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5Institut de Physique Théorique, CEA–Saclay, F-91191 Gif-sur-Yvette cedex, France
6Department of Physics, University of Durham, Durham DH1 3LE, United Kingdom

(Received 6 April 2013; published 16 July 2013)

We present next-to-leading order QCD predictions for the total cross section and for a comprehensive

set of transverse-momentum distributions in W þ 5-jet production at the Large Hadron Collider. We

neglect the small contributions from subleading-color virtual terms, top quarks, and some terms

containing four quark pairs. We also present ratios of total cross sections, and use them to obtain an

extrapolation formula to an even larger number of jets. We include the decay of the W boson into leptons.

This is the first such computation with six final-state vector bosons or jets. We use BLACKHAT together

with SHERPA to carry out the computation.
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I. INTRODUCTION

Reliable theoretical predictions for Standard Model pro-
cesses at the Large Hadron Collider (LHC) are important to
ongoing searches for new physics. They are also important
to the increasingly precise studies of the newly discovered
Higgs-like boson [1,2], of the top quark, and of vector
boson self-interactions. New-physics signals very typically
lie beneath Standard Model backgrounds in a broad range
of search strategies. Ferreting out the signals requires a
good quantitative understanding of the backgrounds and
their uncertainties. With the increasing jet multiplicities
used in cutting-edge search strategies, this becomes more
and more challenging. Some of the uncertainty surround-
ing predictions of Standard Model background rates can be
alleviated through use of data-driven estimates, but this
technique also requires theoretical input to predict the
ratios of background processes in signal regions to those
for control processes or in control regions.

Predictions for background rates at the LHC rely on
perturbative QCD, which enters all aspects of short-
distance collisions at a hadron collider. Leading-order
(LO) predictions in QCD suffer from a strong dependence
on the unphysical renormalization and factorization scales.
This dependence gets stronger with increasing jet multi-
plicity. Next-to-leading (NLO) results generally reduce
this dependence dramatically, typically to a 10–15% resid-
ual sensitivity. Thus they offer the first quantitatively reli-
able order in perturbation theory.

The production of aW boson in association with jets has
played a special role in collider physics. It was the domi-
nant background to top-quark pair production at the
Tevatron. At the LHC it remains an important background
for precision studies, including those of top quarks. It is
important to many new physics searches involving missing
energy, including those for supersymmetry. Recent

searches have made use of samples with high jet
multiplicity, and proposed searches aim to push to higher
multiplicities yet. Precise quantitative control over the
theoretical predictions leads to improved sensitivity to
new phenomena. Measurements of W boson production
in association with multiple jets have been made by the
CDF [3] and D0 [4] collaborations at the Tevatron, and by
the ATLAS [5,6] and CMS [7] collaborations at the LHC.
Such measurements also permit stringent tests of the
predictions of the Standard Model.
Theoretical predictions for the production of vector

bosons with a lower multiplicity of jets (one or two jets)
have been available at NLO in QCD for many years [8–10].
In recent years, the advent of new on-shell techniques
[11–19] for computing one-loop amplitudes at larger mul-
tiplicity has led to NLO results for three [20–23] and four
[24,25] associated jets. Other new results include those for
the production of vector-boson pairs [26] or top–anti-top
pairs [27,28] in association with two jets. Another recent
approach [29] has been demonstrated in the production of
up to seven jets in eþe� collisions, and shows promise for
LHC physics as well. There have also been important
advances with more traditional methods, especially for
the case of heavy quarks [27,30,31]. In the present article,
we take another step forward in multiplicity, presenting
NLO results for inclusive W þ 5-jet production at the
LHC. These are the first NLO QCD results at a hadron
collider with six or more electroweak bosons or jets
in the final state. We incorporate the decay of theW boson
into leptons, so that there are seven final-state objects to
track.
In the present paper we use on-shell methods as imple-

mented in numerical form in the BLACKHAT software li-
brary [32]. This library, together with the SHERPA package
[33], has previously been used to make NLO predictions
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for W, Z=�� þ 3-jet production [22,23], for W, Z=�� þ
4-jet production [24,25], and for four-jet production [34]. It
has also been used in investigations of high-pT W polar-
ization [35], and to compute �þ n-jet to Zþ n-jet ratios
for assessing theoretical uncertainties [36,37] in the CMS
searches [38] for supersymmetric particles. The ATLAS
collaboration has also used results from BLACKHAT com-
putations with SHERPA for Standard Model studies of elec-
troweak vector-boson production in association with three
or more jets [6]. Other programs that use on-shell methods
are described in Refs. [39].

SHERPA is used to manage the numerous partonic sub-

processes entering the calculation, to integrate over phase
space, to construct physical distributions, and to output
ROOT [40] n-tuples. In contrast to earlier computations,

we use the COMIX package [41] to compute Born and
real-emission matrix elements, along with the Catani–
Seymour [42] dipole subtraction terms. Rather than repeat-
ing the entire computation for each scale and for each
parton distribution function (PDF) set, we store intermedi-
ate results in n-tuple format, recording momenta for all
partons in an event, along with the coefficients of various
scale- or PDF-dependent functions in the event weight. The
n-tuple storage makes it possible to evaluate cross sections
and distributions for different scales and PDF error sets.
We perform the basic calculation with loose cuts, also
making it possible to choose different (tighter) cuts without
recomputing the time-consuming matrix elements.

In this paper, we compute the total cross sections at NLO
for inclusive Wþ þ n-jet and W� þ n-jet production with
n � 5 and describe Wþ=W� ratios and W þ n-jet=W þ
ðn� 1Þ-jet ratios. Such ratios can be sensitive probes of
new physics. We also study two types of distributions: the
differential cross section in the total hadronic transverse

energy Hjets
T ¼ P

j2jetsp
j
T, and the complete set of differ-

ential cross sections in the jet transverse momenta. For four
and five jets we make use of a leading-color approximation
for the virtual contributions. This approximation has been
shown to have subleading-color corrections of under 3%
for processes with four or fewer associated jets [22,43].

This paper is organized as follows. In Sec. II we
summarize the basic setup of the computation. In Sec. III
we present our results for cross sections, ratios, and dis-
tributions. We give our summary and conclusions in
Sec. IV.

II. BASIC SETUP

In this paper we compute the W þ 5-jet processes in
NLO QCD, followed by leptonic W-boson decay,

pp ! W� þ 5 jets ! e� ��e þ 5 jets;

pp ! Wþ þ 5 jets ! eþ�e þ 5 jets:
(2.1)

These processes receive contributions from several par-
tonic subprocesses. At leading order, and in the virtual

NLO contributions, the W� subprocesses are all obtained
from

q �q0ggggg ! W� ! e� ��e;

q �q0Q1
�Q1ggg ! W� ! e� ��e;

q �q0Q1
�Q1Q2

�Q2g ! W� ! e� ��e;

(2.2)

by crossing five of the partons into the final state. Similarly,
we obtain the subprocesses for the Wþ case from the
various crossings of the subprocesses

q �q0ggggg ! Wþ ! eþ�e;

q �q0Q1
�Q1ggg ! Wþ ! eþ�e;

q �q0Q1
�Q1Q2

�Q2g ! Wþ ! eþ�e:

(2.3)

The W boson changes the quark flavor and couples to the
q-q0 line. Both the labels q and Qi denote light quarks.
Amplitudes with multiple identical quark flavors are ob-
tained by appropriate symmetrization. Sample Feynman
diagrams illustrating virtual contributions with 1, 2, and 3
external quark pairs are shown in Fig. 1 (although our
calculation is not based on Feynman diagrams). All con-
tributions to the virtual corrections are included in a
leading-color approximation described below. Besides
the virtual contributions, NLO QCD requires also real-
emission contributions with an additional parton in the
final state. Here we keep the full color dependence.
However, we drop the finite contributions from tree ampli-
tudes with four external quark pairs; they contribute well
under 1% to the cross section. Sample real-emission
diagrams are displayed in Fig. 2.
The decay of the vector boson (W�) into a charged

lepton and neutrino is included at the amplitude level; no
on-shell approximation is made for the W boson. The
lepton-pair invariant mass follows a relativistic Breit-
Wigner distribution with width given by �W ¼ 2:06 GeV
and mass MW ¼ 80:419 GeV. (The other electroweak pa-
rameters are also chosen as in Ref. [22].) We take the
leptonic decay products to be massless. In this approxima-
tion, of course, the results for muon final states are iden-
tical to those for electrons. The five light quarks, u, d, c, s,
b, are all treated as massless. We do not include contribu-
tions to the amplitudes from a real or virtual top quark; its
omission should have a percent-level effect on the overall
result [24,25]. We also approximate the Cabibbo-
Kobayashi-Maskawa matrix by the unit matrix. As previ-
ously determined for the three-jet case, this approximation
causes a change of under 1% in total cross sections for the
cuts we impose [22], and should also be completely
negligible in our study.

A. Kinematics and observables

We use standard kinematic variables, whose definitions
may be found in Appendix A of Ref. [23]. The renormal-
ization and factorization scales in Ref. [22] were chosen as
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multiples of a total partonic transverse energy ĤT. We will
use a modified version of it here,

Ĥ 0
T � X

m

pm
T þ EW

T ; (2.4)

where the sum runs over all final-state partons m and

EW
T �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

W þ ðpW
T Þ2

q
. All partons m are included in Ĥ0

T,

whether or not they are inside jets that pass the cuts. This
quantity is not directly measurable; however, it is very
similar to the more usual jet-based total transverse energy,
and it is more practical for use as a dynamical scale choice.

Both ĤT and the modified version Ĥ0
T are independent

of the experimental cuts. Thus, modifying the cuts will
not affect the value of the matrix element at a point in
phase space. This makes it suitable as a choice of renor-
malization or factorization scale, avoiding unwanted de-
pendence on experimental cuts. Later we will compute the

distribution in the jet-based observable H
jets
T ¼ P

j2jetsp
j
T.

This variable is similar to the partonic version, Ĥ0
T, except

that the W boson ET is omitted, and it is based on jets
passing all cuts.

We define jets using the anti-kT algorithm [44] with
parameter R ¼ 0:5. The jets are ordered in pT, and are
labeled i, j ¼ 1; 2; 3; . . . in order of decreasing transverse
momentum pT, with jet 1 being the leading (hardest) jet.
The transverse mass of the W boson is computed from
the transverse momenta of its leptonic decay products,

MW
T ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ee
TE

�
Tð1� cos ð��e�ÞÞ

p
.

In our study, we consider the inclusive process
pp ! W þ 5 jets at an LHC center-of-mass energy offfiffiffi
s

p ¼ 7 TeV with the following set of cuts:

Ee
T > 20 GeV; j�ej< 2:5; 6ET > 20 GeV;

pjet
T > 25 GeV; j�jetj< 3; MW

T > 20 GeV:
(2.5)

In this study we take the missing transverse energy, 6ET, to
equal the neutrino transverse energy, E�

T.
In carrying out the computation we imposed a set of

looser cuts and generated ROOT [40] format n-tuples. As
mentioned above and described further below, the n-tuples
store intermediate results such as parton momenta and
coefficients associated with the event weights for the
events passing the looser cuts, whose only restriction is

that the minimum jet transverse momentum is pjet
T >

25 GeV. The n-tuples are also valid for anti-kT , kT , and
SISCONE algorithms [44,45] for R ¼ 0:4, 0.5, 0.6, 0.7, as
implemented in the FASTJET package [46]. In the SISCONE

case the merging parameter f is chosen to be 0.75. This
allows the n-tuples to be used for studying the effects of
varying the jet algorithm, along with variations due to
parton distributions, scale choices, and experimental cuts.
In our study, we use the MSTW2008 LO and NLO PDFs

[47] at the respective orders. We use the five-flavor running
�sð�Þ and the value of �sðMZÞ supplied with the parton
distribution functions.
Our predictions are at parton level. We do not apply

corrections due to nonperturbative effects such as those
induced by the underlying event or hadronization. For
comparisons to experiment it is important to incorporate
these effects, although for most cross-section ratios we do
not expect them to be large. Parton-shower event genera-
tors such as POWHEG and MC@NLO [48], and further refine-
ments of these methods [49], have been developed that
consistently include a parton shower and maintain NLO

FIG. 2. Sample nine-point real-emission diagrams for the processes qg ! Wq0ggggg and q �q0 ! WQ1ggQ2
�Q2

�Q1, followed by the
decay of the W boson to leptons.

FIG. 1. Sample eight-point loop diagrams for the processes qg ! Wq0gggg, q �Q1 ! Wq0ggg �Q1 and q �Q1 ! Wq0 �Q2Q2g �Q1,
followed by the decay of the W boson to leptons.
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accuracy for events with a specified jet multiplicity. More
recently, advances have been made in maintaining the
NLO accuracy across different jet multiplicities in a single
sample [50]. These advances mark an important step in
significantly reducing theoretical uncertainties associated
with hadron-level predictions of many types of LHC
events. We look forward to applying them in the future to
the production of W bosons with up to five additional jets.

B. Formalism and software

The new techniques we use for obtaining virtual contri-
butions are collectively known as on-shell methods,
and are reviewed in Ref. [51]. These methods rely on
underlying properties of amplitudes—factorization and
unitarity—in order to express them in terms of simpler,
on-shell amplitudes of lower multiplicity. While ampli-
tudes necessarily contain off-shell states inside loops or
trees, avoiding direct use of these states allows the method
to avoid the gauge dependence they induce. Eliminating
the gauge dependence greatly reduces the enormous can-
cellations of intermediate terms that would plague a text-
book Feynman-diagram calculation. The first application
of the unitarity method [11] to collider physics was to
obtain the analytic matrix elements for q �qgg ! V and
q �qQ1

�Q1 ! V (V ¼ W or Z) [13], used in the NLO pro-
gram MCFM [9]. More recently, on-shell methods been
implemented in a more flexible numerical form, breaking
the long-standing bottleneck to NLO computations for
higher-multiplicity final states posed by the one-loop (vir-
tual) corrections. These methods scale well as the number
of external legs increases [16,20–22,24–26,28,39,52].
There have also been important advances in computing
virtual corrections with more traditional methods [30].

One-loop amplitudes in QCD with massless quarks may
be expressed as a sum over three different types of
Feynman integrals (boxes, triangles, and bubbles) with
additional so-called rational terms. The integrals are uni-
versal and well-tabulated, so the aim of the calculation is to
compute their coefficients, along with the rational terms. In
an on-shell approach, the integral coefficients may be
computed using four-dimensional generalized unitarity
[11,13,14], while the rational terms may be computed
either by a loop-level version [16] of on-shell recursion
[15] or using D-dimensional unitarity [12]. We use a
numerical version [32] of Forde’s method [18] for the
integral coefficients, and subtract box and triangle inte-
grands similar to the Ossola-Papadopoulos-Pittau proce-
dure [17], improving the numerical stability. To compute
the rational terms, we use a numerical implementation of
Badger’s massive continuation method [19], which is re-
lated to D-dimensional unitarity.

These algorithms are implemented in an enhanced ver-
sion of the BLACKHAT code [20,32]. BLACKHAT organizes
the computation of the amplitudes in terms of elementary
gauge-invariant ‘‘primitive amplitude’’ building blocks

[13,53]. Many primitive amplitudes can be associated
with Feynman diagrams in which all external partons touch
the loop (i.e. there are no nontrivial trees attached to the
loop). Representative Feynman diagrams for the leading-
color primitive amplitudes used in the present calculation
are shown in Fig. 1. The primitive amplitudes are then
assembled into partial amplitudes, which are the kinematic
coefficients of the different color tensors that can appear in
the amplitude. The complete virtual cross section is ob-
tained by interfering the one-loop partial amplitudes with
the tree-level amplitude and summing over spins and color
indices. The color factors arising from the color sum in the
assembly of primitive amplitudes into partial amplitudes
become highly nontrivial as the number of quark lines
increases; we use a general solution given in Ref. [43].
An important feature is that each primitive building block
has a relatively simple analytic structure with only a
limited number of spurious singularities present. A given
primitive amplitude can appear in multiple partial
amplitudes and does not have to be recomputed for each
one. This approach also allows for a straightforward
separation of leading- and subleading-color contributions.
This separation can be exploited to significantly enhance
the efficiency of the Monte Carlo integration [22]: the
subleading-color contributions are much smaller, yet
more computationally costly; separating them out allows
them to be evaluated at far fewer phase-space points than
the leading-color contributions, in order to obtain similar
absolute uncertainties.
In the W þ 4, 5-jet calculations we drop altogether the

small but time-consuming subleading-color contributions
to the virtual corrections. As explicitly verified for three-
[22] and four-jet production [43], the omitted subleading-
color contributions to the virtual corrections are typically
10% of the leading-color virtual terms, and under 3% of the
total cross section. We expect the dropped subleading-
color contributions to be similarly small for W þ 5-jet
production. The precise version of the leading-color ap-
proximation for the virtual terms used here is the one of
Ref. [43]. It retains full-color dependence in all contribu-
tions multiplying poles in the dimensional regularization
parameter � in the virtual corrections. In the finite parts of
the virtual corrections, it drops certain contributions that
are subleading in the number of colors Nc in the formal
limit Nc ! 1, with nf=Nc held fixed. In particular, we

drop those finite parts of the leading-color partial ampli-
tudes that are suppressed by explicit powers of 1=Nc, as
well as all finite parts of the subleading-color partial am-
plitudes. In forming the color-summed interference of the
surviving parts of the one-loop amplitudes with the tree
amplitudes, we do not drop any further terms. The
BLACKHAT code uses the four-dimensional helicity (FDH)

scheme [54] internally but automatically shifts the result
before output to the ’t Hooft-Veltman scheme [55] using
the full-color dependence in the shift. The approximation
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differs in these last two aspects from the one used in the
earlier BLACKHAT calculation of W þ 4-jet production
[24]. This causes very slight shifts—under a percent—in
our reported cross sections for W þ n-jet production for
n � 4 compared to Ref. [24]. (A somewhat larger shift
arises from the choice of a five-flavor scheme for the
running of the coupling instead of the six-flavor scheme
used earlier).

The NLO result also requires real-emission corrections
to the LO process, which arise from tree-level amplitudes
with one additional parton; sample contributions are illus-
trated in Fig. 2. For W production with four or five asso-
ciated jets we use the COMIX code [41], included in the
SHERPA framework [33], to compute these contributions,

including the Catani-Seymour dipole subtraction terms
[42]. The COMIX code is based on a color-dressed form
[56] of the Berends-Giele recursion relations [57], making
it very efficient for processes with high multiplicities.
When there are fewer jets, we use the AMEGIC++ package
[58] instead. In order to carry out the Monte Carlo integra-
tion over phase space we use an efficient hierarchical
phase-space generator based on QCD antenna structures
[59], as incorporated into SHERPA. The integration is per-
formed using an adaptive algorithm [60]. Running the
algorithm in a stable and convergent manner for the
real-emission contributions is highly nontrivial, in par-
ticular given the intricate structure of their infrared
subtractions.

In general, the same physical distributions need to be
analyzed at different PDF error sets, different renormaliza-
tion or factorization scales, and for different jet algorithms
or experimental cuts. We have organized the computation
so the matrix elements do not have to be reevaluated
for each choice of parameters [34]. For each event we
generate, we record the momenta for all partons, along
with the numerical values of the coefficients of the various
scale- or PDF-dependent functions. Each term contains a
simple function we wish to vary, such as a logarithm
of the renormalization scale, multiplied by a numerical

coefficient independent of such variation. We store the
intermediate information in ROOT-format n-tuple files
[40]. At the end of the main computation we assemble
the stored matrix-element coefficients, the PDF, and scale
choices to obtain cross sections. The availability of these
intermediate results makes it straightforward to evaluate
cross sections flexibly, for different scales, PDF error sets,
experimental cuts, or jet-based observables. This format
has also been used by the experimental collaborations
to compare results from BLACKHAT þ SHERPA to experi-
mental data [6].

C. Numerical stability

The different terms in the virtual contributions to matrix
elements typically contain poles at unphysical locations in
phase space. These poles cancel out when summing over
all terms. When different terms are computed indepen-
dently, one must ensure that the numerical precision of
the computations suffices for cancellation of these spurious
singularities anywhere in the phase space, so as to avoid
unwanted loss of precision in the full matrix element.
While the degree of the spurious singularities is in fact
typically lower when using on-shell methods than with
traditional ones, they are nonetheless present. They may
cancel between coefficients of different integrals, each
computed numerically. Obtaining a numerically stable re-
sult for the virtual terms at each point in phase space is
accordingly nontrivial.
The BLACKHAT code detects instabilities following the

criteria described in Refs. [22,32]. When faced with an
unstable point in phase space, the code switches to higher-
precision arithmetic, and recomputes only those terms
which suffer from the instability. The higher-precision
computations are performed in software rather than in
hardware, and are accordingly much slower than those at
native precision. The recomputation of a limited number of
terms (as opposed to the entire amplitude) minimizes the
additional computer time. We use the QD package [61] for
higher-precision arithmetic.
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FIG. 3 (color online). The distribution of the relative error in the virtual cross section for three subprocesses, gd ! e� ��eggggu,
ud ! e� ��eggguu, and ud ! e� ��eguus�s, reading from left to right. The horizontal axis is the logarithm of the relative error (2.6)
between an evaluation by BLACKHAT, running in production mode, and a target expression evaluated at higher precision. The vertical
axis shows the number of phase-space points having that relative error. The dark (black) line labeled by ‘‘double’’ shows the 1=�2 term;
the darkly shaded (red) curve labeled by ‘‘single’’, the 1=� term; and the lightly shaded (green) curve labeled by ‘‘finite’’, the finite (�0)
term. Each plot is based on approximately 10 000 points in phase space, distributed as in the actual calculation.
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In Fig. 3, we illustrate the stability of the virtual con-
tribution to the differential cross section, d�V , summed
over colors and over all helicity configurations for the three
subprocesses gd ! e� ��eggggu, ud ! e� ��eggguu, and
ud ! e� ��eguus�s. In each plot, the horizontal axis repre-
sents the logarithmic error,

	 ¼ log 10

�jd�BH
V � d�target

V j
jd�target

V j
�
; (2.6)

for each of the three components: 1=�2, 1=�, and �0, where
� ¼ ð4�DÞ=2 is the dimensional regulator. In Eq. (2.6),
d�BH

V is the cross section computed by BLACKHAT as it

normally operates. The target value d�target
V is the cross

section computed by BLACKHAT using multiprecision arith-
metic with approximately 32 digits, and approximately 64
digits if the point is deemed unstable using the criteria
described in Refs. [22,32]. The phase-space points are
selected in the same way as those used to compute cross
sections. We note that an overwhelming majority of events
are accurate to better than one part in 103—that is, to the
left of the ‘‘�3’’ mark on the horizontal axis. We have
explicitly checked that the few points to the right of this
mark produce completely negligible errors in the final
cross section or distributions, as their cross-section values
are not especially large.

III. RESULTS

We now present our NLO results for W þ 5-jet produc-
tion at the LHC. We first discuss the renormalization-scale
dependence of the total cross section. Then we provide the
total hadronic energy distribution as an example distribu-
tion. Finally we present results for the total cross sections
for W� þ 5-jet and Wþ þ 5-jet production and for the pT

distributions of the five jets.

A. Scale dependence

We expect perturbative results to be more stable under
variation of the renormalization and factorization scales as
the perturbative order is increased. The residual variability
has been used as a proxy for the expected uncertainty due
to higher-order corrections beyond the calculated order. In
previous papers [22,23], we have seen that the variability
increases substantially with a growing number of jets at
LO, but stabilizes at under 20% at NLO. This trend con-
tinues as the number of jets grows beyond the multiplicity
considered in our just-cited studies. In Fig. 4, we show the
variation of the total cross section for W� þ n-jet produc-
tion with the renormalization scale around a central choice
of �0 ¼ 2MW , for n ¼ 2, 3, 4, 5 at LO and at NLO, along
with the so-called ‘‘K factor,’’ the ratio of the NLO to LO
cross sections. We vary the scale down by a factor of four
and upwards by a factor of eight. A fixed scale ofOðMWÞ is
appropriate for the total cross section, as it is dominated by
total transverse energies of the order of a small multiple of

this scale. We hold the factorization scale fixed in order to
eliminate changes in the PDFs as we vary the scale. This
makes it simpler to see the trends as we change from two to
five jets. Similar improvements in scale dependence are
also observed when we include the variation of the facto-
rization scale.
The four upper panels of Fig. 4 show that the scale

variation at NLO is greatly reduced with respect to that
at LO. Furthermore, the LO variation grows substantially
with an increasing number of jets, while the NLO variation
is fairly stable. This increase is expected, because there is
an additional power of �s for every additional jet; the
variation of �s is uncompensated at LO, but compensated
at NLO by the virtual corrections. The relative stability of
the NLO prediction in contrast to the LO one is also
reflected in the bottom panel. As one increases the number
of jets from the smallest (two), the K-factor curve steepens
at first. This steepening slows down as the number of jets
reaches five. This reflects a slowing down of the relative
stabilization with a growing number of jets. For the W þ
5-jet process at LO, the change in the total cross section is
on the order of a factor of 2 if we vary the renormalization
scale by a factor of 2 aroundMW as in Fig. 4. In contrast, at
NLO the dependence is cut to about �20%.
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The distributions we study have a large dynamic range.
Accordingly, for physics studies we choose an event-by-
event scale to match typical energy scales individually
rather than merely on average. Following Ref. [22], we
use a central scale equal to half the total partonic final-state
transverse energy,

�R ¼ �F ¼ � ¼ Ĥ0
T=2; (3.1)

where Ĥ0
T is defined in Eq. (2.4). As an illustration of the

scale dependence in a distribution using this choice, we

show the variation of the LO and NLO W þ 5-jet cross

section as a function of the total jet transverse energy H
jets
T

in Fig. 5. The bands in the figure show the results from
varying the scale up and down by a factor of 2 around the
central value (3.1), taking the minimum and maximum of

the observable evaluated at five values: �=2, �=
ffiffiffi
2

p
, �,ffiffiffi

2
p

�, 2�. The figure shows the markedly reduced scale
dependence at NLO compared to that at LO. It also shows a
remarkably flat ratio between the LO and NLO distribu-
tions. Other authors have suggested alternate choices of
dynamical scale [27,62].

B. Cross sections and distributions

In Table I, we present the LO and NLO parton-level
cross sections for inclusiveW�- andWþ-boson production
accompanied by one through five jets. As discussed in
Sec. II, we include all subprocesses, except for the
IR-subtracted real-emission contributions with four quark
pairs, which give contributions (as determined from a
low-statistics evaluation) of well under 1% using
SHERPA’s �dipole ¼ 0:03. Neglecting these contributions

leaves a residual dependence on �dipole; however, it is

numerically unimportant to the full result for �dipole ¼
0:03. We perform a full-color sum everywhere, except in
the virtual contributions to W þ 4, 5-jet production. In
these latter contributions, we employ the leading-color
approximation discussed in Sec. II B, which has been
validated to be accurate to better than 3% for W-boson
production in association with up to four jets [22,43].
In Figs. 6 and 7, we show the pT distributions for the five

leading jets in W� þ 5-jet and Wþ þ 5-jet production atffiffiffi
s

p ¼ 7 TeV at the LHC. In the upper panels, we show the
distributions at LO and NLO on a logarithmic scale. On
this scale, the differences between distributions are not
easily seen, so we display the ratios to the NLO prediction

(with the central scale choice � ¼ Ĥ0
T=2) in the lower

panels. We also show the scale-dependence bands for
both the LO and NLO predictions, again generated by
varying the scale up and down by a factor of 2. We can
see that the scale dependence is dramatically smaller at
NLO, fulfilling one of the goals of the calculation. It makes
the prediction of this high-multiplicity process truly quan-
titative. At larger transverse momenta for the leading two
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FIG. 5 (color online). The improvement in the renormalization
and factorization scale dependence of the differential cross
section as a function of the hadronic total transverse energy

H
jets
T , comparing LO to NLO at the LHC at

ffiffiffi
s

p ¼ 7 TeV. In the

upper panels, the NLO predictions are shown as solid (black)
lines, while the LO predictions are shown as dashed (blue) lines.
The thin vertical line in the center of each bin (where visible)
gives its numerical integration error, corresponding to the fluc-
tuations in the plots. The lower panels show the predictions for
the LO distribution and scale-dependence bands, normalized to
the NLO prediction at the scale � ¼ Ĥ0

T=2. The LO distribution
is the dashed (blue) line, and the scale-dependence bands are
shaded (gray) for NLO and cross-hatched (brown) for LO.

TABLE I. Total cross sections in pb for W þ n jet production at the LHC at
ffiffiffi
s

p ¼ 7 TeV, using the anti-kT jet algorithm with
R ¼ 0:5. The NLO results for W þ 4, 5-jet production use the leading-color approximation discussed in the text. The numerical
integration uncertainty is given in parentheses, and the scale dependence is quoted in superscripts and subscripts.

Jets W� LO W� NLO Wþ LO Wþ NLO

1 284:0ð0:1Þþ26:2
�24:6 351:2ð0:9Þþ16:8

�14:0 416:8ð0:6Þþ38:0
�35:5 516ð3Þþ29

�23

2 83:76ð0:09Þþ25:45
�18:20 83:5ð0:3Þþ1:6

�5:2 130:0ð0:1Þþ39:3
�28:1 125:1ð0:8Þþ1:8

�7:4

3 21:03ð0:03Þþ10:66
�6:55 18:3ð0:1Þþ0:3

�1:8 34:72ð0:05Þþ17:44
�10:75 29:5ð0:2Þþ0:4

�2:8

4 4:93ð0:02Þþ3:49
�1:90 3:87ð0:06Þþ0:14

�0:62 8:65ð0:01Þþ6:06
�3:31 6:63ð0:07Þþ0:21

�1:03

5 1:076ð0:003Þþ0:985
�0:480 0:77ð0:02Þþ0:07

�0:19 2:005ð0:006Þþ1:815
�0:888 1:45ð0:04Þþ0:12

�0:34
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jets, the bands do show noticeable fluctuations because of
limited statistics.

The overall normalization is not the only feature that
changes in going from LO to NLO. The shape of the last-jet
distribution appears to be the same at NLO (up to fluctua-
tions from limited integration statistics), but all harder
jets—four, in the present study—appear to have slightly
softer distributions at NLO compared to LO. This contin-
ues a pattern seen previously in W þ 3-jet [20,22] and
W þ 4-jet [24] production.

In Table II, we present the charge-asymmetry ratio,
which is the ratio between the production of a Wþ boson
to a W� boson, each accompanied by up to five jets. This
ratio can be a sensitive probe of new physics [63]. The
table also shows the jet-production ratios [7,64] for either
sign of the W charge, here defined by the ratio of the total
cross section for W� þ n-jet to W� þ ðn� 1Þ-jet produc-
tion. The charge-asymmetry ratios are all significantly
greater than unity, and grow with increasing numbers of
jets. The jet-production ratios are of order 1=4, and de-
crease with increasing numbers of jets. The NLO correc-
tions to the charge asymmetry are quite small, and the
corrections to the jet-production ratios are modest but
noticeable.

These values of the charge-asymmetry ratio reflect the
excess of up quarks over down quarks in the proton. The
Wþ bosons are necessarily emitted by up-type quarks,
whereas W� bosons are emitted by down-type quarks.
The up-quark excess in the proton then leads to larger
Wþ cross sections. As the number of jets increases, the
production of aW requires a larger value of the momentum
fraction x. This alters the mix of subprocesses that con-
tribute to vector-boson production, and also increases the
uðxÞ=dðxÞ ratio. The case of W þ 1-jet production is spe-
cial, because the gg initial state is absent at LO. In general,
the gg initial state contribution is expected to decrease with
increasing x, but for W production this contribution ac-
tually increases with the number of jets, for production in
association with two through four jets ( judged by LO
fractions); only for more than four jets does it start to
decrease as expected. (In Wþ production, it starts to de-
crease above three rather than four accompanying jets.)
The qg initial state decreases, but the qq initial state

increases; the net effect, along with the increase in the
uðxÞ=dðxÞ fraction, is an increase in theWþ=W� ratio. The
results presented here extend our previous NLO analysis of
these ratios with up to four accompanying jets [24] to the
case of five accompanying jets. Both the LO and the NLO
ratios are quite insensitive to correlated variations of the
renormalization and factorization scales in the numerator
and denominator, so we do not quote the variation here, and
only show the uncertainty from the numerical integration.
The increase in typical values of x with increasing

numbers of jets also reduces the values of both the strong
coupling �s and the derivatives of the parton distributions,
leading to a decrease in the jet-production ratios. The
double ratios—the ratios of the LO cross sections in the
fifth column of Table II to those in the third column, and of
the NLO cross sections in the last column to those in the
fourth column—are roughly constant, suggesting that the
decrease is primarily due to the decrease of �s with in-
creasing scale.
We can use the ratios to extrapolate to larger numbers of

jets for the cuts used in this study. This approach was
recently investigated using jet calculus and found to be a
good approximation when the jets are required to have the
same minimum transverse momenta [65]. (Substantially
different cuts could give rise to different behavior.) While
ratios involving W þ 1-jet production behave differently
from the rest, both because of strong kinematic constraints
and because of missing production channels (at LO), the
remaining ratios turn out to allow an excellent fit to a
straight line. For the charge ratio (Wþ þ n to W� þ n),
the results through W þ 4-jet production would suffice to
yield a nontrivial prediction; the ratio for W þ 5-jet pro-
duction confirms this prediction. For the jet-production
ratios [W� þ n to W� þ ðn� 1Þ], the W þ 5- to W þ
4-jet production ratio is essential to making a nontrivial
prediction, as it provides a third point in the fit. While these
extrapolations should not be taken to too large a number of
jets n, we expect them to provide a reasonable prediction
for n somewhat beyond five.
For the LO charge ratio with n jets, we obtain the

following prediction (n � 2):

RLO
Wþ=W� ¼ 1:347� 0:006þ ð0:102� 0:002Þn; (3.2)

TABLE II. The first two columns give cross-section ratios for Wþ production to W� production, as a function of the number of
associated jets. The last two columns give the ratios of the cross section for the given process to that with one fewer jet. The numerical
integration uncertainty is in parentheses.

Wþ=W� W�þn
W�þðn�1Þ

Wþþn
Wþþðn�1Þ

Jets LO NLO LO NLO LO NLO

1 1.467(0.002) 1.47(0.01) � � � � � � � � � � � �
2 1.552(0.002) 1.50(0.01) 0.2949(0.0003) 0.238(0.001) 0.3119(0.0005) 0.242(0.002)

3 1.651(0.003) 1.61(0.01) 0.2511(0.0005) 0.220(0.001) 0.2671(0.0004) 0.235(0.002)

4 1.753(0.006) 1.72(0.03) 0.2345(0.0008) 0.211(0.003) 0.2490(0.0005) 0.225(0.003)

5 1.864(0.008) 1.87(0.06) 0.218(0.001) 0.200(0.006) 0.2319(0.0008) 0.218(0.006)
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for the NLO ratio,

RNLO
Wþ=W� ¼ 1:27� 0:03þ ð0:11� 0:01Þn: (3.3)

For the W� jet-production ratio at LO, we find the
following prediction (n � 3):

RLO;W�
n=ðn�1Þ ¼ 0:301� 0:002� ð0:0165� 0:0005Þn; (3.4)

at NLO, we find

RNLO;W�
n=ðn�1Þ ¼ 0:248� 0:008� ð0:009� 0:002Þn: (3.5)

Similarly, for the Wþ jet-production ratio at LO, we find
the following prediction (n � 3):

RLO;Wþ
n=ðn�1Þ ¼ 0:320� 0:002� ð0:0177� 0:0004Þn; (3.6)

and at NLO, we find

RNLO;Wþ
n=ðn�1Þ ¼ 0:263� 0:009� ð0:009� 0:003Þn: (3.7)

The slopes for Wþ and W� differ slightly at LO but are
essentially the same at NLO. These predictions are based
on fits to the data in Table II. (More precisely, they are
based on an ensemble of 10 000 fits to synthetic data
distributed in a Gaussian according to the cross sections
and statistical error in Table I from which the ratios in
Table II were computed).

From Eqs. (3.5) and (3.7), we obtain the following
predictions for the NLO cross sections for production of
a W� in association with six jets:

W� þ 6 jets: 0:15� 0:01 pb;

Wþ þ 6 jets: 0:30� 0:03 pb;
(3.8)

matching the experimental cuts used for Table I. The ratio
of these two predictions, 2:0� 0:3, is consistent with an
extrapolation using Eq. (3.3), 1:94� 0:08.

IV. CONCLUSIONS

In this paper, we presented the first NLOQCD results for
inclusiveW þ 5-jet production at the LHC at

ffiffiffi
s

p ¼ 7 TeV.
This process is an important background to many new
physics searches involving missing energy, as well as to
precise top-quark measurements. In addition to its phe-
nomenological usefulness, it also sets a new bar for the
state of the art in perturbative QCD at next-to-leading
order, at hadron-collider processes with six final-state ob-
jects including jets.

We have adopted a number of approximations in this
work: the leading-color approximation for the virtual

terms; neglecting top-quark loops; and neglecting
infrared-finite parts of real-emission contributions with
four quark pairs. Based on studies ofW þ 4-jet production
and W production associated with fewer jets [22,43], we
expect the leading-color approximation to change cross
sections by no more than 3%, and the other approximations
to be smaller yet. Hence these approximations should have
no phenomenological significance, given the other theo-
retical uncertainties.
We find a dramatic reduction in scale dependence in

NLO predictions for the total cross section, and for dif-
ferential distributions as well. The scale dependence
of observables shrinks from more than a factor of 2
variation at LO to a 20% sensitivity at NLO for W þ
5-jet production. With our dynamical scale choice in
Eq. (3.1), we find K factors typically between 0.6 and 1,
with moderate though nontrivial changes in the shapes of
distributions.
We have studied a number of ratios, between Wþ

and W� production, and for processes differing by the
addition of one jet. The QCD corrections to these ratios
are more modest than to total cross sections, and they
should also benefit from milder experimental systematic
uncertainties. The ratios show interesting trends with in-
creasing numbers of jets, and with results for W þ 5-jet
production in hand, we can make plausible extrapolations
to results for additional jets. These ratios also probe the
evolution of different subprocesses with increasing parton
fraction x.
The present study brings an unprecedented level of

precision to W þ 5-jet production. We look forward to
comparing the NLO results for this process, and for the
extrapolations to yet higher numbers of jets based upon it,
with LHC data.
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Höche, H. Ita, D. A. Kosower, D. Maı̂tre, and K. J.
Ozeren, Phys. Rev. D 87, 034026 (2013).

[38] S. Chatrchyan et al. (CMS Collaboration), J. High Energy
Phys. 08 (2011) 155; Phys. Rev. Lett. 109, 171803 (2012).

[39] G. Ossola, C. G. Papadopoulos, and R. Pittau, J. High
Energy Phys. 03 (2008) 042; J.-C. Winter and W.T.
Giele, arXiv:0902.0094; P. Mastrolia, G. Ossola, T.
Reiter, and F. Tramontano, J. High Energy Phys. 08
(2010) 080; G. Bevilacqua, M. Czakon, M.V. Garzelli,
A. van Hameren, A. Kardos, C. G. Papadopoulos, R.
Pittau, and M. Worek, Comput. Phys. Commun. 184,
986 (2013); G. Cullen, N. Greiner, G. Heinrich, G.
Luisoni, P. Mastrolia, G. Ossola, T. Reiter, and F.
Tramontano, Eur. Phys. J. C 72, 1889 (2012); S. Badger,
B. Biedermann, P. Uwer, and V. Yundin, Phys. Lett. B 718,
965 (2013); Comput. Phys. Commun. 184, 1981 (2013).

NEXT-TO-LEADING ORDER W þ 5-JET PRODUCTION AT . . . PHYSICAL REVIEW D 88, 014025 (2013)

014025-11

http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://dx.doi.org/10.1103/PhysRevLett.70.4042
http://dx.doi.org/10.1103/PhysRevLett.70.4042
http://dx.doi.org/10.1103/PhysRevLett.79.4760
http://dx.doi.org/10.1103/PhysRevD.77.011108
http://dx.doi.org/10.1016/j.physletb.2011.10.011
http://dx.doi.org/10.1016/j.physletb.2011.10.011
http://arXiv.org/abs/1302.6508
http://dx.doi.org/10.1016/j.physletb.2011.03.012
http://dx.doi.org/10.1016/j.physletb.2011.03.012
http://dx.doi.org/10.1088/1367-2630/15/3/033038
http://dx.doi.org/10.1103/PhysRevD.85.032009
http://dx.doi.org/10.1103/PhysRevD.85.032009
http://dx.doi.org/10.1103/PhysRevD.85.092002
http://dx.doi.org/10.1007/JHEP01(2012)010
http://dx.doi.org/10.1007/JHEP01(2012)010
http://dx.doi.org/10.1103/PhysRevLett.109.251801
http://dx.doi.org/10.1103/PhysRevLett.109.251801
http://dx.doi.org/10.1016/0550-3213(89)90600-7
http://dx.doi.org/10.1016/0550-3213(89)90600-7
http://dx.doi.org/10.1016/0550-3213(90)90311-Z
http://dx.doi.org/10.1103/PhysRevD.40.912
http://dx.doi.org/10.1103/PhysRevD.65.113007
http://dx.doi.org/10.1103/PhysRevD.65.113007
http://dx.doi.org/10.1103/PhysRevD.74.034007
http://dx.doi.org/10.1103/PhysRevD.74.034007
http://dx.doi.org/10.1103/PhysRevD.79.034023
http://dx.doi.org/10.1016/0550-3213(94)90179-1
http://dx.doi.org/10.1016/0550-3213(94)00488-Z
http://dx.doi.org/10.1016/0550-3213(96)00078-8
http://dx.doi.org/10.1016/S0370-2693(96)01676-0
http://dx.doi.org/10.1016/j.physletb.2006.12.022
http://dx.doi.org/10.1016/j.physletb.2006.12.022
http://dx.doi.org/10.1088/1126-6708/2008/02/095
http://dx.doi.org/10.1088/1126-6708/2008/02/095
http://dx.doi.org/10.1088/1126-6708/2008/04/049
http://dx.doi.org/10.1088/1126-6708/2008/04/049
http://dx.doi.org/10.1103/PhysRevD.78.025031
http://dx.doi.org/10.1016/j.nuclphysb.2009.07.023
http://dx.doi.org/10.1016/j.nuclphysb.2009.07.023
http://dx.doi.org/10.1016/S0550-3213(97)00703-7
http://dx.doi.org/10.1016/S0550-3213(97)00703-7
http://dx.doi.org/10.1016/j.nuclphysb.2005.07.014
http://dx.doi.org/10.1016/j.nuclphysb.2005.07.014
http://dx.doi.org/10.1103/PhysRevLett.94.181602
http://dx.doi.org/10.1103/PhysRevLett.94.181602
http://dx.doi.org/10.1103/PhysRevD.74.036009
http://dx.doi.org/10.1016/j.nuclphysb.2006.11.012
http://dx.doi.org/10.1016/j.nuclphysb.2006.11.012
http://dx.doi.org/10.1103/PhysRevD.75.125019
http://dx.doi.org/10.1088/1126-6708/2009/01/049
http://dx.doi.org/10.1103/PhysRevLett.102.222001
http://dx.doi.org/10.1088/1126-6708/2009/04/077
http://dx.doi.org/10.1088/1126-6708/2009/04/077
http://dx.doi.org/10.1103/PhysRevD.80.094002
http://dx.doi.org/10.1103/PhysRevD.80.094002
http://dx.doi.org/10.1103/PhysRevD.80.074036
http://dx.doi.org/10.1103/PhysRevD.82.074002
http://dx.doi.org/10.1103/PhysRevLett.106.092001
http://dx.doi.org/10.1103/PhysRevD.85.031501
http://dx.doi.org/10.1007/JHEP12(2010)053
http://dx.doi.org/10.1007/JHEP12(2010)053
http://dx.doi.org/10.1103/PhysRevD.83.114043
http://dx.doi.org/10.1103/PhysRevD.83.114043
http://dx.doi.org/10.1016/j.physletb.2012.06.027
http://dx.doi.org/10.1016/j.physletb.2012.06.027
http://dx.doi.org/10.1007/JHEP03(2010)021
http://dx.doi.org/10.1088/1126-6708/2009/09/109
http://dx.doi.org/10.1103/PhysRevLett.104.162002
http://dx.doi.org/10.1103/PhysRevD.84.114017
http://dx.doi.org/10.1103/PhysRevD.84.114017
http://dx.doi.org/10.1103/PhysRevLett.108.032005
http://dx.doi.org/10.1088/1126-6708/2008/08/108
http://dx.doi.org/10.1103/PhysRevLett.103.012002
http://dx.doi.org/10.1103/PhysRevLett.103.012002
http://dx.doi.org/10.1016/j.physletb.2010.02.010
http://dx.doi.org/10.1016/j.physletb.2010.02.010
http://dx.doi.org/10.1103/PhysRevLett.107.102002
http://dx.doi.org/10.1103/PhysRevLett.108.111601
http://dx.doi.org/10.1103/PhysRevLett.108.111601
http://dx.doi.org/10.1103/PhysRevD.78.036003
http://dx.doi.org/10.1103/PhysRevD.78.036003
http://dx.doi.org/10.1088/1126-6708/2004/02/056
http://dx.doi.org/10.1088/1126-6708/2004/02/056
http://dx.doi.org/10.1088/1126-6708/2009/02/007
http://dx.doi.org/10.1088/1126-6708/2009/02/007
http://dx.doi.org/10.1103/PhysRevLett.109.042001
http://dx.doi.org/10.1103/PhysRevD.84.034008
http://dx.doi.org/10.1103/PhysRevD.84.114002
http://dx.doi.org/10.1103/PhysRevD.87.034026
http://dx.doi.org/10.1007/JHEP08(2011)155
http://dx.doi.org/10.1007/JHEP08(2011)155
http://dx.doi.org/10.1103/PhysRevLett.109.171803
http://dx.doi.org/10.1088/1126-6708/2008/03/042
http://dx.doi.org/10.1088/1126-6708/2008/03/042
http://arXiv.org/abs/0902.0094
http://dx.doi.org/10.1007/JHEP08(2010)080
http://dx.doi.org/10.1007/JHEP08(2010)080
http://dx.doi.org/10.1016/j.cpc.2012.10.033
http://dx.doi.org/10.1016/j.cpc.2012.10.033
http://dx.doi.org/10.1140/epjc/s10052-012-1889-1
http://dx.doi.org/10.1016/j.physletb.2012.11.029
http://dx.doi.org/10.1016/j.physletb.2012.11.029
http://dx.doi.org/10.1016/j.cpc.2013.03.018


[40] R. Brun and F. Rademakers, Nucl. Instrum. Methods Phys.
Res., Sect. A 389, 81 (1997).
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