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I study group theory (Kleiss-Kuijf) relations between purely multiquark primitive amplitudes at tree

level and prove that they reduce the number of independent primitives to ðn� 2Þ!=ðn=2Þ!, where n is the

number of quarks plus antiquarks, in the case where quark lines have different flavors. I give an explicit

example of an independent basis of primitives for any n which is of the form Að1; 2; �Þ, where � is a

permutation based on a Dyck word.
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I. INTRODUCTION

Color decompositions have proven to be an extremely
useful tool in state-of-the-art calculations of multijet cross
sections at particle colliders (for a review see, e.g.,
Ref. [1]). They allow for the definition of purely kinematic,
gauge invariant objects, which in their most basic form
have cyclically ordered external legs and are called primi-
tive amplitudes [2,3]. Cyclic ordering leads to a simplified
dependence on kinematic quantities, and as a result of this,
primitive amplitudes are well suited for the application of
on-shell techniques such as Britto-Cachazo-Feng-Witten
recursion [4] and the most developed formulations of
unitarity techniques (such as those based on generalized
unitarity [5–8] and the numerical Ossola-Papadopoulos-
Pittau reduction procedure [9–12]). Knowledge of how the
color information is reintroduced can be used to calculate
only those primitive amplitudes which will contribute to a
particular order in a 1=Nc expansion, which is particularly
useful when computing one-loop high-multiplicity ampli-
tudes since the very time consuming yet numerically small,
subleading color parts can be neglected. Color decompo-
sitions have also recently been applied to non-Abelian
gauge theories which are spontaneously broken [13].
Different methods of dealing with color quantum numbers,
such as Monte Carlo summation over fixed external colors
[14–17], and color dressed recursive techniques [18,19],
are highly efficient at tree level; a recent study has devel-
oped this technique for use with virtual amplitudes [20].

In this paper I consider relations between primitive
amplitudes composed of many massless antiquark-quark
pairs at tree level. No all-n formula is known to relate these
primitives to the full amplitude, but examples have been
worked out at tree and loop level (also with external
gluons) by equating coefficients of Feynman diagrams
[1,21]—in Ref. [21] a color decomposition in terms of
one-loop primitives involving up to six quarks and one
gluon was given (which is sufficiently complicated that it
has to be provided in an attached text file to the paper); see
also Ref. [22]. A motivation of this paper is the hope that a

better understanding of these objects and the relations they
satisfy could lead to an all-n color decomposition in terms
of them.
As a way of introducing the multiquark primitive am-

plitudes, consider first the trace-based color decomposition
for tree-level n gluon scattering amplitudes in terms of
fundamental SUðNcÞ matrices, �a, [23,24],

Mtree
gluonðg1; g2; . . . ; gnÞ
¼ X

P ð2...nÞ
trð�1�2 . . .�nÞAgluonð1; 2; . . . ; nÞ; (1)

where the sum is over all permutations P of 2 . . . n. The
labelling of the primitive amplitudes Agluon attests to the

fact that the only Feynman diagrams which contribute to
them, when drawn in a planar fashion, have a cyclic order-
ing of the external legs which corresponds to the label. The
Agluon inherit many properties from this color decompo-

sition, and relations exist between them (which I review in
Sec. II). In particular, the Kleiss-Kuijf (KK) relations [25]
reduce the number of linearly independent primitive
amplitudes from the ðn� 1Þ! in Eq. (1) to ðn� 2Þ!.
Bern-Carrasco-Johansson relations [26] further reduce
the number of independent primitives to ðn� 3Þ!, but I
will not discuss this color-kinematic duality in this paper
and will use the term independent to implicitly mean
independent over the field of real numbers. Primitive am-
plitudes can be obtained directly using color-ordered
Feynman rules (see, e.g., Ref. [27]) that assign purely
kinematic factors to vertices between particles which are
antisymmetric under exchange of two of the legs.
The multiquark primitive amplitudes I will consider in

this paper can be defined by considering the scattering
of n external massless antiquarks plus quarks in the
adjoint representation of SUðNcÞ—then the amplitude
has the same color decomposition as Eq. (1), and I study
relations between the corresponding primitive amplitudes
Aquark � A. They inherit all of the relations that the all-

gluon amplitudes do from this color decomposition, but
they are evaluated with different color-ordered Feynman
rules, and the presence of quark lines which require quark
number and flavor conservation at their interaction vertices*thomas.melia@cern.ch
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introduces an interesting structure which gives rise to
additional relations between the primitive amplitudes.

As a simple example of this, consider the planar graphs
which constitute a four particle primitive amplitude with
the cyclic ordering 1234 (see Fig. 1). If all four particles are
gluons, then both graphs are nonzero and contribute. When
swapping gluons 2 and 3 around to give the contributions
to the primitive 1324, the second diagram simply picks up
a negative sign through the color-ordered Feynman rules,
whereas the kinematic structure of the first diagram
changes to something different. Next consider the case
where particle 1 is an up quark, particle 4 is an up anti-
quark, particle 2 is a down quark, and particle 3 is a down
antiquark. The first graph is zero because it violates both
flavor and quark number at its vertices, whereas the second
graph is allowed (the exchanged particle is a gluon); now
when particles 2 and 3 are swapped around, the first
diagram is still zero (this time only due to flavor violation
at the vertices), and the second diagram picks up a negative
sign. This leads to a relation between the primitive ampli-
tudes 1234 ¼ �1324 which is not present in the all-gluon
case. This type of relation was observed in Ref. [21] arising
from nontrivial solutions to linear equations involving
Feynman diagrams. As a final example based on Fig. 1,
if particles 1 and 3 are an up quark and up antiquark and
particles 2 and 4 are a down quark and down antiquark,
then both diagrams are zero—there is no planar way to
connect the quarks of equal flavor.

In this paper, I will interpret the relations described
above as KK relations, and I show that in using them, an
independent set of ðn� 2Þ!=ðn=2Þ! primitive amplitudes
can be found for the case when all quarks have different
flavors. These amplitudes can be constructed using Dyck
words (named after the German mathematician Walther
von Dyck), which are strings of equal numbers of the
letters X and Y such that the number of Xs is greater than
or equal to the number of Ys in any initial segment of the
string.

This paper is organized as follows. In Sec. II I will
review the familiar properties of multiquark primitive am-
plitudes and introduce a useful graphical way of represent-
ing them. In Sec. III I will describe a correspondence
between Dyck words and nonzero primitive amplitudes
and provide a proof that the number of primitive ampli-
tudes can be reduced to an independent set of size ðn�2Þ!=
ðn=2Þ! using the KK relations. I conclude in Sec. IV.

II. MULTIQUARK PRIMITIVE AMPLITUDES

Consider the n particle tree-level scattering amplitude
which has n=2 massless antiquark-quark pairs. I focus on
the case where all the pairs have a distinct flavor (where the
term flavor can be used loosely in the sense that two quark
lines which have different helicities have different ‘‘flavor’’
even if they are both up-type, down-type, etc.) and will
discuss at the end of this section the equal flavor case.
I adopt the convention that odd momentum labels are
assigned to antiquarks, even momentum labels are assigned
to quarks, and that the pairs of �qq of equal flavor are
ð1 ! 2Þ; ð3 ! 4Þ; . . . ; ðn� 1 ! nÞ, where I use the nota-
tion ( �q ! q) to indicate a particular quark line. A color
decomposition when these quarks are in the adjoint repre-
sentation is

Mtree
adjð �q1; q2; . . . ; �qn�1; qnÞ
¼ X

P ð2...nÞ
trð�1�2 . . .�nÞAð1; 2; . . . ; n� 1; nÞ; (2)

where as discussed in the introduction, the purely kinematic
objects A are planar, cyclically ordered, primitive ampli-
tudes. This decomposition is to be compared to the onewhen
the (anti)quarks are in the fundamental representation with
color indices ð�iÞi [24],
M tree

fundð �q1;q2;...; �qn�1;qnÞ¼
X

�2Sn=2

��i1�2
��i3�4

...��in�1�n
B�;

(3)

where the sum runs over all permutations � ¼
ð�2; �4; . . . ; �nÞ of quark indices ði2; i4; . . . ; inÞ. The color
factors are strings of delta functions, and the B� are purely
kinematic functions (often called color-ordered amplitudes,
but they are not cyclically ordered). Factors of 1=Nc asso-
ciated with a particular permutation � have been absorbed
into the definition of the B�. As already mentioned, the B
can be expressed in terms of the A by solving linear
systems of equations defined by Feynman diagram expan-
sions, but no all-n formula is known (low multiplicity cases
can be obtained using the color decompositions described in
Ref. [28]).
Some of the relations between the A in Eq. (2) are

familiar from gluon amplitudes. They are gauge invariant,
are invariant under cyclic permutations of 1 . . .n, possess a
reflection symmetry Að1;2; . . . ;nÞ¼ ð�1ÞnAðn; . . . ;2;1Þ,
and satisfy the KK relation, which may be written in the
form

Að1; f�g; 2; f�gÞ ¼ ð�1Þn� X
OPf�gf�T g

Að1; 2; f�gf�TgÞ; (4)

where f�g [ f�g ¼ f3; . . . ; n� 1; ng, f�Tg is the set f�g
with the ordering of the elements reversed, n� is the

number of elements in f�g, and OPf�gf�Tg stands for
‘‘ordered permutations,’’ which are the shuffle product of
the elements of the sets f�g and f�Tg—all permutations of

+

1

32

4 1

32

4

FIG. 1. The planar graphs contributing to a four particle primi-
tive amplitude with cyclic ordering 1234.
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the union of the two sets which keep fixed the ordering of
the �i within f�g and the �i within f�Tg.

Consider the set of primitive amplitudes with the labels
for antiquark 1 and quark 2 fixed adjacent to each other in
the order 12, but allowing for all permutations of the labels
3 . . . n—I call this set the Að1; 2; �Þ basis (I discuss the
implications of fixing this choice of labels in Sec. IV). All
other primitive amplitudes can be expressed in terms of
elements of this set through Eq. (4). A useful way to repre-
sent theA graphically is shown in Fig. 2. A light grey circle
is drawn to indicate the edge of the plane (for clarity, it does
not mean any kind of trace is taken), and the quark labels are
written clockwise around this circle in the order dictated by
the particular permutation. Quark lines are then drawn to
join (1 ! 2), (3 ! 4), etc.. These quark line graphs make
clear the structure of the Feynman diagrams (computed
using color-ordered rules) which contribute to a given

A—they are the tree diagrams which arise from joining
the quark lines together with gluons in all distinct planar
ways. They also make it easy to see that some Að1; 2; �Þ
with certain permutations of 3 . . .n are zero. These are the
ones where quark lines cross, since there is no planar way in
which to connect the crossed antiquark-quark pairs. An
example of such a permutation is shown in Fig. 2(b).
Figure 2(c) shows a relation between primitive

amplitudes in the Að1; 2; �Þ basis (and which does not
hold for all-gluon amplitudes),

A ð1; 2; 7; 6; 5; 8; 4; 3Þ ¼ �Að1; 2; 7; 5; 6; 8; 4; 3Þ: (5)

This is really a KK relation with many of the primitive
amplitudes entering it being zero, so they are not written
explicitly in Eq. (5). Writing the relation graphically using
quark line graphs, and explicitly showing the zero primitive
amplitudes (which have crossed quark lines), Eq. (5) becomes
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where the bracket on the diagramon the lhs denoteswhich leg
is to be associated with � on the lhs of Eq. (4). For this
particular case, it is easy to understand the relation Eqs. (5)
and (6) in terms of the Feynman diagramexpansion of the two
nonzero primitive amplitudes using the color-ordered rules.
This is because the quark line (5 ! 6) is isolated in a planar
sense from the rest of the diagram, with the line (7 ! 8)

acting as a boundary to a zone in which it resides. In every
contributing Feynman diagram to Að. . . 6; 5 . . .Þ, (5 ! 6)
connects only to (7 ! 8), via a single gluon line, and the
6g5 vertex can be flipped trivially, picking up a minus sign
through the color-ordered Feynman rules, to produce the
corresponding Feynman diagram of Að. . . 5; 6 . . .Þ. This is
to be comparedwith the case that arises from theKK relation,
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FIG. 2 (color online). (a) Quark line graph for the permutation � ¼ ð12345678Þ; (b) an example of a permutation giving rise to
crossed quark lines—the corresponding primitive amplitude is zero; (c) a relation between primitive amplitudes.
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and relates four nonzero elements of the Að1; 2; �Þ basis
(the ones without crossed quark lines). The interplay of the
color-ordered Feynman diagrams in the expansions of each
of these primitive amplitudes is now more complicated,
owing to the fact that the quark line (7 ! 8) is not isolated
and has to be joined with gluons to at least two of the other
quark lines and that this can be done in a number of different
ways. I will not consider Feynman diagram expansions of
the primitive amplitudes in this paper and will instead use
the KK relations such as Eqs. (5)–(7) directly in order to
address the question of how such relations impact on the
number of independent multiquark primitive amplitudes.

As presented above, the extra structure that having quark
lines brings is to alter the KK relations so that terms drop
out, so that it is possible to reexpress a primitive amplitude
in the Að1; 2; �Þ basis in terms of others which are all
solely in the Að1; 2; �Þ basis. This never happens with all-
gluon amplitudes, but having the additional quark line struc-
ture introduces the possibility that the amplitudes in a KK
relation which are not in the Að1; 2; �Þ basis can be zero
due to crossed quark lines (this is the case with the
Að1; 5; 2; . . .Þ in Eq. (6) and the Að1; 7; 2; . . .Þ in Eq. (7).
A question of interest is how many independentAð1; 2; �Þ
elements are left after all such relations are taken into
account. An equivalent way of posing this question is of
asking which independent basis of ðn� 2Þ! primitive am-
plitudes, chosen before quark line considerations, is such
that as many of the primitives as possible are zero once the
quark lines are taken into account. In starting with the
Að1; 2; �Þ basis (chosen because it is initially a clearly
independent set), the further relations between the elements
of this basis detail the extent to which this is not a basis of
initial ðn� 2Þ! independent primitives which maximises the
number of zero primitives when the conservation rules at
quark-gluon vertices are enforced. It is this question (from
the first point of view) that I will address in Sec. III.

Up until this point, and for the remainder of the paper
(except for a brief discussion in Sec. IV), I am consid-
ering the case where all quark lines are of different
flavor. The amplitude where ne quark lines have the
same flavor, Mtree

ne , can be obtained using the all distinct

flavor amplitude (Mtree
ne¼0 in the below) by a permutation

over quarks,

M tree
ne ¼ X

P ðq1;q2;...qne Þ
ð�1ÞsgnðP ÞMtree

ne¼0; (8)

where the sum is over all of the ne! permutations of the

equal flavor quark indices, q1 . . . qne , and the ð�1ÞsgnðP Þ

accounts for Fermi statistics. An interesting observation
is that when ne ¼ n=2, so that all quark lines are of
equal flavor, none of the primitive amplitudes in the
Að1; 2; �Þ basis are zero. One way of seeing this is
that when constructing a quark line graph, for any per-
mutation of 3 . . .n, it is always possible to find a way of
joining up the odd numbers with even numbers without
crossing lines [any join (odd ! even) is allowed as all
flavors are the same]. I prove this in Appendix A. No
primitive amplitudes drop out of the KK relations, and
so the number of independent Ane¼n=2 is ðn� 2Þ!, as it
is for gluons. This fact, along with Eq. (8) gives a bound
on the number of independent primitives with ne ¼ 0,

#ðindependentAne¼0Þ � ðn� 2Þ!=ðn=2Þ!: (9)

In the next section, I will first discuss how to count all of
the possible nonzero graphs in the Að1; 2; �Þ basis, and
then I will use KK relations (the additional quark line
structure setting terms in them to zero) to express this set
in terms of one of its subsets of size ðn� 2Þ!=ðn=2Þ!.
Equation (9) then implies that this subset is independent.

III. DYCK WORDS

A Dyck word is a string of length 2r consisting of r Xs
and r Ys, such that the number ofXs is greater than or equal
to the number of Ys in any initial segment of the string. The
number of Dyck words of length 2r is given by the rth
Catalan number, Cr ¼ ð2rÞ!=ðrþ 1Þ!r!. For example, for
r ¼ 3 there are five Dyck words:

XXXYYY XXYXYY XXYYXY XYXXYY XYXYXY:

(10)
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FIG. 3. Dyck words for r ¼ 3 (top row) and the quark line graph topologies they describe.
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A topology for a quark line graph can be associated with a
Dyck word in the following way (see Fig. 3). First draw in
the line (1 ! 2); then, moving clockwise from this line,
write the Dyck word around the edge of the plane, and each
time a Y is encountered, connect it with a line to the most
recently written X which has not already been connected.
This procedure does not require any quark lines to cross, and
the Dyck words of length 2r provide all possible noncross-
ing topologies of the r ¼ n=2� 1 quark lines coming from
the � permutations in the Að1; 2; �Þ basis for n quark
scattering. That this is true can be seen from the interpreta-
tion of Dyck words as strings of correctly nested parenthe-
ses: X ! ‘‘(’’ and Y ! ‘‘)’’. Identifying these parentheses
with the two ends of a quark line, it is clear that the correct
nesting requirement is equivalent to avoiding crossed lines.

For each of these topologies, the quarks of different
flavors can be assigned in r! ways, and each quark line
can be directed in one of two ways, so the number of
nonzero amplitudes in the Að1; 2; �Þ basis is

2rr!Cr ¼ 2
n
2�1ðn� 2Þ!=ðn=2Þ!: (11)

However, not all of these primitive amplitudes are indepen-
dent. I shall now show that an independent subset can be
chosen defined as those primitives where the quark lines are
all oriented in the same direction as the quark line (1!2).
That is, when reading clockwise around the quark line graph,
starting at antiquark 1 [or reading the label in Að1; 2; �Þ
from left to right] the antiquark of each quark line is encoun-
tered before the quark. This removes the factor of 2

n
2�1 in the

above equation and is a consequence of using KK relations
to expresses the other primitives in terms of members of this
oriented subset [and other primitives of the formAð1�02�Þ
which are zero, where �[�0 ¼ f3;4; . . . ;ng and�0 � ;]. As
an example, the oriented primitives corresponding to the
topologies shown in Fig. 3 would have antiquark labels
assigned to the Xs and quark labels assigned to the Ys. In
the following, I will use the term orient to mean reexpress a
primitive amplitude with wrongly directed quark lines in
terms of primitive amplitudes where the quark lines point in
the same direction as the line (1 ! 2). I want to emphasize
that this is not related to the charge parity equation,

A ð. . . i��q . . . j�q . . .Þ ¼ �Að. . . i�q . . . j��q . . .Þ; (12)

which assigns a different momentum and helicity (�) to
the quark q on either side of the equation.

Figure 4 depicts a zone bounded by the quark line with
ends labelled x and y (direction not specified) within a
generic primitive amplitude. (The ellipses outside this zone
stand for any number of quark lines, which may or may not
straddle this zone—a few example lines are shown, their
direction is not specified.) Within the zone are s subzones
f�1g . . . f�sg which consist of a quark line boundary and in
general contain further substructure in the form of more
quark lines (their boundaries are drawn in Fig. 4, but
without specifying their direction for the subzones f�1g; . . . ;
f�m�1g;f�mþ1g; . . . ;f�sg). The boundary of the subzone

f�mg is wrongly oriented, and this subzone is shown
explicitly broken down into its boundary [the line
(i ! j)] and its substructure f�g.
I prove by induction that this zone can be oriented, by

which I mean all of the quark lines inside the boundary
(x� y) (and not the boundary itself) can be oriented. For
this, the following identity, a consequence of the KK
relations and valid for multiquark primitive amplitudes
with different flavor quark lines (and which I prove in
Appendix B’), is useful,

Að. . .xf�1g . . .f�m�1gjf�gif�mþ1g . . .f�sgy . . .Þ

¼�Xm
c¼1

2
4 X

OPfDcgfEg

0
@ X

OPfAcgfBg
Að. . .xf�1g . . .f�c�1g

� if�cg . . .f�m�1g|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
fAcg

f�Tg|{z}
fBg

j
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{fDcg

f�mþ1g . . .f�sg
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{fEg

y . . .Þ
1
A
3
5; (13)

where f�ig are the subzones, and it should be remembered
that some of the permutations induced by OPfAcgfBg and
OPfDcgfEg will be ones with crossed quark lines and will
give rise to primitive amplitudes that are zero.
A zone which contains k ¼ 1 quark lines is oriented

trivially as follows from Eq. (13) with s ¼ 1, f�g ¼ ;,

FIG. 4. A quark line graph for a primitive multi-quark
amplitude, showing the general structure of a zone with a
boundary of the quark line with ends labelled x and y, and
with sub-zones f�1g . . . f�sg. The orientation of the boundary
(i! j) of sub-zone f�mg is explicitly shown to be in the wrong
direction, and the substructure of f�mg is also explicitly shown
and labelled f�g.
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A ð. . . xjiy . . .Þ ¼ �Að. . . xijy . . .Þ; (14)

which is just the situation discussed beneath Eq. (6), since
the quark line (i ! j) is completely isolated from the rest of
the diagram by the boundary (x� y). Now assume that a
zone containing k� 1 quark lines can be oriented. I will
prove that a zone containing k quark lines can be orientated.

If these k quark lines are arranged so that the number of
subzones s ¼ 1, the zone can be oriented as follows from
Eq. (13) with s ¼ 1,

A ð. . . xjf�giy . . .Þ ¼ �Að. . . xif�Tgjy . . .Þ: (15)

This has correctly oriented the boundary of the subzone,
which is all that is needed here (and in the following), for
any substructure inside subzones can be oriented by
assumption by treating the boundary of the subzone as
the boundary of a new zone containing k0 < k quark lines.
Now I assume that the case where the k quark lines are
arranged into s� 1 subzones can be oriented and show that
the case with s subzones can be oriented. To do this, apply
Eq. (13) in its general form,

Að. . . xf�1g . . . f�m�1gjf�gif�mþ1g . . . f�sgy . . .Þ
¼ �Að. . . xf�1g . . . f�m�1gif�Tgjf�mþ1g . . . f�sgy . . .Þ

þ terms with smaller s; (16)

which correctly orients the boundary of subzone m up to
other terms which by assumption can be oriented.
Equation (13) can be further applied for any m,
1 � m � s, until all s subzones have correctly oriented
boundaries. This concludes the proof that the quark lines
contained within the full zone can all be oriented.

Finally, a special case of the above is the zone which
contains k ¼ n=2� 1 quark lines and which has boundary
(1 ! 2) which is by definition correctly oriented.
Orienting this zone orients the full primitive amplitude.

The reduced set of ðn� 2Þ!=ðn=2Þ! amplitudes obtained
with the above method are

fAð1; 2; �Þj� 2 Dyckn=2�1½X�1 . . .X�n=2�1
Y . . .Y�g; (17)

where Dyckr means all Dyck words of length 2r composed
of the Xs and Ys, with all r! possible different labellings of
the Xs; i.e. � ¼ ð�1; . . . ; �rÞ is a permutation of ð1; . . . ; rÞ.
The indices of the letter Ys are determined by the X�i they

are matched to via the method described at the beginning of
this section, which depends on the particular Dyck permu-
tation. If a Y gets matched to X�i , then it is labelled as Y�i .

Finally the identification X1 ! 3; Y1 ! 4; X2 ! 5; Y2 !
6; . . . , Xn=2�1 ! n� 1, Yn=2�1 ! n should be made.

That this set of primitive amplitudes is independent
follows from Eq. (9).

IV. DISCUSSION

At the beginning of Sec. II, I made a choice of fixing the
labels 1 and 2. This choice had an effect on the way in which

the paper progressed, since I have always been considering
amplitudes in the Að1; 2; �Þ basis and discussing relations
between them. Of course, now that an independent set is
found in Eq. (17)—call it fAð1; 2;DyckÞg—[or this set
where the role of (1 ! 2) is switched with another quark
line], all of the nonzero amplitudes which result from fixing,
say, antiquarks 1 and 3—a Að1; 3; �Þ basis—can be ex-
pressed in terms of this set. However, it is an interesting
question as to which mixtures of primitive amplitudes from
the fAð1; 2;DyckÞg, fAð3; 4;DyckÞg, etc., bases are inde-
pendent; addressing this question might help understand
whether an all-n color decomposition in terms of primitive
multiquark amplitudes could be written down.
When carrying out the permutation sum in Eq. (8) on

fAð1; 2;DyckÞg to obtain amplitudes where one or more
quark lines have equal flavor, the ne! primitive amplitudes
at first sight also contain only quark lines which are
correctly orientated, since Eq. (8) only permutes the quark
indices. There is, however, an ambiguity since with equal
flavor quark lines, the quark line graphs are not well
defined—for instance if (3 ! 4) and (7 ! 8) have the
same flavor, then the graph for the primitive amplitude
Að12385674Þ could be drawn one of two ways,

or

1

8 7

65

43

2 1

8 7

(18)

65

43

2

The first of these diagrams is the onewhich would be drawn
in the ne ¼ 0 case, and it has the line (7 ! 8) incorrectly
orientated. The second diagram has both quark lines
(3 ! 8) and (7 ! 4) correctly oriented and is what is
obtained from the quark line graph for Að12345678Þ by
switching the labels 4 $ 8 as in Eq. (8). The primitive
Að12385674Þ receives contributions from Feynman
diagrams associated with both quark line graphs. It would
be wrong to try and eliminate it based on the first graph
above. The KK relations are affected because fewer
terms drop out of them—when the quark lines (3 ! 4)
and (7 ! 8) cross, which would produces a zero primitive
in the distinct flavor case.
The addition of gluons to these pure-quark amplitudes is

phenomenologically important—contributions to collider
processes with n jets which involve quark lines are sup-
pressed in color by a factor of 1=Nc in comparison with the
contribution, equal in �s, where the quark line is replaced
by a gluon pair. The pure-quark primitive amplitudes act as
skeletons upon which to fix gluons, and the flavor structure,
which this paper investigates, is not altered by their pres-
ence. In the future I hope to think about mixed quark-gluon
primitive amplitudes, in particular in the context of an all-n
color decomposition (an all-n decomposition is known for
the one quark line case [29,30]; explicit expressions for the
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relation between primitives and the full amplitude for
4qþ 0=1g can be found in, e.g., Ref. [31]).

Finally, it would be interesting (and useful in practical
collider physics applications) to develop these ideas at one
loop. Here, a relation similar to the KK relation at tree level
relates nonplanar primitive amplitudes to planar ones. There
is also a further division of multiquark primitive amplitudes
depending on whether quark lines turn left or right past the
loop [2,21]. These amplitudes have already been shown in
Ref. [21] to satisfy more relations than would all-gluon
amplitudes, owing to their quark line structure. Such rela-
tions should be investigated in terms of the one-loop KK
relations. Furthermore, the planar one-loop primitives retain
the Dyck word structure that is seen here at tree level.

In conclusion, I have presented a proof that KK rela-
tions, along with flavor and quark number conservation,
reduce the number of independent purely multiquark
primitive amplitudes to ðn� 2Þ!=ðn=2Þ! in the case when
all quark lines have a different flavor. I have given an
explicit set of primitive amplitudes in Eq. (17) for any
(even) value of n, which have a labelling of external
particles based on Dyck words.
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APPENDIX A: NONCROSSING QUARK LINES
OF EQUAL FLAVOR

In this appendix, I prove the assertion in the text that when
all quark lines are of equal flavor, a quark line graph can
always be drawn to connect quarks and antiquarks without
any quark lines crossing. The proof is simple—it relies on an
argument which is similar to the construction of the Dyck
topologies in Sec. III. The quark line graph has some per-
mutation of n=2 odd and n=2 even numbers written around
the circle that represents the edge of the plane. Any odd

number can be connected to any even number by a quark
line, since the quarks and antiquarks all have equal flavor.
Pick a starting point at an even number, and move around the
circle, and each time an odd number is encountered, connect
it with a quark line to the most recently encountered even
number that has not already been connected. This procedure
leads to no crossed quarks lines, proving the assertion.

APPENDIX B: PROOF OF THE IDENTITY EQ. (13)

I show how to apply KK relations in order to prove
Eq. (13), which is valid for purely multiquark scattering
when all quark lines are of a different flavor. See also
Fig. 4. First use cyclic symmetry to write the lhs of
Eq. (13) so that x appears as the first label in the primitive
amplitude. Then apply the KK relation to f�1g . . . f�m�1g
(as indicated in the equation below),

Aðxf�1g . . . f�m�1g
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{KK

jf�gif�mþ1g . . . f�sgy . . .Þ
¼ X

OPfAgfBg
Aðxjf�T

m�1g . . . f�T
1 g|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

fAg

f�gif�mþ1g . . . f�sgy . . .|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
fBg

Þ;

(B1)

and now use the fact that since the A are multiquark
amplitudes with quark lines of different flavor, these prim-
itives are zero if an f�cg straddles the i (due to crossed
quark lines). That is, the ordered permutations OPfAgfBg
can be split up as follows:

¼ Xm
c¼1

2
4 X

OPfCcgfEg

0
@ X

OPfAcgfBg
Aðxjf�T

m�1g . . . f�T
c g|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

fAcg

f�g|{z}
fBg

� if�T
c�1g . . . f�T

1 g|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
fCcg

f�mþ1g . . . f�sgy . . .|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
fEg

Þ
1
A
3
5: (B2)

Now consider a termwith fixed c and for one permutation of
OPfAcgfBg in Eq. (B2), define f�cg¼ fj�g, �2OPfAcgfBg,
and then apply the KK relation to f�cg in this term,

X
OPfCcgfEg

Aðx f�cg
z}|{KK

if�T
c�1g . . .f�T

1 g|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
fCcg

f�mþ1g . . .f�sgy . . .|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
fEg

Þ¼� X
OPfDcgfFg

0
@ X

OPfCcgfEg
Aðxi f�T

c g
z}|{fDcg

f�T
c�1g . . .f�T

1 g|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
fCcg

f�mþ1g . . .f�sgy . . .|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
fEg

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{fFg

Þ
1
A

¼� X
OPfCcgfFg

0
@ X

OPfDcgfEg
Aðxif�T

c�1g . . .f�T
1 g|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

fCcg

f�T
c g

z}|{fDcg

f�mþ1g . . .f�sgy . . .
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{fEg

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
fFg

Þ
1
A

¼� X
OPfDcgfEg

Aðxf�1g . . .f�c�1gi f�T
c g

z}|{fDcg

f�mþ1g . . .f�sgy . . .
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{fEg

Þ; (B3)

where the second equality is simply a rewriting of the permutation, and where the last equality follows through the KK
relation with f�g ¼ f�1g . . . f�c�1g. Substituting Eq. (B3) into Eq. (B2) yields the required identity, Eq. (13).
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