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We study the melting temperature of heavy mesons in the hot medium of light quarks. By solving the

covariant Schrödinger equations at finite temperature for mesons D, �, and J=c , we obtained the

temperature dependence of their masses, binding energies, and averaged sizes and found the flavor

dependence of the melting temperature: TD ’ T� < TJ=c . The sequential melting temperature can explain

the difference in meson elliptic flow observed in heavy ion collisions.

DOI: 10.1103/PhysRevD.88.014021 PACS numbers: 12.38.Mh, 12.39.Pn, 25.75.Ld

From the lattice simulations of QCD at finite tempera-
ture, there exists a deconfinement phase transition from
hadron matter to quark matter at the critical temperature
Tc ’ 170 MeV [1]. Considering different binding ener-
gies of different hadrons, the melting temperature may
depend on the flavor structure of hadrons. This flavor
dependence of the deconfinement temperature is recently
studied by lattice simulations [2,3] and effective models
[4–7]. In the experiments of high energy nuclear colli-
sions at the Relativistic Heavy Ion Collider and LHC,
J=c , the bound state of charm quark c and antiquark �c,
is taken as a sensitive probe of the quark matter created
in the early stage of the collisions [8]. The underlying
reason is that the melting temperature of J=c is much
higher than the deconfinement temperature of light
quarks, and therefore it has the possibility to survive in
the light quark matter and carries the information of the
hot medium.

In this work, we study in the frame of the relativistic
potential model the flavor dependence of the melting
temperature of those heavy mesons consisting of s and
c quarks. While the quarkomium states (c �c or b �b) can
approximately be described in the nonrelativistic poten-
tial model [9], one has to take into account the rela-
tivistic effects for light hadrons. The relativistic

potential model has well been applied to the description
of meson spectra in vacuum [10–12]. Taking Pauli
reduction and scale transformation [13], the two-body
Dirac equation is effectively expressed as a group of
covariant Schrödinger equations and used to calculate
the wave functions of q �q bound states at T ¼ 0 [14].
We extended this model to c �c bound states at finite
temperature and found that the relativistic correction to
the c �c melting temperature is about 10% [15]. The
power of the relativistic potential model at finite tem-
perature is not only the correction to the quarkonium
states but also a reasonable description to those hadrons
consisting of s and c quarks. In this paper we calculate
the melting temperature of D, �, and J=c mesons in
the hot medium of light quarks and see if there exists a
sequential deconfinement phase transition from light to
heavy quarks.
In order to describe a general bound state q1 �q2 with q1,

q2 ¼ u, d, s, c, we consider the following Schrödinger
equations [14] for the radial motion of the q1 �q2 state
relative to the center of mass. The radial wave functions
of the spin singlet u0 and one of the spin triplet u01 with

quantum numbers n2sþ1lj ¼ n1ll and n
3ll are controlled by

the two coupled equations,

�
� d2

dr2
þ jðjþ 1Þ

r2
þ 2mwBþ B2 þ 2�wA� A2 þ�D � 3�SS

�
u0 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ

q
ð�SOD ��SOXÞu01 ¼ b2u0;

�
� d2

dr2
þ jðjþ 1Þ

r2
þ 2mwBþ B2 þ 2�wA� A2 þ�D � 2�SO þ�SS þ 2�T � 2�SOT

�
u01

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ

q
ð�SOD þ�SOXÞu0 ¼ b2u01; (1)

and the other two states uþ1 and u�1 of the triplet with quantum numbers n3llþ1 and n3ll�1 are characterized by
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�
� d2

dr2
þ jðj� 1Þ

r2
þ 2mwBþ B2 þ 2�wA� A2 þ�D þ 2ðj� 1Þ�SO þ�SS þ 2ðj� 1Þ

2jþ 1
ð�SOT ��TÞ

�
uþ1

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þp
2jþ 1

ð3�T � 2ðjþ 2Þ�SOTÞu�1 ¼ b2uþ1 ;

�
� d2

dr2
þ ðjþ 1Þðjþ 2Þ

r2
þ 2mwBþ B2 þ 2�wA� A2 þ�D � 2ðjþ 2Þ�SO þ�SS þ 2ðjþ 2Þ

2jþ 1
ð�SOT ��TÞ

�
u�1

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þp
2jþ 1

ð3�T þ 2ðj� 1Þ�SOTÞuþ1 ¼ b2u�1 (2)

with the energy eigenvalue

b2 ¼ 1

4
½m2

m � 2ðm2
q1 þm2

q2Þ þ ðm2
q1 �m2

q2Þ2=m2
m�; (3)

where n is the principal quantum number; l, s, and j are the
orbital, spin, and total angular momentum numbers; mm,
mq1, and mq2 are the meson and quark masses; the other
two mass parameters mw and �w are defined as mw ¼
mq1mq2=mm and �w ¼ ðm2

m �m2
q1 �m2

q2Þ=ð2mmÞ; and
the explicit expressions for the Darwin term, spin-spin,
and spin-orbit couplings and tensor terms �D, �SS, �SO,
�T , �SOT , �SOD, and �SOX introduced in the dynamical
equations are given in Ref. [14]. Note that for q1 ¼ q2 the
tensor terms �SOD and �SOX disappear, and the two wave
equations (1) become decoupled. For the S-wave of spin
singlet 1S0 with j ¼ 0, such as D and Ds mesons, the
mixing terms vanish, too.

In the Schrödinger equations, (1) and (2), the central
potential between the quark q1 and antiquark �q2 has been
separated into two parts [14],

VðrÞ ¼ AðrÞ þ BðrÞ; (4)

A and B control, respectively, the behavior of the potential
at short and long distance. In vacuum we take the Cornell
potential, including a Coulomb-like part which dominates
the wave functions around r ¼ 0 and a linear part which
leads to the quark confinement,

AðrÞ ¼ ��

r
; BðrÞ ¼ �r: (5)

Since the interaction between quarks is a color interaction,
the coupling constants � and � are independent of the

flavor structure of quarks q1 and �q2. Different from
the previous works [11,14,15] where the parameters in
the Schrödinger equations are fixed by fitting the meson
masses in vacuum, we determine, like Ref. [9], the parame-
ters by considering both the meson masses in vacuum and
the lattice calculated quark potential [16–18] at finite
temperature. We take � ¼ �=12 and � ¼ 0:19 GeV2

which fit the lattice data well and the quark masses mc ¼
1:28 GeV, ms ¼ 0:08 GeV, and mu ¼ md ¼ 0:005 GeV
which lead to the meson masses shown in Table I.
At finite temperature the free energy F of a pair of heavy

quarks is calculated by lattice simulations [16,17,20]. It is
the potential in the limit of slow meson dissociation in the
medium. In this case there is enough time for the meson to
exchange heat with the medium. However, in the limit of
rapid dissociation, there is no heat exchange between the
meson and the medium, and the potential is the internal
energyU which is related to F through the thermodynamic
relation U ¼ F� T@F=@T. In the general case the quark
potential is in between the two limits. When temperature T
vanishes, there is no more difference between F andU, and
we come back to the Cornell potential (5). While different
quark potential at finite temperature will change the meson
wave functions, the flavor dependence of the meson melt-
ing temperature Tm, especially the order of Tds, is not
sensitive to the choice of V. In the following calculations
at finite temperature we take the limit V ¼ F as an example
and will discuss the difference in the other limit V ¼ U.
Considering the Debye screening in the medium, the po-
tential Vðr; TÞ ¼ Aðr; TÞ þ Bðr; TÞ ¼ Fðr; TÞ can be writ-
ten as [9,16]

Aðr; TÞ ¼ ��

r
e��r;

Bðr; TÞ ¼ �

�

�
�ð14Þ
2
3
2�ð34Þ

�
ffiffiffiffiffiffiffi
�r

p
2
3
4�ð34Þ

K1
4
ð�2r2Þ

�
� ��; (6)

where � is the Gamma function, K is the modified Bessel
function of the second kind, and the temperature dependent
parameter �ðTÞ, namely the screening mass or the inverse
screening radius, can be extracted from fitting the lattice
simulated free energy [16,17].

TABLE I. Meson masses in vacuum and the comparison with
the experimental data [19].

Meson n2sþ1lj Experiment (GeV) Theoretical (GeV)

�:s�s 13S1 þ 13D1 1.019 1.096

D:c �u 11S0 1.865 1.929

D�:c �u 13S1 þ 13D1 2.010 1.989

Ds:c�s 11S0 1.968 1.978

D�
s :c�s 13S1 þ 13D1 2.112 2.037

J=c :c �c 13S1 þ 13D1 3.097 3.045

c 0:c �c 23S1 þ 13D1 3.686 3.609

�1:c �c 13P1 3.511 3.395
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Using the inverse power method [21] to solve the
Schrödinger equations, (1) and (2), we obtain the meson
radial wave function

c ðr; TÞ ¼ uðr; TÞ
r

; (7)

and the meson mass mmðTÞ through the energy eigenvalue
b2ðTÞ. From the known temperature dependence of the
meson mass and wave function, we derive in turn the
relativistic meson binding energy [15]

�ðTÞ ¼ Vð1; TÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2ð1; TÞ þ ðmq1 þmq2Þ2

q
�mmðTÞ;

(8)

and the averaged meson size, namely the distance between
the quarks q1 and �q2,

hriðTÞ ¼
R
drr3jc ðr; TÞj2R
drr2jc ðr; TÞj2 : (9)

Since the mass change for a heavy quark system is
expected to be weak at low temperature, it is normally
neglected in model calculations. However, from the calcu-
lations with QCD sum rules [22,23] and QCD second-order
Stark effect [24], the J=c mass is remarkably changed in a
static hot medium. In the region above and close to the
deconfinement temperature Tc of light quarks, there is a
strong change in the mass of J=c . For instance, at
temperature T=Tc ¼ 1:1 the mass shift �mJ=c ¼
mJ=c ðTÞ �mJ=c ðTcÞ can reach 100 MeV [24], which is

already comparable with the mass change for light hadrons
[25]. From our calculation in the frame of the relativistic
potential model at finite temperature, shown in the upper
panel of Fig. 1, the hot medium effect on the meson mass is
remarkable, too. The maximum mass reduction is about
5% for J=c and D and reaches 20% for �.

While the change in the meson mass is smooth, the
binding energy �ðTÞ drops down very fast due to the
rapidly decreasing potential Vð1; TÞ at infinite distance;
see the lattice calculations [9,16]. This means that the fast
melting of heavy mesons in a hot medium is not due to
their mass change but from the strong Debye screening
which changes dramatically the potential between the
two quarks. From the definition of the meson melting
temperature Tm,

�ðTmÞ ¼ 0; (10)

the meson can survive in the light quark matter in the
temperature region Tc < T < Tm. Note that the binding
energy is controlled by the constant quark masses mq1 and

mq2, the temperature dependent mesonmassmmðTÞ and the
quark potential Vð1; TÞ. The melting temperature is deter-
mined by their competitions. The values of Tm extracted
fromFig. 1 are shown in Table II. Since the potentialV ¼ U
is much stronger than the potential V ¼ F, the temperature

needed tomelt themeson ismuch higher inV ¼ U than that
in V ¼ F. Considering the fact that the real quark potential
is in between F and U, the melting temperature is in a
wide region, 1:1 & TD=Tc ’ T�=Tc & 1:8 and 1:3 &

TJ=c =Tc & 2:5.

The radial wave functions for mesonsD,�, and J=c are
shown in Fig. 2. In vacuum with T ¼ 0, the wave functions
are mainly distributed in a narrow region of r < 1 fm, and
the peaks are located at r� 0:3 fm. This means quark
confinement in vacuum. With increasing temperature of
the system, the wave functions expand continuously. At the
deconfinement temperature Tc of the light quarks, while
the wave functions shift outside a little, the distribution is
still similar to the one in vacuum. This indicates that the
heavy mesons can survive in the soup of light quarks. The
change from Tc to the meson melting temperature Tm is,
however, dramatic, and the wave functions expand rapidly.
This means the collapse of the heavy meson systems. For
vector mesons � and J=c , their wave functions contain
two components, the S and D waves, shown as solid and
dashed lines in Fig. 2. Since a charm quark is much heavier
than a strange quark, the relative rotation between the c and
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FIG. 1 (color online). The scaled meson mass mmðTÞ=mmðTcÞ
(upper panel) and scaled meson binding energy �ðTÞ=�ðTcÞ
(lower panel) as functions of scaled temperature T=Tc for D,
�, and J=c . Tc is the deconfinement temperature of light quarks,
and the model calculations are with quark potential V ¼ F.

TABLE II. Meson melting temperature Tm for D, �, and J=c
in the two limits of quark potential V ¼ F and V ¼ U.

Meson Tm=TcðV ¼ FÞ Tm=TcðV ¼ UÞ
D 1.08 1.81

� 1.08 1.77

J=c 1.28 2.51
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�c should be much weaker than that between the s and �s. As
a consequence, theDwave of J=c can be neglected at any
temperature, but the D and S waves for � are almost
equally important.

The melting temperature Tm can also be defined through
the infinite size of the meson,

hriðTmÞ ! 1; (11)

which is equivalent to the definition of zero binding energy.
The scaled average size hriðTÞ=hriðTcÞ as a function of
scaled temperature T=Tc is shown in Fig. 3. When the
temperature approaches the melting temperature, the me-
son size increases dramatically, and the meson collapse
process is very fast.

To see possible effect of the sequential hadron melting
temperature on the finally observed distributions in high
energy heavy ion collisions, we estimate now the meson
elliptic flow v2 in the frame of hydrodynamics [26,27]. v2

is created in the initial stage of the collisions and develops
in the hot medium; it is therefore sensitive to the hadron
melting temperature. At LHC energy the initial tempera-
ture of the colliding system is so high the u, d, s, and c
quarks are all deconfined in the early stage of the hydro-
dynamic evolution of the fireball. With the expansion

of the system, the temperature goes down, and mesons
are formed at the melting temperature Tm. Taking the
ideal hydrodynamics @�T

�� ¼ 0 with T�� being the

energy-momentum tensor and the equation of state with a
first-order phase transition between partons and hadrons
[26], we obtain the meson momentum distribution

dN

dptdy
¼ 1

ð2�Þ3
Z

d��p
�fm; (12)

where �� is the meson formation hypersurface determined

by the melting temperature Tðx; tÞ ¼ Tm, fm ¼
1=ðepuu

�=Tm � 1Þ is the thermalized meson distribution at
Tm, and the local temperature T and fluid velocity u� are

from the solution of the hydrodynamics. We have ne-
glected here the meson interactions in the hadron phase.
The meson elliptic flow is defined as
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FIG. 3 (color online). The scaled average size hriðTÞ=hriðTcÞ
as a function of the scaled temperature T=Tc for mesons
D, �, and J=c . Tc is the deconfinement temperature of
light quarks, and the model calculations are with quark potential
V ¼ F.
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FIG. 4 (color online). The meson elliptic flow v2 as a function
of its transverse momentum pt for �, �, and J=c in Pbþ Pb
collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2:76 TeV. The experimental data are from

[28] for � and � at centrality bin 20%–60% and rapidity bin
j	j< 0:8 and [29] for J=c at bins of 40%–50% and 2:5<	<
4:0, and the model calculations are at impact parameter b ¼
10:2 fm and with quark potential V ¼ F.
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FIG. 2 (color online). The radial wave function uðrÞ as a
function of the distance r between the two quarks for mesons
D (upper panel), � (middle panel), and J=c (lower panel) at
three temperatures T ¼ 0, Tc, and Tm. The solid and dashed lines
are respectively for the S and D waves. Tc is the deconfinement
temperature of light quarks, Tm is the heavy meson melting
temperature, and the model calculations are with quark potential
V ¼ F.
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v2 ¼
R
d’dN=d’ cos ð2’ÞR

d’dN=d’
; (13)

with ’ being the angle between the short axis of the ellipse
and the transverse momentum pt. For Pbþ Pb collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 2:76 TeV and impact parameter b ¼ 10:2 fm, we

calculated the elliptic flow for � and � in central rapidity
and J=c in forward rapidity; the result and the comparison
with the experimental data are shown in Fig. 4. From the

data there is the relation v�
2 > v�

2 > vJ=c
2 . This can be

understood from the flavor dependence of the melting
temperature T�ð¼ TcÞ< T� < TJ=c : A high melting tem-

perature means an early hadronization of the correspond-
ing quarks in heavy ion collisions, and therefore these
quarks do not have enough time to develop the elliptic

flow. The model calculations agree reasonably well with
the data at low pt where the hydrodynamics works.
In summary, we investigated the melting temperature of

the mesons consisting of s and c quarks in the hot medium
of light quarks. In the relativistic potential model, we
solved the covariant Schrödinger equations for D, �, and
J=c at finite temperature, with the help of the central
potential extracted from the lattice simulations. We ob-
tained the meson binding energy and average size which
determine the melting temperature. We found a sequential
melting temperature TD ’ T� < TJ=c , which can be used

to explain the difference in meson elliptic flows observed at
the LHC.
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