data in the range Q2 � ½15� 40� GeV2

are consistent at the level of 1
 standard deviation.

FIG. 6 (color online). The fit of our model in the cases of the
LO approximation [Eqs. (22), dotted line); the NLO approxima-
tion [Eq. (32), dashed line]; the resummation approximation
[Eq. (35), solid line)] for the �0 form factor and its comparison
with the experimental data of the CELLO [4] (open boxes),
CLEO [5] (open triangles), and Belle [7] (filled circles) collab-
orations. The dashed-dotted line shows the fit of the data by the
Belle collaboration.

2A similar model was considered in [32–34] in view of
calculations of hadronic corrections to the muon anomalous
magnetic moment.

3The problem of radiative corrections to the pion transition
form factor was considered some time ago in [35–37] within the
factorization approach with massless quarks. In this case,
the ‘‘large logarithms’’ logQ2=�2 contain the QCD scale
parameter �.
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However, from a theoretical point of view there are
big debates on this difference [8–19]. It is clear that
only new high-statistic experiments can resolve this
problem.

The emergence of growing data was so unexpected that,
at first glance, it seemed that it was impossible to explain
such behavior from the field theoretical point of view.
However, in [15–19] there was noted that if such growing
behavior exists, then it may be related to unusual properties
of the pion distribution amplitude in the vicinity of its edge
points. This behavior was conditionally called ‘‘flat.’’ In
this case, the inverse moment of the pion distribution
amplitude is not well defined. In particular, such behavior
may be modeled if to assume that the pion is almost
structureless. In [15] (and later in some other works), it
was shown that BABAR data can be described in the model
with momentum-independent quark mass and quark-pion
coupling by using only one parameter: the constituent
quark mass Mq if its value is taken as Mq � 135 MeV.

This number was considered as rather small from a phe-
nomenological point of view. One of the main motivations
of the present work is to see how sensitive this parameter is
to gluonic radiative corrections when fitting the BABAR
and Belle data. The result is that the mass parameter
becomes a bit heavier Mq � 150 MeV and the quality of

fit becomes better.
As it was shown in [19,20], a more advanced model,

with momentum-dependent quark mass and quark-pion
vertex, has the same qualitative features as the model
considered in this work. In the model [19,20], the softened
quark propagator and quark-pion vertex lead to the single
logarithmic asymptotic dependence on Q2 instead of the
double logarithmic behavior, if the quark-pion vertex is
such that it corresponds to the flat pion distribution
amplitude. The pion distribution amplitude can even van-
ish at the end points but still simulates the logarithmic
growth in rather a wide range of momentum transfer
including its quite large values. When fitting BABAR
data, the mass parameter is still close to 135 MeV. The
calculations given in the present paper can be extended
by consideration of not only a momentum-dependent
nonperturbative quark propagator and quark-pion vertex
but also a momentum-dependent nonperturbative gluon
propagator.

Finally, note that there are available data obtained by the
BABAR collaboration for the �, �0 and �c transition form
factors. The comparison of our model calculations with
data for these mesons is given in [21]. From our point of
view the data show a tendency that with increase of the
meson mass the form factor changes its behavior from the

growing regime to the ‘‘constant’’ regime. In the frame-
work of our model, this change of behavior is related to a
strong dependence of the shape of the meson distribution
amplitude on the meson mass. With growing meson
mass the meson distribution amplitude changes its shape
from the flat shape to the ‘‘�-function’’ one for heavy
mesons [21].
The study of the present work shows that the inclusion of

the QCD corrections is essential in the interpretation of
experimental data on the pion transition form factor.
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APPENDIX

The explicit expressions for the vertex function in the
Landau kinematics and the mass operator are [26,27]

�̂� ¼ �

Mq�

�
ak� þ bMq�� þ c

k�
Mq

q̂1 þ dq̂1��

�
; (A1)

M̂ðpÞ ¼ �

2Mq�

�
�aþ f

1

Mq

ðp̂þMqÞ
�
ðp̂�MqÞ2; (A2)

with ~t ¼ t=M2
q, t ¼ ðp2 � qÞ2 �M2

q ¼ ðp1 � q1Þ2 �M2
q,

lt ¼ ln ð�~tÞ and the coefficients are

a ¼ � 1

2ð~tþ 1Þ
�
1� 3~tþ 2

~tþ 1
lt

�
;

b ¼ �1� ln
	

Mq

� 1

2~t
Rþ ~tþ 2

4ð~tþ 1Þlt ;

c ¼ � 1

~t2
R� ~tþ 2

2~tð~tþ 1Þ þ
ð~tþ 2Þð2~tþ 1Þ

2~tð~tþ 1Þ2 lt;

d ¼ � 1

2ð~tþ 1Þ lt;

f ¼ 1

~t

�
1þ 2 ln

	

Mq

þ ~tþ 2

2ð~tþ 1Þ þ
~t2 � 4~t� 4

2ð~tþ 1Þ2 lt

�
;

R ¼ �2

6
� Li2ð~tþ 1Þ:

(A3)

Note that the fictive photon mass 	, introduced here, dis-
appears from the final answer.

A. E. DOROKHOVAND E.A. KURAEV PHYSICAL REVIEW D 88, 014038 (2013)

014038-8



[1] V. L. Chernyak and A. R. Zhitnitsky, JETP Lett. 25, 510
(1977).

[2] G. P. Lepage and S. J. Brodsky, Phys. Lett. 87B, 359
(1979).

[3] A. V. Efremov and A.V. Radyushkin, Phys. Lett. 94B, 245
(1980).

[4] H. J. Behrend et al. (CELLO Collaboration), Z. Phys. C
49, 401 (1991).

[5] J. Gronberg et al. (CLEO Collaboration), Phys. Rev. D 57,
33 (1998).

[6] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 80,
052002 (2009).

[7] S. Uehara et al. (Belle Collaboration), Phys. Rev. D 86,
092007 (2012).

[8] S. V. Mikhailov and N.G. Stefanis, Nucl. Phys. B821, 291
(2009).

[9] S. J. Brodsky, F.-G. Cao, and G. F. de Teramond, Phys.
Rev. D 84, 033001 (2011).

[10] E. R. Arriola and W. Broniowski, Phys. Rev. 81, 094021
(2010).

[11] S. Noguera and V. Vento, Eur. Phys. J. A 46, 197
(2010).

[12] S. S. Agaev, V.M. Braun, N. Offen, and F. A. Porkert,
Phys. Rev. D 83, 054020 (2011).

[13] P. Kroll, Eur. Phys. J. C 71, 1623 (2011).
[14] Y. Klopot, A. Oganesian, and O. Teryaev, Phys. Rev. D 87,

036013 (2013).
[15] A. E. Dorokhov, Phys. Part. Nucl. Lett. 7, 229 (2010).
[16] A. V. Radyushkin, Phys. Rev. D 80, 094009 (2009).
[17] M.V. Polyakov, JETP Lett. 90, 228 (2009).
[18] Yu.M. Bystritskiy, V. V. Bytev, E. A. Kuraev, and

A.N. Ilyichev, Phys. Part. Nucl. Lett. 8, 73 (2011).
[19] A. E. Dorokhov, JETP Lett. 92, 707 (2010).

[20] A. E. Dorokhov, arXiv:1003.4693.
[21] A. E. Dorokhov, Nucl. Phys. B, Proc. Suppl. 225, 141

(2012).
[22] V. V. Sudakov, Zh. Eksp. Teor. Fiz. 30, 87 (1956) [Sov.

Phys. JETP 3, 65 (1956)].
[23] L. B. Okun, Leptons and Quarks (Nauka, Moscow, 1981).
[24] S. B. Gerasimov, Yad. Fiz. 29, 513 (1979) [Sov. J. Nucl.

Phys. 29, 259 (1979)]; JINR-E2-11693, 1979.
[25] L. Ametller, L. Bergstrom, A. Bramon, and E. Masso,

Nucl. Phys. B228, 301 (1983).
[26] A. I. Akhiezr and V. B. Berestetskij, Quantum

Electrodynamics, (Nauka, Moscow, 1981).
[27] E. A. Kuraev, N. P. Merenkov, and V. S. Fadin, Yad. Fiz.

42, 782 (1987) [Sov. J. Nucl. Phys. 45, 486 (1987)].
[28] S. Ya. Guzenko, Zh. Eksp. Teor. Fiz. 44, 1687 (1963).
[29] J.M. Cornwall and G. Tiktopoulos, Phys. Rev. D 13, 3370

(1976).
[30] J. Frenkel and J. C. Taylor, Nucl. Phys. B116, 185

(1976).
[31] N. G. Stefanis, A. P. Bakulev, S. V. Mikhailov, and

A.V. Pimikov, Phys. Rev. D 87, 094025 (2013).
[32] D. Greynat and E. de Rafael, J. High Energy Phys. 07

(2012) 020.
[33] A. A. Pivovarov, Yad. Fiz. 66, 934 (2003) [Phys. At. Nucl.

66, 902 (2003)].
[34] R. Boughezal and K. Melnikov, Phys. Lett. B 704, 193

(2011).
[35] E. Braaten, Phys. Rev. D 28, 524 (1983).
[36] F. del Aguila and M.K. Chase, Nucl. Phys. B193, 517

(1981).
[37] E. P. Kadantseva, S. V. Mikhailov, and A.V. Radyushkin,

Yad. Fiz. 44, 507 (1986) [Sov. J. Nucl. Phys. 44, 326
(1986)].

PION TRANSITION FORM FACTOR IN THE . . . PHYSICAL REVIEW D 88, 014038 (2013)

014038-9

http://dx.doi.org/10.1016/0370-2693(79)90554-9
http://dx.doi.org/10.1016/0370-2693(79)90554-9
http://dx.doi.org/10.1016/0370-2693(80)90869-2
http://dx.doi.org/10.1016/0370-2693(80)90869-2
http://dx.doi.org/10.1007/BF01549692
http://dx.doi.org/10.1007/BF01549692
http://dx.doi.org/10.1103/PhysRevD.57.33
http://dx.doi.org/10.1103/PhysRevD.57.33
http://dx.doi.org/10.1103/PhysRevD.80.052002
http://dx.doi.org/10.1103/PhysRevD.80.052002
http://dx.doi.org/10.1103/PhysRevD.86.092007
http://dx.doi.org/10.1103/PhysRevD.86.092007
http://dx.doi.org/10.1016/j.nuclphysb.2009.06.027
http://dx.doi.org/10.1016/j.nuclphysb.2009.06.027
http://dx.doi.org/10.1103/PhysRevD.84.033001
http://dx.doi.org/10.1103/PhysRevD.84.033001
http://dx.doi.org/10.1140/epja/i2010-11029-6
http://dx.doi.org/10.1140/epja/i2010-11029-6
http://dx.doi.org/10.1103/PhysRevD.83.054020
http://dx.doi.org/10.1140/epjc/s10052-011-1623-4
http://dx.doi.org/10.1103/PhysRevD.87.036013
http://dx.doi.org/10.1103/PhysRevD.87.036013
http://dx.doi.org/10.1134/S1547477110040023
http://dx.doi.org/10.1103/PhysRevD.80.094009
http://dx.doi.org/10.1134/S0021364009160024
http://dx.doi.org/10.1134/S154747711102004X
http://dx.doi.org/10.1134/S0021364010220145
http://arXiv.org/abs/1003.4693
http://dx.doi.org/10.1016/j.nuclphysbps.2012.02.030
http://dx.doi.org/10.1016/j.nuclphysbps.2012.02.030
http://dx.doi.org/10.1016/0550-3213(83)90326-7
http://dx.doi.org/10.1103/PhysRevD.13.3370
http://dx.doi.org/10.1103/PhysRevD.13.3370
http://dx.doi.org/10.1016/0550-3213(76)90320-5
http://dx.doi.org/10.1016/0550-3213(76)90320-5
http://dx.doi.org/10.1103/PhysRevD.87.094025
http://dx.doi.org/10.1007/JHEP07(2012)020
http://dx.doi.org/10.1007/JHEP07(2012)020
http://dx.doi.org/10.1134/1.1577913
http://dx.doi.org/10.1134/1.1577913
http://dx.doi.org/10.1016/j.physletb.2011.09.001
http://dx.doi.org/10.1016/j.physletb.2011.09.001
http://dx.doi.org/10.1103/PhysRevD.28.524
http://dx.doi.org/10.1016/0550-3213(81)90344-8
http://dx.doi.org/10.1016/0550-3213(81)90344-8

