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We derive asymptotic behaviors of the Nambu-Bethe-Salpeter (NBS) wave function at large space
separations for systems with more than two particles in quantum field theories. To deal with n particles in
the center-of-mass frame coherently, we introduce the Jacobi coordinates of n particles and then combine
their 3(n — 1) coordinates into the one spherical coordinate in D = 3(n — 1) dimensions. We parametrize
the on-shell T matrix for n scalar particles at low energy using the unitarity constraint of the S matrix.
We then express asymptotic behaviors of the NBS wave function for n particles at low energy in terms of
parameters of the 7 matrix and show that the NBS wave function carries information of the 7" matrix such
as phase shifts and mixing angles of the n-particle system in its own asymptotic behavior, so that the NBS
wave function can be considered as the scattering wave of n particles in quantum mechanics. This
property is one of the essential ingredients of the HAL QCD scheme to define “‘potential”” from the NBS
wave function in quantum field theories such as QCD. Our results, together with an extension to systems
with spin 1/2 particles, justify the HAL QCD’s definition of potentials for three or more nucleons

(or baryons) in terms of the NBS wave functions.
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I. INTRODUCTION

To understand hadronic interactions such as nuclear
forces from the fundamental theory, quantum chromody-
namics (QCD), nonperturbative methods such as the lattice
QCD combined with numerical simulations are required,
since the running coupling constant in QCD becomes large
at hadronic scale. Conventionally, the finite size method [1]
has been employed to extract the scattering phase shift in
lattice QCD, but the method is so far limited to two-particle
systems below the inelastic threshold, except for a few
extensions [2-5].

Recently an alternative method has been proposed and
employed to extract the potential between nucleons below
inelastic thresholds [6—8]. This method has been extended
in order to investigate more general hadronic interactions
such as baryon-baryon interactions [9-13] and meson-
baryon interactions [14—16]. See Refs. [17,18] for reviews
of recent activities.

In the method called the HAL QCD method, a potential
between hadrons is defined in quantum field theories such
as QCD, through an equal-time Nambu-Bethe-Salpeter
(NBS) wave function [19] in the center-of-mass system,
which is defined for two nucleons as
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Wy (x) = OIT{N(r, ON(r + x, O}INN, W), (D)

where (0] = (0] =, (0] is the QCD vacuum (bra-)state,
NN, W), is a two-nucleon asymptotic in-state at the total

energy W = 24/k? + m3, with the nucleon mass my and a

relative momentum k, T represents the time-ordered prod-
uct, and N(x) with x = (x, t) is a nucleon operator. As the
distance between two nucleon operators x = |x| becomes
large, the NBS wave function satisfies the free Schrodinger
equation,

(Ew — Ho) Wy (x) =0,

where u = my/2 is the reduced mass. In addition, an
asymptotic behavior of the NBS wave function is described
in terms of the phase & determined by the unitarity of the S
matrix, S = ¢*® in QCD (or the corresponding quantum
field theory). This has been shown for the elastic w7
scattering [20,21], where the partial wave of the NBS
wave function for the orbital angular momentum L
becomes

sin (kx — L /2 + 8,.(W))

WL ~ A
w =AL o

k=1kl (3)

asx — oo at W = Wy, = 4m,, (the lowest inelastic thresh-
old). The asymptotic behavior of the NBS wave function
for the elastic NN scattering has been derived in Ref. [22].
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The HAL QCD method has been applied also to inves-
tigate three nucleon forces (3NF) [23,24], even though
asymptotic behaviors of the NBS wave function for three
nucleons have not been derived yet. The 3NF is necessary
to explain experimental binding energies of light nuclei
[25,26] and high precision deuteron-proton elastic scatter-
ing data at intermediate energies [27]. It may also play an
important role for various phenomena in nuclear physics
and astrophysics [28-31].

The purpose of this paper is to derive asymptotic behav-
iors of the NBS wave functions for n particles with n = 3
at large distances where separations among n operators
become large. To avoid complications due to nonzero spins
of particles, we consider scalar fields in this paper. The
results of this paper, together with an extension to spin 1/2
particles, fills the logical gap in the derivation of 3NF by
the HAL QCD method [23,24].

In Sec. II, we explain our notations and definitions
such as the modified Jacobi coordinate, the Lippmann-
Schwinger equation, and the NBS wave function for n
scalar particles. In Sec. III, we parametrize the on-shell T
matrix for n particles by solving the unitarity constraint of
the S matrix. For the n-particle system, we introduce
spherical coordinates in D = 3(n — 1) dimensions, which
is equal to a number of degrees of freedom for n particles in
three dimensions in the center-of-mass frame, together
with the nonrelativistic approximation. In Sec. IV, using
results obtained in Sec. III, we derive asymptotic behaviors
of NBS wave functions for n particles, in terms of phase
shifts and mixing angles of the n-particle scattering.
Conclusions and discussions are given in Sec. V. Some
technical details are collected in three appendixes.

II. SOME DEFINITIONS AND NOTATIONS

In this paper, to avoid complications arising from nu-
cleon spins, we consider a system with n scalar particles
which have the same mass m in the center-of-mass frame,
whose coordinates and momenta are denoted by x; and p;
(i=12,...,n) with 37, p; = 0. We introduce modified
Jacobi coordinates and corresponding momenta as

’ k ’k +1
= X = 4—X
rk k + 1 rk: Qk k qk: (4)

where the standard Jacobi coordinates and momenta are
given by
k

1 k (1&E
:%in_karl’ —1<%Zpi_Pk+l)» (5)
= i=1
fork=1,2,...,n— 1. It is easy to see
n 1 n 1 n—1
J— " E:_ —_
> piox qu , DI

(6)

PHYSICAL REVIEW D 88, 014036 (2013)

An integration measure for modified Jacobi momenta is
given by

n n 1 n—1
l_[ d3pi5(3)<; Pi) ~ l:[l d’q. (7

i=1

A. Lippmann-Schwinger equation

As mentioned in the Introduction, the asymptotic
behavior of the NBS wave function for a two-particle
system has already been derived in Refs. [8,20-22]. It is
not straightforward, however, to extend their derivations to
multiparticle systems. Instead, we utilize the Lippmann-
Schwinger equation [32],

|a), = |a), + /dﬂ
TBa = 0<B|V|a>in’

which is found to be a powerful tool to study multiparticle
systems. For simplicity, we assume in this paper that no
bound state appears in two or more particle systems. An
extension of the present analysis to systems including
bound states, however, will be considered in the future
publications, since one of our ultimate goals in the HAL
QCD Collaboration is to investigate bound states using
potentials obtained in lattice QCD.
Here the asymptotic in-state |a);, satisfies

= Ea | a>in: (9)

18T 54
E, — Eg+ic’
®)

(Hy + V)la)in
whereas the noninteracting state |a), satisfies
Hyla)y = E,|a. (10)

The off-shell T-matrix element or the “potential” Tz, =
ol BIV]a);, is related to the on-shell S-matrix element as

S,Boz = 0ut<:8|a>in = 0<B|S|a>0
=6(B—a)—27wid(E, — Eﬁ)Tﬁa. (1)
If we define S = 1 — iT, we obtain

ol BITla)y = 278(E, — Eg)T g, (12)

B. NBS wave functions

An equal-time NBS wave function for n scalar particles
is defined by

Vi ([x]) = ;,0le" ([x], 0)|a)in, (13)

where
o ([x] 1) = T{]‘[ eitxi ) (14)
i=1

with the time-ordered product T, [x] = x|, X, ..., X,,, and i
represents a “flavor” of a scalar field. For simplicity, we
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regard all n scalar particles as different but have the same
mass m.

From the Lippmann-Schwinger Eq. (8), the vacuum
in-state is expressed as

|7>0 TyO

L= + . 1
00 =10} + [ dy ;2 e (15)

As shown in Appendix A, at large distances we have

o{0le"([x] O)a),,  (16)

in<0|¢n([x], O)la{>0 ~ ZL

where Z , is the normalization factor whose deviation from
the unity comes from the off-shell 7" matrix T, in the
second term of Eq. (15). Using this and the Lippmann-
Schwinger Eq. (8), the NBS wave function can be
written as

WL([x) = (0l (5] 0l

fdﬁ 1 0<0|¢ ([x], 0 B)T s
—Eg tie '

7)

To evaluate the above expression explicitly, we quantize
all complex scalar fields in the Heisenberg representation
atr=20as

B B
¢i(x, 0) = [ yEeurs

{a;(k)e®* + bl (k)e~ k), (18)

laYy=1[k])o = [Jaf ®)I0),  E, =yk2+m2  (19)
i=1
where [k], =k, ky, ..., k, with 37 k; =0, and the

time evolution is given by ¢"([x],1)=e"""¢"([x],0)e "
Our state normalization is given by
()<Bm|a >O S(IBm n)' (20)

Using the above for the n-particle system in the center-
of-mass frame, we have

=
[

o0l ([x], o>|[k]n>o—( = 3)1 S

( Jer)? )3) (HJ;T)
Xexp[igqj'rj],

21

where r; and ¢; are modified Jacobi coordinates and
momenta, respectively.
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III. UNITARITY OF THE S MATRIX AND
PARAMETRIZATION OF THE T MATRIX

The unitarity of the S matrix implies

TH—T=iT'T. (22)
Defining
o [P LITIp"1,)0 = 8(E* — EP)6O(P* — PP)

X T((q"]. [4°1.). (23)
where [p*], = p¥, p%..... ¥, [¢*], = ¢{. 4%, ..., ¢%_,

with X = A, B, and

n n
E*=3E,,  EP=3E,,

i=1 '

n n (24)
Pr=Yph PE=Y

Here we parametrize the 7-matrix element in terms of
modified Jacobi momenta [¢*] and [¢®], where Tj, in
the Lippmann-Schwinger equation is expressed as

1
T,Ba = — 8(3)(PA

D) - PB)T([qA]nr [qB]n)
w

(25)

Using the above expression, the unitarity constraint to
the T matrix can be written as

l ([qA]m [¢®],) — T(q"].. [¢%],)
3/2 f ]‘[ds C8(EN — EOT(q"],. [41.)

X T([q“1,. [4"],).

Our task is to solve this constraint.

(26)

A.n=2

Let us consider the simplest case, n = 2. In this case, we
can parametrize the 7 matrix in terms of spherical
harmonic functions Y;,, as

T(g", ¢%) = D Ti(q", ¢°)Y1,(Q0)Y,,, Q). (27)
Lm

where ¢*# = |¢*B| and Q) is a solid angle of a vector g.

Using the orthogonal property of Y, the constraint
becomes

T/(q,q) — Ti(q, q) = 23/2 /(q )2dq“S8(E — E¢)
X T(q, ¢)T(q", ),

where g =q"=q%, E=E'=E=2Jm’+4°/2,
and EC€ = 24m? + (¢€)?/2. After the ¢© integral, the

constraint now becomes

(28)
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T(q. 9Ti(q, @), (29)

_ . qE
Tl(q, 51) = lm

TI(CI: q) —

which can be solved as [33]

B gin §,(E),  (30)

4 x 232
T(q) =T(q q) = — —

where 8,(g) is the phase shift for the partial wave with the
angular momentum / at the energy of E = 2m? + ¢°/2.

B. General n

In the case of general n, we introduce the nonrelativistic
approximation for the energy in the delta function as
AP =9 _ @) - (¢°)
2m 2m ’

where  (¢*€)? = 372/ (¢*€)* for modified Jacobi
momenta [¢4€],. To perform the three-dimensional
momentum integral (n — 1) times, we consider a D =
3(n — 1)-dimensional space. Denoting that s = |s| is a
D-dimensional hyper-radius and () are angular variables
for the vector s in D dimensions, the Laplacian operator is
decomposed as

A g P

€1V

v2:_+ _

2 D—-19 [?
952 s s 2’

(32)

where £.? is angular momentum in D dimensions. A hyper-
spherical harmonic function [34], an extension of spherical
harmonic function in three dimensions to general D
dimensions satisfies

L2Y}5(Qy) = L(L + D — 2)Y15(€Y) (33)

with a set of “quantum’ numbers of [L] = L, M|, M,, . ...
The hyperspherical harmonic function is orthogonal such
that

f dQg Y1 (Q0)Y1(Qy) = Sy (34)

and is complete as

> V(99 Yy (Q)8(s — 1) = sP718P)(s — 1), (35)
[L]

so that an arbitrary function f(s) of s € R? can be
expanded as

F(8) = f111()Y11(Qy). (36)
(L]

Using the hyperspherical function, we expand the T
matrix as

PHYSICAL REVIEW D 88, 014036 (2013)

T([qA]n’ [qB]n) = T(QAr QB)
= Z T[L][K](QA’ QB)Y[L](QQA)Y[K](QQB)

[L1[K]
(37

where Qx = (¢%,,¢%,,...,¢%,_,) for X=A, B is a
momentum vector in D = 3(n — 1) dimensions."

With the nonrelativistic approximation and the orthogonal
property, the unitarity relation in Eq. (26) after ) . integra-
tion leads to

T[JrL][K](QA’ 04) — TiLyx1(Qar Q)
5 [ eraos, )
X ZT[L][N](QA’ O)Tinix1(Q, Qa)

= m(Q;‘/)z ZT Qs Q0 Tiwx)(Qa, Q4). (38)

where O, = Qjp is used. By diagonalizing T with a unitary
matrix U as

Tix)(Q Q) = Y U QT @U@, (39)

V]
the above constraint can be solved as

2132
mQ3n—

where 6[;1(Q) are real phases which depend on Q and [L]
in D = 3(n — 1) dimensions. This is a main result of this
section. Unfortunately, a relation of the phase shifts in the
hyperspherical coordinates with physical observables for n
particles in the standard Jacobi coordinates is not transpar-
ent. Therefore, it will be an important task in the future to
make the relation between them clear. Note also that the
result at n = 3 is already given in Ref. [38].
At n = 2, we have

T;(0) = — <@ sin §;5(Q),  (40)

2% 232

Ti(Q) = — 0@ sin §;7(Q),  (41)

which agrees with Eq. (30) under the nonrelativistic ap-
proximation that E = 2m, together with the replacement
that 0 — g and [L]— [ and U — 1.

"For n = 3, the T matrix can have singularities at particular
on-shell values of external momenta [35-37], which are ex-
pressed in terms of delta functions and principles values with
the ie prescription for propagators. Even for such cases, how-
ever, our expansion of the 7' matrix in Eq. (37) is still valid in a
sense of distributions, and these singularities originate from a
sum over infinite terms [38]. We would like to thank Prof. S.R.
Sharpe and Dr. M. T. Hansen for pointing out this problem and
relevant references.
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IV. ASYMPTOTIC BEHAVIORS OF NBS WAVE
FUNCTIONS FOR r PARTICLES

In this section, we derive asymptotic behaviors of
NBS wave functions for multiparticle systems using
expressions (17)

V(1) = - Ole" [} 0l

1 oOle™([x].0)I BT ga
de Eoz - EB +ie (42)
and (21)
o{0le" ([x], 0)I[K],)o :( ) ( 21E )
V i=1 \/ ki
Xexp[ Zq, r]:l (43)

A.n=2

As an exercise, let us first consider the n = 2 case,
whose result is already known. Using r = (x,— x;)/+/2,

pL=—p,=q/\2, and E,=+m>+ ¢*/2, the NBS

wave function at n = 2 is given by
1 [ ar +f &Ik Z,E,
2E,Z,L(2m)? 232(24r)3 Z Ey
eik'rT(k, q)
4m(E, — E; + is)]’

Wa(r) =

(44)

where k is also the modified Jacobi momentum. Using
expansions that

e =4y il j(grY,, ()Y, (Q,),  (45)
Im
Vi) = > i'V3(r, )Y, (Q)Y,,(Q,),  (46)
Im

where j;(x) is the spherical Bessel function of the first kind,
together with Eq. (27), and integrating over (), we obtain

A o k*dk Z,E
\1]2 : — [ +[ 94
2(r, q) @mP2E,Z, Jilgr) o 272 ZE,
j,(kr)T,(k,
Jilkr)T( 61? ] @7)
2E, — E; + ig)
Since E, is below inelastic thresholds, we assume that

T,(g, k) does not have any poles in the positive real axis.
In this case, the k integral can be performed for r > 1
as [8,21]

[kzdk Jz(kr) F,(k)~——F,(q)[n,(qr)+1],(qr)]

(48)
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where n;(x) is the spherical Bessel function of the second
kind. Here F;(k) does not have any poles in the positive
real axis and satisfies [ k! j,(kr)F,(k)k*dk = 0 for large
r. In Eq. (47), the second property follows from
(V2 + ¢*)W5(r) = 0 for large r [8]. After the k integral
using this formula, the second term in Eq. (47) becomes

qE,
— [ni(gr) + lJl(CIV)] 23/2 Ti(q. q)
= [n/(qr) + 1],(qr)]e’5’<") sin 8,(q), (49)

where the unitarity constraint (30) for 7,(q, q) is used to
obtain the last equality. We then have

4 :
V2r, g) = —————¢0@[§ S
1(r. q) (27)32quqe Lji(gr) cos 6,(q)

+ ny(qr) sin §,(¢)] (50

4 £i%1(a)

~ i —lm/2+ 6

QnP2E,Z, sin(qr — lm/ (@)
(51
for r> 1, where asymptotic behaviors that j,(x)=

sin(x — l7/2)/x and n;(x) = cos(x — l7/2)/x are em-
ployed. The phase of the S matrix §,(q) can be interpreted
as the scattering phase shift of the NBS wave function for
the n = 2 case.

B. General n

The NBS wave function in the case of general n is
expressed as

c(Q)
C(Q4)

,3/
V(R Q) = @y e *+ "~ [avo
T
S0 R
X -
Ey — Eg +
where R=(r,r5,....,r,—;) and QYW = (¢, q>, ..., q,— )

are modified Jacobi coordinates and momenta in
D = 3(n — 1) dimensions,

1@ QA)] (52)

c(QA)—Z(QA) l'[ (27) T (53)

J

with p(A) as the momentum of the jth particle. In the
nonrelativistic limit that

144 cQ) _
CQI=COI =G50 €y €0y’
(Eg, ~ B~ L& (54)

with some constant ¢, we obtain
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RO — ouk , 2 c(Q)
VR Q) = C(Qu)| e + 2oy [aro
SIOR
o e reTeen] (55)

In D dimensions, we have [34]

zQR_(D 2)

L
(56)

which is a generalization of the D = 3 formula in Eq. (45),
where j? is the hyperspherical Bessel function of the first
kind defined by

D—2 2D 4
JP(x) = W Jp, (), (57)

with Lp, =L + DT_Z and the Bessel function of the first
kind, J; (x).
Using an expansion that
V'R, Q1) = D ViR Q)Y (Qr)Y(Qg,),
[L][K]
(58)

together with Eqgs. (37) and (56), and performing d{)
integral, we obtain

L (27)D/2
V(R 0a) = C(QA)I((A%[JLD(QARWLK
J
fdQ L”(Q ) [L][K](Q QA)]
(59)
where
m  C(Q)

——= QP QD/2 IT[L],[K](Q’ Qa).

(60)

[‘I[L:L[K](Qy QA) 3/2 C(Q )

We now perform the @ integral, assuming that
Ti111x1(Q, Q4) does not have any poles on the positive
real axis at O, below inelastic thresholds. We consider
the n = 2k and n = 2k + 1 cases separately.

1. n =2k case
In this case,

2
JLD(X) = ij(X) ;xl/z, (61)

where L, = L + 3(k — 1) and j,_is the spherical Bessel

function of the first kind. Using Eq. (48), the second term in
Eq. (59) can be evaluated as [8,21]

PHYSICAL REVIEW D 88, 014036 (2013)

2
o Glrom e 0

=~ —[n;,(QsR) + iij(QAR)]E

2
X @(QAR)I/ZH[L],[K](QA’ Q4)

= [NLD(QAR) + iJLD(QAR)]
X ZU[L][N](QA)eiS[N](QA) sin B[N](QA)U[TN][K](QA)
V]
(62)

for R > 1, where the unitarity constraint to 7 in Eq. (40) is
used to obtain the last equation, and J; , and N  are Bessel
functions of the first and second kinds, respectively.

2. n =2k +1 case

In this case, Lp, = L + 3k — 1 is an integer, and for
large R, J;, (x) becomes

’ 2
]LD()C) = asin (X - AL),
2
Ny, (x) = wfacos (x—Ap), (63)

2Lp —
ALzDTw.

Using this asymptotic behavior, the Q integral in Eq. (59)
can be performed, and we obtain for R >> 1

= /dQQALD%Hm x1(Q. 0a)
i(QsR—A,)
- TQAR [776 20, Hy1yx1(Qa, Qa)
+ O(R(3—D)/2)] o

=[Ny, (QsR) +iJ,, (Q4R)]

X z U[L][N](QA)eis[N](QA) sin 8y1(Q4) U[JrN][K] (Q4),
[N

(65)

where in the last equation, the O(1/R) contribution is
neglected for large R, the unitarity condition for 7 in
Eq. (40) is used, and ¢/(21R=40) j5 replaced by asymptotic
behaviors of J,, and H,,. The detailed calculation of the Q
integral is given in Appendix B.
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C. Asymptotic behavior
For both n = 2k and n = 2k + 1, we finally obtain

L (27T) idm(
Y (Q ) v(Qa)
(QAR)7 % [LINTEEAT
X U[N][K](QA)[J L,(QaR) cos Sx1(Q4)
+ N, (QaR) sin §y1(Q4)] (66)

[L] [K](R QA)

(277)0 /2
=GR [LIN] (QA)elﬁ[NﬂQA)
(QAR) %

2
X UFN][K](QA)ﬁsm (QAR — Ay
+ n(Q4)) (67)

for R > 1, which agrees with Eq. (51) at n = 2. Equation
(67) is the main result of this paper, which shows that the
NBS wave function of n particles for large R can be
considered as the generalized scattering wave of n parti-
cles, whose generalized scattering phase shift d;y1(Q,) is
nothing but the phase of the S matrix in QCD determined in
Eq. (40) by the unitarity.

V. CONCLUSION AND DISCUSSION

In this paper, we have investigated asymptotic behaviors
of NBS wave functions at large separations for n complex
scalar fields. We have first solved the unitarity constraint of
the S matrix for n = 3 using the D = 3(n — 1) coordinate
space and employing the hyperspherical harmonic function,
together with the nonrelativistic approximation for the
energy. The results are summarized in Egs. (39) and (40).
We then have calculated asymptotic behaviors of NBS wave
functions at large separations for n = 3 using again the
hyperspherical harmonic function, which is found to be
quite useful for this purpose. We have finally obtained
Eq. (67), which is the main result in this paper. In
Appendix C, we generalize our results to the coupled chan-
nels, where the particle mixing occurs during the scattering.

Using results in this paper, we can generalize the HAL
QCD method to hadron interactions for n-particle systems
with n = 3. This gives a firm theoretical foundation to
extract interactions among many hadrons by the HAL
QCD method, in particular, the three nucleon forces
[23,24], together with an extension to systems with spin
1/2 particles, which is a straightforward but much more
complicated task in the future. Moreover, combining them
with the results in our previous paper [39], which shows
that nonlocal but energy-independent potentials can be
constructed from NBS wave functions above the inelastic
threshold, the HAL QCD method can be extended to
hadronic interactions above the inelastic threshold energy,
where particle productions such as NN — NN can occur.
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APPENDIX A: CONTRIBUTION FROM VACUUM

In this appendix, we derive Eq. (16). Assuming each
flavor is conserved, ,(y| which contributes in Eq. (16) is a
sum of the following form:

()<Ik| = 0<O| nai(k?)bi(k?)

i€l

(A

with Y., (k} +kP)=0, where k=n and I =
{il, iz,..., lk} with 1 = il < i2 << ik = n. Note that
the operator a;b; creates a particle-antiparticle pair with
flavor i. Using this notation, we have

in(0le" ([x]. 0)I[K], )0 = o(Ol¢" (Lx], 0)I[K], )o

+ 3T [arawer

=11, i€l
a
(Xt k)
i€], E()_Elk +ie
X oIl ([x], 0)I[K], o, (A2)
where E, = 0 for the vacuum.
Using
Q2m)*/2 <1k|<0”([x] 0)l[k], Yo
_l_[ 5(3)k _kA)l_[ e ll’ (A3)
i€l 1,2Ek3 JEI, ‘,2Ek/-
where I, UL, ={1,2,3,...,n} and I, NI, = ¢, the sec-
ond term in Eq. (A2) becomes
Z kB B
C, Z [ e ikix;
k=1 I i€l ‘/2Ek3
ik;x;
X 5<3><Z(k,. + k?))]'[ ¢
i€, jel, 1/2Ekj
T, (0;[k, k8
% M’ (A4)

EO - E[k,kB]

C, = Qm)73,  Egus = Zieh(\/k% +m? +

JEE? + m?), T¢., (0: [k, kP)) is the off-shell T matrix

where
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from the vacuum and [k k8] =

ki, kB ki, kB ook, kﬁ .

We ﬁrst show that terms at k = 2 in Eq. (A4) do not
contribute at large distances. After the kﬁ integral, the factor
in the first exponential is written as —iY ,c; kP (x;—x;)+
iy ierkx;,where I,y = {iy, i, ..., ix_}.Since I,y # ¢
for k = 2, we perform the kﬁ integral in Eq. (A4). Using the
same method which leads to Eq. (48) from Eq. (44) and
noticing the fact that there is no real pole for the kﬁ integral
in Eq. (A4), it is clear that the contribution is suppressed
exponentially in large |x; — x; |. This means that terms at
k = 1 only contribute in Eq. (A4) and other terms at k = 2
are suppressed asymptotically at large distances.

The term at k = 1 is easily evaluated as

to 2k particles,

n 1kx/ 1L ng 1(0 kv i

ﬁETk—l 1 —2,/k2+m

where T; _; is the off-shell 7" matrix from the vacuum to a
pair of particle-antiparticle with the flavor i.
We finally obtain

{0l ([x], 0)I[k],)o =

(A5)

Z([k] z) o Ole" (el Ok )y - (A6)

with
1 1 T-r, O, ki’ _ki
=14+ Z 0;i l( ),
Z([k]n) i=1 =2 ’kZ + m2

which proves Eq. (16) with Z, = Z([k],).

(A7)

APPENDIX B: Q0 INTEGRALS

In this appendix, we evaluate the O integral in the
following form:

_ = JLD(Q)
I—[O inQA 0+

for large R, assuming that Hy;)1x1(Q, Q4) have no poles in
the real axis at Q = 0. Using the asymptotic form of J; (x)
at large R given in Eq. (63), we write

I~2 (I, —1.) R— o
“\#wr2iT 7 ’

o pTiOR-A)

ix1(@. Q4)  (B1)

(B2)

where

(B3)
f(Q) = \/;H[L] x1(Q, Qa).

We evaluate 1, and /_ separately. For 1, we consider
an integration in the complex Q plane on a closed path
= [0, 0] ® Cy @ i[o0, 0] in Fig. 1, which leads to
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FIG. 1. Closed paths C and C’ in the complex Q plane.

Gi(OR=A,)
I, +1, +1,= [ F ot Q)
A

- __ei(QAR_AL)f(QA) + O(e k), (B4)
04
where
1=t [ oeitige €5 | BS
B
ei(QR—A)
L= f dQ oy Q)
i 0% —
o e qR iAg )
= —[0 qumf(llﬁ, (B6)

and the term O(e”°F) with ¢ > 0 represents the contribu-
tions from complex poles inside C. It is easy to show that /;
vanishes as

L] = lim max_ e'?) [ dfeaRsin0
|1, lin ( QZ)M If(q |
=F(q)
= lim F(q) ” dge=2aR0/7
g—0

= lim F(g) =— (1 — e 9k) — 0, B7
lim (q)zqR( e ) (B7)

where we assume that max g=p=,/1f(ge")| does not grow
as fast as ¢ in the large ¢? limit. Similarly, we estimate
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I = fo dg—5— QA 2 1f(Gg)
1

1 1
= il [~ dge=ak = — iq)]
0; 0%y Al o 1€ 0; 0a |Ftig)| R

(B8)

for Q4 # 0, which vanishes as 1/R for large R as long as
max o, |f(ig)| < co. If some poles happen to exist on the
positive imaginary axis, we can modify the path a little to
avoid poles, so that the above estimate still holds. We
indeed have a stronger bound of || for all Q, including
Q4 =0 as shown below at n = 3. (At n =2, we can
evaluate / by the different method.) Since we can write
f(Q) = QP~D2g(Q) with |g(0)| < oo from Eqs. (60) and
(B3), we have

|| = max |g(iq)| [ dgq P92~
0<q 0

= max |g(iq)|RC~P)/2 foo ditP=52¢=1 (BY9)
0<g 0

which vanishes as RG22 for large R at n = 3 (D = 6), as

long as max ,|g(ig)| < o0. (Again we can modify the

path if poles exit on the positive imaginary axis.)

Altogether we obtain

I, ~— lei(QAR—AL)f(QA) + O(RB-D2).  (B10)
A
For I_, we take another closed path C' = [0, o] ® C} &

i[ —o0, 0] in Fig. 1. Since poles at Q = *(Q, + ie) are not
contained in this closed path, we have

e HOR— Ap) ,
I+ + Il + 12 / ﬁf(Q) = 0(€_CR)

(B11)
with ¢/ > 0, where
—ap e~ H(OR=A)
I} = lim e“’idﬂi i
= Jo q QA Q2 f(Q)lQ ge'”s
(B12)
, —i(QR—A)
I dQ———>——
= [ a0 @
00 —qR+iA;
= idq —————f(—iq). B13
[ ita g e @1
As in the case before, it is easy to show that
Il =0, |55] = ORGP/, (B14)

which leads to I_ = O(RG~D)/2),

PHYSICAL REVIEW D 88, 014036 (2013)

Combining these, we finally obtain

i(QaR—A)
" \/;[W 20, Hiwx(Qa Ca)

" O(R(3*D)/2)i|,

(B15)

which proves Eq. (64).

APPENDIX C: COUPLED-CHANNEL CASES

In this appendix, we extend our investigation to the case
where [ — n scatterings with [ # n can occur.

1. Unitarity constraint to the 7 matrix

The unitarity relation to the 7" matrix in Eq. (26) can be
generalized to

T*(Qn! Q/) - T(Qn’ Ql)
-5 f d40,8(Eg, — Eg)T (@ Q0T(Q1 Q)
k

(CDH

for general n and [, where the energy conservation that
Eg, = Eyp, is always satisfied.

As in the case of the single channel, we expand T in
terms of the hyperspherical harmonic function as

T(Qn @)= D Tini1(Qn Q)Yin, Qg ) Y11 Qg,),
[N, 1IL/]
(C2)
where Q2 — Q7 =2m?(l —n) in the nonrelativistic
approximation. Putting this into Eq. (C1), we have

T 111 @) = Tiw,1121(Cns Q)

_ Z . mek_z
! k3/2

k[Ky]

T[t\/n],[l(k] (Qn: Qk)T[Kk]v[Ll](Qk) Ql))

(C3)

where D, =3(k—-1) and Q2 —
Defining and diagonalizing T" as

Q07 =2m*(k — n).
D /2—1 D1/2 1
= Tin (0 Q) — 7
= z U[N,,],[Kk](Qk)T[Kk](Qk)U[Kk],[Ll](Qk)r

k[K,]

Tin,1020(Qm Q1) =

(C4)

where Q2 — 02 = 2m?(k — n), Eq. (C3) leads to

. 2, .
Tig(Q0) = =@ sin Sy (Q). - (C3)

This gives us the final result,
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2n2/413/4 . )
Tin (@ Q) = = ——5 7= g Z k(€@ sin 81 (UK 11, 1(Q0), (C6)
mn

which reproduces Eq. (40) for the single channel at n = [ = k.

2. Asymptotic behavior of the NBS wave function

For the coupled channel, the NBS wave function corresponding to Eq. (55) in the nonrelativistic approximation becomes

ViR, Q) = cn[anzefoRn T

2m eiP,I‘Rn T(PW Ql) :| (C7)

27n’/? "0 = P2+ 2m*(l—n) +iel

where C, = ((27r)32m)~"/2. (We here omit irrelevant %2 contributions.) Expanding the NBS wave function in terms of the
hyperspherical function as

VR, Q) = D Yini)(Re Q) Yin, ()Y, Q). (C8)
LA

together with Eq. (56), we have

. (27T)D"/2 JNH (P,R,)
Wiy, LR Q1) = Cpi™ (0. R )P I:JN,,(Qan)‘snlB[Nn],[L,] + fdPn P+ Hiy 110, (Pos Qz)],
(C9)
where N, = N, + 3n — 5)/2 and
m _
Hin 10 (Pr @) = — 575 P00 Ty 1P Q). (C10)

As before, after the P, integral, the second term in Eq. (C9) for large R, is given by

1\3/4 QP/271 5 (00
0! ~ D1 Z Uiy, 11k,1(Qr)e ' sin 81 1(Qy) U Kk][Ll](Qk) (C11)
KIK,]

where Q2 = 07 + 2m?*(I — n) and Q7 = Q7 + 2m?*(I — k). We finally obtain

. (27T)Dn/2 3/4 Qy
'\P R , = C Ny < ) U [K ](QA)
LR Q1) = Ci QR T\n) P 1k% v, 10,1 (Qi)e ke

X [Jg (QuR,) cos 81k, 1(Qr) + Hy (Q,R,) sin S[Kk](Qk)]U[Kk]’[Ll](Qk)
(27T)Dn/2

1\3/4 qu/2—1
~ CniN"7<_) =xn__ Uiy 11k (Qk)e Sx,1(Qn)
(Qan)D"/2 n Q?//Z lkZKk NV, 1[K,]

~[Hyg (Q,R,) + ily (O,R n)]( )

D,/2—1

2 .
X \/;Sln (Qan - AN,, + 5[Kk](Qk))U[T[(k],[Ll](Qk): (Clz)

where Ay = (2N,, — 1)7r/4, which correctly reproduces Eq. (67) in the single-channel case at n = [ = k.
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