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A comprehensive study of the impact of new physics on different observables for Bs ! �‘þ‘� is carried

out. We examine the new physics models, such as Z0 and universal extra dimension models, where the effects

of new physics come through the modification of Wilson coefficients. We analyze these effects through the

theoretical prediction of the branching ratio, the forward-backward asymmetry, lepton polarization asymme-

tries, and the helicity fractions of the final-state meson. These observables will definitely be measured in

present and future colliders with great precision. We also point out that hadronic uncertainties in various

physical observables are small, which make them an ideal probe to establish new physics. Therefore, the

measurements of these observables for the same decay would permit the detection of physics beyond the

Standard Model and will also help us to distinguish between different new physics scenarios.

DOI: 10.1103/PhysRevD.88.014019 PACS numbers: 13.20.He

I. INTRODUCTION

Studies of flavor-changing neutral current (FCNC)
decays have played a pivotal role in formulating the
theoretical description of particle physics known as the
Standard Model (SM). In the SM, at tree level, all
the neutral currents conserve flavor so that FCNC decays
do not occur at lowest order and are induced by the
Glahsow-Iliopoulos-Maiani amplitude [1] at the loop level,
which make their effective strength small. In addition to
this loop suppression these are also suppressed in the SM
due to their dependence on the weak mixing angles of the
Cabbibo-Kobayashi-Maskawa (CKM) matrix VCKM [2,3].
Therefore, these two circumstances make the FCNC de-
cays relatively rare and hence important to provide strin-
gent tests of SM in the flavor sector.

Although many measurements of observables in the
B-meson systems agree with the SM, there are several
observables whose measured values differ from the predic-
tions of the SM, such as the following. (i) The values of the
B0
d � �B0

d mixing phase sin ð2�Þ obtained from different

penguin-dominated b ! s channels tend to be systemati-
cally smaller than that obtained from B0

d ! J=cKs [4–6].

(ii) The B0
s � �B0

s mixing phase measured by the CDF and
D0 collaboration deviates from the SM prediction [7,8].
(iii) In B ! K� decays, it is difficult to account for all the
experimental measurements within the SM [9]. (iv) The
isospin asymmetry between the neutral and charged decay

modes of the �B ! �K�‘þ‘� decay also deviates from the
SM [10]. These disagreements are typically at the 2�

level—which are not statistically significant—but these are
still fertile ground to test SM and check the new physics
(NP), as they appear in the b ! s transitions. In this context
there have been numerous papers examining the possible NP
FCNC scenarios through the various b ! s processes [11].
On the experimental side, the LHC is already up and

running—where CMS, ATLAS, and LHCb have started
taking data—while the Belle II is on its way. We are
already witnessing that the SM is still standing tall at least
in the data taken to date, and the recent discovery of a
Higgs-like boson in the mass range of 126 GeV has left
enough breathing room for the SM. It is therefore an ideal
time to test the predictions of the SM and try to identify the
nature of the physics that is beyond it.
Moreover, in the SM the zero crossing of the leptons’

forward-backward asymmetry [AFBðq2Þ] in B ! K�lþl� is
at a well-determined position which is free from the hadronic
uncertainties at the leading order (LO) in strong coupling �s

[12–14]. On the other hand, the LHCb has announced the
results of AFB, the fraction of longitudinal polarization FL,
and the differential branching ratio dB=dq2 as a function of
the dimuon invariant mass for the decay �B ! �K��þ��
using 0:37 fb�1 of data taken in 2011 [15]. These results
of AFBð �B ! �K��þ��Þ are close to the SM predictions with
slight error bars, and thus they have overwritten the earlier
measurements by BABAR and Belle which measured this
asymmetry with the opposite sign and with better statistics
[15–18]. The collaboration plans to continue to study the
channel �B ! �K��þ�� in finer detail, with more angular
variables, and is expected to achieve a high sensitivity to any
small deviation from the SM [15].
In order to incorporate the experimental predictions of

different physical observables in �B ! �K��þ�� this decay
has been studied in SM and in a number of different NP
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scenarios [19–39] where NP effects display themselves
through modifications in the Wilson coefficients as well
as through the new operators. Besides these models the
general analysis of �B ! �K��þ�� decay has also been
performed which allows us to include all possible NP
operators, such as vector-axial vector, scalar-pseudoscalar,
and tensor-axial tensor [40].

Apart from the ordinary B-meson decays an interesting
avenue for the NP is opened by the Bs-meson decays,
where B0

s � �B0
s mixing is the exciting feature, which in

the SM originates from the box topologies and hence is
strongly suppressed. In the presence of NP, new particles
could give rise to additional box topologies and these
decays can occurs at the tree level. In this regard, the key
channel to address this possibility is the B0

s ! J=��,
where the pertinent feature is that its final state contains
two vector mesons and thereby requires the time-
dependent angular analysis of the J=� ! �þ�� and� !
KþK� decay products [41]. In addition, over the last
couple of years, measurements of CP-violating asymme-
tries in ‘‘tagged’’ analysis (distinguishing between initially
present B0

s or �B0
s mesons) of the B0

s ! J=�� channel at
the Tevatron indicate possible NP effects in B0

s � �B0
s mix-

ing [42–44]. These results are complemented by the mea-
surement of the anomalous like-sign dimuon charge
asymmetry at D0, which was found to differ by 3:9�
from the SM prediction [45]. However, in the summer of
2012 the LHCb collaboration also reported results that
disfavor large NP effects [46]. Therefore, more data is
needed to clarify the potential and status of NP.

Along the same lines, the exclusive Bs ! �‘þ‘� has
also become attractive since at quark level these decays are
also induced by b ! s‘þ‘�, and could be measured at the
running Tevatron, LHC, and future super B factories.
Recently, the CDF collaboration observed Bs ! ��þ��
with the branching ratio [40]

BrðBs ! ��þ��Þ
¼ ½1:44� 0:33ðstatÞ � 0:46ðsystÞ� � 10�6: (1)

On the theoretical side this exclusive process is well studied
in the literature [47–51] with varying degrees of theoretical
rigor and emphasis. In order to study different physical
observables—such as the dilepton invariant mass spectrum,
the forward-backward asymmetry, the helicity fractions
of final-state mesons, and different lepton polarization
asymmetries—the crucial ingredients are the form factors
which need to be calculated using a nonperturbative QCD
methods and therefore form the bulk of theoretical uncer-
tainties. Form factors parametrizing Bs ! ��þ�� have
already been calculated in different models, such as light-
cone sum rules (LCSRs) [52–54], the perturbative QCD
approach [55], the relativistic constituent quark model
[56], the constituent quark model [57], and the light-front
quark model [58]. Among them, the LCSRs deal with
form factors on the small-momentum region and are

complementary to the lattice QCD approach and consistent
with perturbative QCD, as well as with the heavy-quark
limit; therefore, we will adopt the form factors calculated by
this approach in our forthcoming analysis of Bs ! �‘þ‘�
decays in the SM and two different NP models, namely, Z0
and universal extra dimensions (UED). The form factors
calculated from LCSRs are restricted to the low-q2 region,
whereas in the high-q2 region ongoing efforts aim at the first
unquenched prediction from the lattice [59].
It is well known that the NP plays its role in the rare

B-meson decays in two different ways: one is through the
modification in the Wilson coefficients corresponding to
the SM operators, and the other is due to the appearance of
new operators in the effective Hamiltonian, which are
absent in the SM. The UED and Z0 models belong to the
category commonly known as minimal flavor-violating
models, which do not change the operator basis of the
SM and hence their contribution is absorbed in the
Wilson coefficients. In the present study, we perform an
analysis of the branching ratio, the forward-backward
asymmetry (AFB), the helicity fraction of the final-state �
meson (fL;T), and the lepton polarization asymmetries

(both single and double) in the Bs ! �‘þ‘� decay in
the aforementioned NP scenarios.
The outline of the paper is as follows. In Sec. II we

briefly discuss the different NP scenarios and introduce the
effective Hamiltonian formalism for semileptonic rare Bs

decays. Section III contains the definitions and parametri-
zations of Bs ! � matrix elements and summarizes the
form factor calculated in LCSRs. In Sec. IV, we display
the mathematical expressions for the branching ratio, the
forward-backward asymmetry, the helicity fractions of the
� meson, and the different lepton polarization asymme-
tries. Section V contains our numerical results for the
above-mentioned physical observables in both the SM
and in different NP scenarios where we show the influence
of the NP parameters on the various asymmetries outlined
above. A brief summary and some concluding remarks are
also given at the end of this section.

II. THEORETIC AL FRAMEWORK

Calculating the decay amplitude of Bs ! �‘þ‘�
decays requires some theoretical steps. Among them the
most important and relevant are
(i) the separation of short-distance effects (encoded in

Wilson coefficients) from the long-distance QCD
effects (encoded in the matrix elements) in the ef-
fective Hamiltonian, and

(ii) the calculation of matrix elements of local quark
bilinear operators of the type h�jJjBsi in terms of
form factors.

As the effective Hamiltonian will be changed in differ-
ent models we will therefore first describe the effective
Hamiltonian in the aforementioned models, and postpone
discussing the form factors until the next section.
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A. Standard Model

At quark level the decay Bs ! �‘þ‘� is governed by
the transition b ! s‘þ‘� for which the effective
Hamiltonian can be written as

Heff ¼ � 4GFffiffiffi
2

p V�
tbVts

X10
i¼1

Cið�ÞOið�Þ; (2)

where Oið�Þ (i ¼ 1; . . . ; 6) are the four-quark operators,
i ¼ 7, 8 are dipole operators, and i ¼ 9, 10 are the semi-
leptonic operators. The Cið�Þ are the corresponding
Wilson coefficients at the energy scale �. The terms that
correspond to the running of the u quark in the loop, i.e.,

V�
ubVus can be safely ignored because

V�
ub
Vus

V�
tb
Vts

� 2� 10�2.

The operators responsible for Bs ! �‘þ‘� are O7, O9,
and O10 and their form is given by

O7 ¼ e2

16�2
mbð�s���PRbÞF��;

O9 ¼ e2

16�2
ð�s��PLbÞð�l��lÞ;

O10 ¼ e2

16�2
ð�s��PLbÞð�l���5lÞ;

(3)

with PL;R ¼ ð1� �5Þ=2. TheWilson coefficientsCi can be

calculated perturbatively and the explicit expressions of
these in the SM at next-to-leading order and at next-to-
next-to-leading logarithm are given in Refs. [60–75]. Since

the Z boson is absent in the effective theory, the operator
O10 cannot be induced by the insertion of four-quark
operators. Hence, the Wilson coefficient C10 does not
renormalize under QCD corrections and so it is indepen-
dent of the energy scale.
The Wilson coefficient CSM

9 ð�Þ, which is commonly

written as Ceff
9 ð�Þ, corresponds to the semileptonic opera-

tor O9. It can be decomposed into three parts,

CSM
9 ¼ Ceff

9 ð�Þ ¼ C9ð�Þ þ YSDðz; s0Þ þ YLDðz; s0Þ; (4)

where the parameters z and s0 are defined as z ¼ mc=mb,
s0 ¼ q2=m2

b. The short-distance function YSDðz; s0Þ de-

scribes the perturbative part which includes the indirect
contributions from the matrix element of four-quark op-
erators

P
6
i¼1hlþl�sjOijbi and this lies sufficiently far away

from the c �c resonance regions. The manifest expressions
for YSDðz; s0Þ can be written as [61,62]

YSDðz; s0Þ ¼ hðz; s0Þð3C1ð�Þ þ C2ð�Þ þ 3C3ð�Þ þ C4ð�Þ
þ 3C5ð�Þ þ C6ð�ÞÞ � 1

2
hð1; s0Þð4C3ð�Þ

þ 4C4ð�Þ þ 3C5ð�Þ þ C6ð�ÞÞ
� 1

2
hð0; s0ÞðC3ð�Þ þ 3C4ð�ÞÞ þ 2

9
ð3C3ð�Þ

þ C4ð�Þ þ 3C5ð�Þ þ C6ð�ÞÞ; (5)

with

hðz; s0Þ ¼ � 8

9
ln zþ 8

27
þ 4

9
x� 2

9
ð2þ xÞj1� xj1=2

8><
>:
ln
����� ffiffiffiffiffiffiffi

1�x
p þ1ffiffiffiffiffiffiffi
1�x

p �1

������i� for x � 4z2=s0 < 1;

2 arctan 1ffiffiffiffiffiffiffi
x�1

p for x � 4z2=s0 > 1;

hð0; s0Þ ¼ 8

27
� 8

9
ln
mb

�
� 4

9
ln s0 þ 4

9
i�:

(6)

The long-distance contributions YLDðz; s0Þ from four-quark
operators near the c �c resonance cannot be calculated from
the first principles of QCD and are usually parametrized in
the form of a phenomenological Breit-Wigner formula,
making use of the vacuum saturation approximation and
quark-hadron duality. In the present study we ignore this
part because this lies far away from the region of interest.

The nonfactorizable effects [76–78] from the charm
loop can bring about further corrections to the radiative
b ! s� transition, which can be absorbed into the effective
Wilson coefficient Ceff

7 . Specifically, the Wilson coefficient
Ceff
7 is given by

CSM
7 ¼ Ceff

7 ð�Þ ¼ C7ð�Þ þ Cb!s�ð�Þ; (7)

with

Cb!s�ð�Þ¼ i�s

�
2

9
	14=23ðG1ðxtÞ�0:1687Þ�0:03C2ð�Þ

�
;

(8)

G1ðxtÞ ¼ xtðx2t � 5xt � 2Þ
8ðxt � 1Þ3 þ 3x2t ln

2xt
4ðxt � 1Þ4 ; (9)

where 	 ¼ �sðmWÞ=�sð�Þ, xt ¼ m2
t =m

2
W , Cb!s� is the

absorptive part for the b ! sc �c ! s� rescattering, and
we have dropped out the tiny contributions proportional
to the CKM sector VubV

�
us.

In terms of the above Hamiltonian, the free quark decay
amplitude for b ! s‘þ‘� in the SM can be derived as

Mðb ! s‘þ‘�Þ
¼ �GF�ffiffiffi

2
p

�
VtbV

�
ts

�
CSM
9 ð �s��PLbÞð�l��lÞ

þ CSM
10 ð �s��PLbÞð�l���5lÞ

� 2mbC
SM
7

�
�si���

q�

q2
PRb

�
ð�l��lÞ

�
; (10)
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where q2 ¼ ðplþ þ pl�Þ2 is the square of the momentum
transfer.

B. Universal extra dimension model

Among different new physics models proposed during
the last 20 years or so, a special role is played by one with
UED. In this model all SM fields are allowed to propagate
in all available dimensions. The economy of the UED
model is that there is only one additional parameter added
to those of the SM—the radius R of the compactified extra
dimension. Now above the compactification scale 1=R a
given UED model becomes a higher-dimensional field
theory whose equivalent description in four dimensions
consists of SM fields and the towers of Kaluza-Klein
(KK) modes having no partner in the SM. The simplest
model of this type was proposed by Appelquist-Cheng-
Dobrescu [79]. In this model, all the masses of the KK
particles and their interactions with SM particles and also
among themselves are described in terms of the inverse of
the compactification radius R and the parameters of the SM
[80,81].

The Appelquist-Cheng-Dobrescu model belongs to
the class of minimal flavor-violating models where the
effects beyond the SM are only encoded in the Wilson
coefficients of the effective Hamiltonian without changing
the operator basis of the SM. Wilson coefficients contrib-
uting in the calculation of b ! s‘þ‘�, i.e., C7,C9, and C10

get modified due to the KK excitation, inducing a depen-
dence on the compactification radius R. As the value of the
compactification radius R becomes smaller—or in other
words the value of 1=R becomes larger—we can recover
the Standard Model phenomenology because the massive
KK states start to decouple. As a general expression,
the Wilson coefficients are represented by periodic
functions Fðxt; 1=RÞ generalizing their SM analogues
F0ðxtÞ,

Fðxt; 1=RÞ ¼ F0ðxtÞ þ
X1
n¼1

Fðxt; xnÞ; (11)

with xt ¼ m2
t

M2
w
, xn ¼ m2

n

M2
w
, and mn ¼ n

R . The remarkable

feature of the above equation is that the summation
over the KK contribution is finite at the leading order
(LO) in all cases as a consequence of the generalized
Glahsow-Iliopoulos-Maiani mechanism [80,81]. As R !
0, Fðxt; 1=RÞ ! F0ðxtÞ, which is the SM result. Now if we
take 1=R to be a few hundred GeV, the values of the Wilson
coefficients differ considerably from their corresponding
SM values, where the most pronounced effects comes in
the C7. It is therefore expected that the various physical
observables differ significantly from the SM results for a
certain range of the compactification radius R.

Thus the effective Hamiltonian for b ! s‘þ‘� transi-
tion in a UED model is given by

H UED
eff ðb ! s‘þ‘�Þ

¼ �GF�ffiffiffi
2

p
�
VtbV

�
ts

�
CUED
9 ð�s��PLbÞð�l��lÞ

þ CUED
10 ð�s��PLbÞð�l���5lÞ

� 2mbC
UED
7

�
�si���

q�

q2
PRb

�
ð�l��lÞ

�
; (12)

where the explicit expressions of various Wilson coeffi-
cients are given in Refs. [80,81]. Using this Hamiltonian
the free quark decay amplitude becomes

Mðb ! s‘þ‘�Þ
¼ �GF�ffiffiffi

2
p

�
VtbV

�
ts

�
CUED
9 ð�s��PLbÞð�l��lÞ

þ CUED
10 ð�s��PLbÞð�l���5lÞ

� 2mbC
UED
7

�
�si���

q�

q2
PRb

�
ð�l��lÞ

�
: (13)

C. Family nonuniversal Z0 model

A family nonuniversal Z0 boson could be derived
naturally in many extensions of the SM, and the easiest
way is to include an additionalU0ð1Þ gauge symmetry. This
has been formulated in detail by Langacker and Plümacher
[82]. Now in a family nonuniversal Z0 model, FCNC
transitions b ! s‘þ‘� could be induced at tree level be-
cause of the nondiagonal chiral coupling matrix. Taking for
granted the fat that the couplings of right-handed quark
flavors with the Z0 boson are diagonal and ignoring Z� Z0
mixing, the effective Hamiltonian for b ! s‘þ‘� can be
written as [83]

H Z0
effðb! s‘þ‘�Þ

¼ �2GFffiffiffi
2

p V�
tbVtsBsb

�
4�

�V�
tbVts

SL‘‘
�‘��ð1��5Þ‘

� 4�SR‘‘
�V�

tbVts

�‘��ð1þ�5Þ‘
�
�s��ð1��5ÞbþH:c:;

(14)

where SL‘‘ and SR‘‘ represent the coupling of the Z0 boson
with the left- and right-handed leptons, respectively, and
Bsb corresponds to the of-diagonal left-handed coupling of
quarks with the new Z0 boson in a case when the weak
phase �sb is neglected. In a situation when the weak phase
is introduced in the off-diagonal coupling then this cou-
pling reads as Bsb ¼ jBsbje�i�sb . One can reformulate the
effective Hamiltonian given in Eq. (14) as

HZ0
effðb ! s‘þ‘�Þ

¼ � 4GFffiffiffi
2

p V�
tbVts½ �CZ0

9 O9 þ �CZ0
10O10� þ H:c:;

where
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�CZ0
9 ¼ 4�e�i�sb

�V�
tbVts

jBsbjSLL; �CZ0
10 ¼

4�e�i�sb

�V�
tbVts

jBsbjDLL;

(15)

with

SLL ¼ SL‘‘ þ SR‘‘; DLL ¼ SL‘‘ � SR‘‘:

Hence the contribution of the Z0 boson leads to the
modification of the Wilson coefficients C9 and C10, which
now take the form

CZ0
9 ¼ CSM

9 þ �CZ0
9 ; CZ0

10 ¼ CSM
10 þ �CZ0

10;

while the Wilson coefficient C7 remains unchanged.

III. MATRIX ELEMENTS AND FORM FACTORS
IN LIGHT-CONE SUM RULES

In order to calculate the decay amplitudes for Bs !
�‘þ‘� at hadron level, we have to sandwich the free quark
amplitudes between the initial- and final-meson states.
Consequently, the four hadronic matrix elements

h�ðk; "Þj �s��bjBsðpÞi; h�ðk; "Þj �s���5bjBsðpÞi;
h�ðk; "Þj �s���bjBsðpÞi; h�ðk; "Þj�s����5bjBsðpÞi

(16)

need to be computed. The above matrix elements can be
parametrized in terms of the form factors as

h�ðk; "Þj �s��bjBsðpÞi ¼ "��
�"
��p
k�

2Vðq2Þ
MBs

þM�

;

(17)

h�ðk; "Þj �s���5bjBsðpÞi
¼ i"��ðMBs

þM�ÞA1ðq2Þ � iðpþ kÞ�ð"� � qÞ

� A2ðq2Þ
MBs

þM�

� iq�ð"� � qÞ
2M�

q2
½A3ðq2Þ � A0ðq2Þ�;

(18)

h�ðk; "Þj �s���q
�bjBsðpÞi ¼ i"��
�"

��p
k�2T1ðq2Þ; (19)

h�ðk; "Þj �s����5q
�bjBsðpÞi

¼ T2ðq2Þ½"��ðM2
Bs
�M2

�Þ � ðpþ kÞ�ð"� � qÞ�

þ T3ðq2Þð"� � qÞ
�
q� � q2

M2
Bs
�M2

�

ðpþ kÞ�
�
;

(20)

where all the form factors Ai and Ti are functions of the
square of the momentum transfer q2 ¼ ðp� kÞ2 and "�� is
the polarization of the final-state vector meson (�). The
form factors Ai and Ti appearing in the above equations are

not independent and can be related to one another with the
help of equations of motion. The various relationships
between the form factors are [51]

A3ðq2Þ ¼
MBs

þM�

2M�

A1ðq2Þ �
MBs

�M�

2M�

A2ðq2Þ;

A3ð0Þ ¼ A0ð0Þ; T1ð0Þ ¼ T2ð0Þ:
(21)

The form factors for the Bs ! � transition are the non-
perturbative quantities and must be calculated using differ-
ent approaches (both perturbative and nonperturbative),
like lattice QCD, QCD sum rules, light-cone sum rules,
etc. Here, we will consider the form factors calculated by
using the light-cone sum rules approach by Ball and Braun
[52]. The form factors V, A0, and T1 are parametrized by

Fðq2Þ ¼ r1
1� q2=m2

R

þ r2
1� q2=m2

fit

; (22)

while the form factors A2 and ~T3 are parametrized as

Fðq2Þ ¼ r1
1� q2=m2

þ r2
ð1� q2=m2Þ2 : (23)

The fit formula for A1 and T2 is

Fðq2Þ ¼ r2
1� q2=m2

fit

: (24)

The form factor T3 can be obtained through the relation

T3ðq2Þ ¼
M2

Bs
�M2

�

q2
½ ~T3ðq2 � T2ðq2Þ�;

where the values of different parameters are summarized in
Table I.
From Eqs. (17)–(20) it is straightforward to find the

matrix elements for Bs ! �‘þ‘� as follows:

M ¼ � GF�

2
ffiffiffi
2

p
�M2

Bs

VtbV
�
ts½T 1

�ð�l��lÞ

þT 2
�ð�l���5lÞ þT 3ð�llÞ�; (25)

where

TABLE I. Fit parameters for Bs ! � transition form factors.
Fð0Þ denotes the value of the form factors at q2 ¼ 0 [Eq. (22)]
[52]. The theoretical uncertainty is estimated at around 15%.

Fðq2Þ Fð0Þ r1 m2
R r2 m2

fit

A1ðq2Þ 0.311 � � � � � � 0.308 36.54

A2ðq2Þ 0.234 �0:054 � � � 0.288 48.94

A0ðq2Þ 0.474 3.310 5:282 �2:835 31.57

Vðq2Þ 0.434 1.484 5:322 �1:049 39.52

T1ðq2Þ 0.349 1.303 5:322 �0:954 38.28

T2ðq2Þ 0.349 � � � � � � 0.349 37.21
~T3ðq2Þ 0.349 0.027 � � � 0.321 45.56
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T 1
� ¼ f1ðq2Þ�����"

��p�k� � if2ðq2Þ"��
þ if3ðq2Þð"� � pÞP�; (26)

T 2
� ¼ f4ðq2Þ�����"

��p�k�

� if5ðq2Þ"�� þ if6ðq2Þð"� � pÞP�

þ if7ðq2Þð"� � pÞP�; (27)

with P� ¼ p� þ k�. The auxiliary functions appearing in

the above equations can be written as

f1ðq2Þ ¼ 4 ~C7

�
mb þms

q2

�
T1ðq2Þ þ ~C9

2Vðq2Þ
MBs

þM�

; (28)

f2ðq2Þ ¼ 2 ~C7

�
mb �ms

q2

�
T2ðq2ÞðM2

Bs
�M2

�Þ

þ ~C9A1ðq2ÞðMBs
þM�Þ; (29)

f3ðq2Þ ¼ 4 ~C7

�
mb �ms

q2

��
T2ðq2Þ þ q2

T3ðq2Þ
ðM2

Bs
�M2

�Þ
�

þ ~C9

Aþðq2Þ
MBs

þM�

; (30)

f4ðq2Þ ¼ ~C10

2Vðq2Þ
MBs

þM�

; (31)

f5ðq2Þ ¼ 2 ~C10A0ðq2ÞðMBs
þM�Þ; (32)

f6ðq2Þ ¼ 2 ~C10

A1ðq2Þ
MBs

þM�

; (33)

f7ðq2Þ ¼ 4 ~C10

A2ðq2Þ
MBs

þM�

: (34)

Here the Wilson coefficients ~Ci will be different for differ-
ent models, and these are gathered in Table II.

IV. FORMULA FOR OBSERVABLES

In this section we will present the calculations of the
physical observables, such as the branching ratiosBR, the
forward-backward asymmetries AFB, the single lepton
polarization asymmetries PL;N;T , the double-lepton polar-

ization asymmetries Pij (i, j ¼ L, N, T), the helicity

fractions fL;T of the � meson, and the polarized and

unpolarized CP asymmetries of the final-state lepton in
Bs ! �‘þ‘� decay.

A. The differential decay rate

In the rest frame of the Bs meson the differential decay
width of Bs ! �‘þ‘� can be written as

d�ðBs !�‘þ‘�Þ
dq2

¼ 1

ð2�Þ3
1

32M3
Bs

Z þuðq2Þ

�uðq2Þ
dujMj2; (35)

where

q2 ¼ ðpþ þ p�Þ2; (36)

u ¼ ðp� p�Þ2 � ðp� pþÞ2: (37)

The limits on q2 and u are

4m2
l 	 q2 	 ðMBs

�M�Þ2; (38)

� uðq2Þ 	 u 	 uðq2Þ; (39)

with

uðq2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

�
1� 4m2

l

q2

�s
(40)

and

� � �ðM2
Bs
;M2

�; q
2Þ

¼ M4
Bs
þM4

� þ q4 � 2M2
Bs
M2

� � 2M2
�q

2 � 2q2M2
Bs
:

(41)

In the above expressions,ml corresponds to the mass of the
lepton, which for our case can be � or . The total decay
rate for the decay Bs ! �‘þ‘� can take the form

d�

dq2
¼ G2

FjVtbV
�
tsj2�2

211�53M3
Bs
M2

�q
2
uðq2Þ �Aðq2Þ: (42)

The function uðq2Þ is defined in Eq. (40) and Aðq2Þ is
given by

Aðq2Þ¼8M2
�q

2�fð2m2
l þq2Þjf1ðq2Þj2�ð4m2

l �q2Þjf4ðq2Þj2gþ4M2
�q

2fð2m2
l þq2Þð3jf2ðq2Þj2��jf3ðq2Þj2Þ

�ð4m2
l �q2Þð3jf5ðq2Þj2��jf6ðq2Þj2Þgþ�ð2m2

l þq2Þjf2ðq2ÞþðM2
Bs
�M2

��q2Þf3ðq2Þj2
þ24m2

l M
2
��jf7ðq2Þj2�ð4m2

l �q2Þjf5ðq2ÞþðM2
Bs
�M2

��q2Þf6ðq2Þj2�12m2
l q

2½<ðf5f�7Þ�<ðf6f�7Þ�: (43)

TABLE II. Wilson coefficients corresponding to the models
discussed here.

SM UED Z0 model

~C7 CSM
7 CUED

7 CSM
7

~C9 CSM
9 CUED

9 CZ0
9

~C10 CSM
10 CUED

10 CZ0
10
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B. Forward-backward asymmetries

The differential forward-backward asymmetry AFB of
the final-state lepton can be written as

dAFBðsÞ
dq2

¼
Z 1

0

d2�

dq2d cos�
d cos �

�
Z 0

�1

d2�

dq2d cos �
d cos �: (44)

From an experimental point of view the normalized
forward-backward asymmetry is more useful, which is
defined as

AFB ¼
R
1
0

d2�
dq2d cos �

d cos �� R
0
�1

d2�
dq2d cos�

d cos�R
1
�1

d2�
dq2d cos �

d cos �
:

The normalized AFB for Bs ! �‘þ‘� can be obtained
from Eq. (35) as

AFB ¼ � 1

d�=dq2
G2

F�
2

211�5M3
Bs

jVtbV
�
tsj2q2uðq2Þ

� f4Re½f�2f4 þ f�1f5�g; (45)

where d�=dq2 is given in Eq. (42). Confining ourselves to
the SM, the above expression of the FB asymmetry in
terms of the Wilson coefficients becomes

AFB ¼ � 1

d�=dq2
G2

F�
2

28�5M3
Bs

jVtbV
�
tsj2q2uðq2Þ

� C10

�
<ðCeff

9 ÞVðq2ÞA1ðq2Þmb

q2
Ceff
7 ðVðq2ÞT2ðq2Þ

� ðMBs
�M�Þ þ A1ðq2ÞT1ðq2ÞðMBs

þM�ÞÞ
�
;

(46)

which is in agreement with the one obtained for B !
K�lþl� decay in Ref. [13].

C. Lepton polarization asymmetries

In the rest frame of the lepton ‘�, the unit vectors along
the longitudinal, normal, and transversal components of
the ‘� can be defined as, respectively, [84–86],

s��
L ¼ ð0; ~e�L Þ ¼

�
0;

~p�
j ~p�j

�
; (47a)

s
��
N ¼ ð0; ~e�N Þ ¼

�
0;

~k� ~p�
j ~k� ~p�j

�
; (47b)

s��
T ¼ ð0; ~e�T Þ ¼ ð0; ~eN � ~eLÞ; (47c)

where ~p� and ~k are the three-momenta of the lepton ‘�
and � meson, respectively, in the c.m. frame of the ‘þ‘�
system. A Lorentz transformation is used to boost the

longitudinal component of the lepton polarization to the
c.m. frame of the lepton pair as

ðs��
L Þc:m: ¼

�j ~p�j
ml

;
E ~p�
mlj ~p�j

�
; (48)

where E and ml are the energy and mass of the lepton. The
normal and transverse components remain unchanged
under the Lorentz boost. The longitudinal (PL), normal
(PN) and transverse (PT) polarizations of the lepton can be
defined as

Pð
Þ
i ðq2Þ ¼

d�
dq2

ð ~�
 ¼ ~ei

Þ � d�

dq2
ð ~�
 ¼ � ~ei


Þ
d�
dq2

ð ~�
 ¼ ~ei

Þ þ d�

dq2
ð ~�
 ¼ � ~ei


Þ ; (49)

where i ¼ L, N, T and ~�


is the spin direction along the

leptons ‘
. The differential decay rate for the polarized
lepton ‘
 in Bs ! �‘þ‘� decay along any spin direction
~�



is related to the unpolarized decay rate (42) by the
following relation:

d�ð ~�
Þ
dq2

¼ 1

2

�
d�

dq2

�
½1þ ðP


L ~e
L þ P

N ~e
N þ P


T ~e
T Þ � ~�

�:

(50)

The expressions for the longitudinal, normal, and trans-
verse lepton polarizations can be written as

PLðq2Þ / 4�

3M2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 4m2

l

q2

s
�

�
2<ðf2f�5Þ þ �<ðf3f�6Þ

þ 4
ffiffiffiffiffi
q2

q
<ðf1f�4Þ

�
1þ 12q2M2

�

�

�

þ ð�M2
Bs
þM2

� þ q2Þ½<ðf3f�5Þ þ <ðf2f�6Þ�
�
;

(51)

PNðq2Þ / �ml�

M2
�

ffiffiffiffiffi
�

q2

s
� f�q2<ðf3f�7Þ

� �ðM2
Bs
�M2

�Þ<ðf3f�6Þ þ �<ðf3f�5Þ
þ ðM2

Bs
�M2

� � q2Þ½q2<ðf2f�7Þ
þ ðM2

Bs
�M2

�Þ<ðf2f�5Þ� þ 8q2M2
�<ðf1f�2Þg;

(52)

PTðq2Þ / i
ml�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	
q2 � 4m2

l

q2



�

r
M2

�

fM�½4=ðf2f�4Þ

þ 4=ðf1f�5Þ þ 3=ðf5f�6Þ� � �=ðf6f�7Þ
þ ð�M2

Bs
þM2

� þ q2Þ=ðf7f�5Þ � q2=ðf5f�6Þg;
(53)
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where f1; f2; . . . ; f7 are the auxiliary functions defined
above. Here we have dropped the constant factors.

D. Double-lepton polarization asymmetries

To calculate the double-polarization asymmetries, we
consider the polarizations of both the lepton and antilepton
simultaneously and introduce the following spin projection
operators for the lepton ‘� and the antilepton ‘þ [87]:

�1 ¼ 1

2
ð1þ �5s

�
i Þ; �2 ¼ 1

2
ð1þ �5s

þ
i Þ; (54)

where i ¼ L, T, and N correspond to the longitudinal,
transverse, and normal lepton polarizations, respectively.
In the rest frame of the lepton-antilepton one can define the
following set of orthogonal vectors s�:

s��
L ¼ ð0; ~e�L Þ ¼

�
0;

~p�
j ~p�j

�
; s��

N ¼ ð0; ~e�N Þ ¼
�
0;

~k� ~p�
j ~k� ~p�j

�
; s��

T ¼ ð0; ~e�T Þ ¼ ð0; ~eN � ~eLÞ;

sþ�
L ¼ ð0; ~eþL Þ ¼

�
0;

~pþ
j ~pþj

�
; sþ�

N ¼ ð0; ~eþN Þ ¼
�
0;

~k� ~pþ
j ~k� ~pþj

�
; sþ�

T ¼ ð0; ~eþT Þ ¼ ð0; ~eN � ~eLÞ:
(55)

Just as with the single-lepton polarization, through Lorentz transformations we can boost the longitudinal component of
‘�‘þ in the c.m. frame as

ðs��
L Þc:m: ¼

�j ~p�j
ml

;
E ~p�
mlj ~p�j

�
ðsþ�

L Þc:m: ¼
�j ~pþj
ml

;� E ~pþ
mlj ~pþj

�
(56)

The normal and transverse components remain the same under the Lorentz boost. We now define the double-lepton
polarization asymmetries as

Pijðq2Þ ¼
ð d�
dq2

ð ~s�i ; ~sþi Þ � d�
dq2

ð�~s�i ; ~sþi ÞÞ � ð d�
dq2

ð ~s�i ;�~sþi Þ � d�
dq2

ð� ~s�i ;�~sþi ÞÞ
ð d�
dq2

ð ~s�i ; ~sþi Þ � d�
dq2

ð�~s�i ; ~sþi ÞÞ þ ð d�
dq2

ð ~s�i ;�~sþi Þ � d�
dq2

ð� ~s�i ;�~sþi ÞÞ
; (57)

where the subscripts i and j correspond to the lepton and antilepton polarizations, respectively. Using these definitions the
various double-lepton polarization asymmetries as a function of q2 can be written as

PLLðq2Þ/ 1

3m2
l

�
4jf1j2ð8m4

l ��q2U2Þþ4jf4j2U1þ 1

M2
�

�
24m4

l �ðM2
Bs
�M2

�Þðf6f�7þf7f
�
6Þ�12m4

l �ð2f5f�7þ2f7f
�
5Þ

þ12jf7j2m4
l q

2�þ
�
ðq2�M2

Bs
þM2

�Þ
�
4m4

l �

q2
�6m2

l �þU2

��
ðf1f�2þf2f

�
1Þ

þjf2j2
�
4m4

l �

q2
ð�þ12M2

�q
2Þ�3m2

l ð2�þ8M2
�q

2ÞþU2

�
�4m4

l

q2
U3ðf�5f6þf�6f5Þ

þ�jf6j2
�
4m4

l

q2
U4þ2m2

l �þU2

�
þ�jf5j2

�
4m4

l

q2
ð6ðq2�M2

Bs
þM2

�Þ2��Þ�3m2
l ð6�þ8M2

�q
2Þþq2U2

���
;

(58)

PLT / 1

4M2
�q

2
�

ffiffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 4m2

l

q
f8mlM

2
�q

2ðf�2f4 þ f2f
�
4Þ þ 2mlðM2

Bs
q2ðf�5f7 þ 3f�5f6Þ þM2

�q
2ð4f�5f1 � f�5f7Þ

� q4ðf�5f7 þ f�5f6Þ � 2f�5f6ðM2
Bs
�M2

�Þ2 þ 2ðM2
Bs
�M2

�Þðjf5j2 � f5f
�
6ðM2

Bs
�M2

�ÞÞ þ q2ðf5f�6ð3M2
Bs
þM2

�Þ
� 2jf5j2Þ � f5f

�
6q

4Þ þ 4ml�ðq2ðf7f�6 þ f6f
�
7Þ þ jf6j2ðM2

Bs
�M2

�ÞÞg; (59)

PLN / �i
1

4M2
�

ffiffiffiffiffi
q2

p �
ffiffiffiffi
�

p f2mlðM2
B �M2

� � q2Þðq2f�2f7 þ f�2f6ðM2
B �M2

�Þ � f�2f5Þ

þ 2ml�ðf�3f5 � f�3f6ðM2
B �M2

�Þ � q2f�3f7Þg; (60)
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PTL / 1

4M2
�q

2
�

ffiffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 4m2

l

q �
4ml�ðq2ðf�6f7 þ f�7f6Þ þ jf7j2ðM2

Bs
�M2

�ÞÞ

� 8mlM
2
�q

2ðf�4f2 þ f�2f4Þ þ 2mlðq2ðM2
� �M2

Bs
Þf�5f7 þ q2ðM2

� þ 3M2
Bs
Þf�5f6 þ q4ðf�5f7 � f�5f6Þ

� 2f�5f6ðM2
Bs
�M2

�Þ2 þ q2f�5f6ð3M2
Bs
þM2

�Þ þ 2q2f�5f7ðM2
� �M2

Bs
Þ � 2q2jf5j2 þ q4ð2f5f�7 � f5f

�
6Þ

þ 2ðM2
Bs
�M2

�Þðjf5j2 þ f5f
�
6ðM2

� �M2
Bs
ÞÞ � 4M2

�q
2f1f

�
5

�
2�ml

ffiffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 4m2

l

q ��
; (61)

PTN / i

�
4

3
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 4m2

l

q
ð4�� 3M4

Bs
þ 6M2

BðM2
� þ q2Þ � 3ðM2

� � q2Þ2Þ þ
ffiffiffiffiffiffiffiffi
q2�

q
uðf1f�4 þ f�1f4Þ

�
; (62)

PTT / 1

3M2
�q

2
f48jf2j2m2

l M
2
�q

2 � 4m2
l ð5jf5j2 þ ðM2

Bs
�M2

�Þðf3f�2 � 5f�5f6ÞÞ þ ð2jf5j2 þ 12f5f
�
7m

2
l

þ ðM2
Bs
�M2

�Þðf3f�2 � f6f
�
5ÞÞ þ 4m2

l ð3þ f3f
�
2 þ 8M2

�ðjf1j2 þ jf4j2Þ � 2f6f
�
5Þ � 2ð3ðM2

Bs
�M2

�Þf6f�7
þ 3ðM2

Bs
þM2

�Þjf6j2Þ þ 6q2ðf7f�5 � 2f7f
�
6ðM2

Bs
�M2

�ÞÞ þ 2q4ðf6f�5 � f3f
�
2 þ 6m2

l ðjf6j2 � jf7j2Þ
þ 4M2

�ðjf1j2 � jf4j2ÞÞ þ 2�ðq2 � 2m2
l Þðjf2j2 þ f2f

�
3ðq2 �M2

Bs
þM2

�ÞÞ þ 2�2jf6j2ðq2 � 10m2
l Þg; (63)

PNN / � 1

3M2
�q

2
f48jf2j2m2

l M
2
�q

2 � 4m2
l ðM2

Bs
�M2

�Þðjf5j2 þ ðf3f�2 � f6f
�
5ÞÞ þ ð4m2

l þM2
BÞf6f�5 þ 12m2

l f5f
�
7

� jf5j2 þ 12m2
l M

2
Bs
ðjf6j2 � f6f

�
7Þ þ 4m2

l M
2
�ð4jf1j2 � 4jf4j2 þ 3ðf6f�7 þ jf6j2ÞÞ þ f3f

�
2ð2m2

l �M2
Bs
þM2

�Þ
þ 6m2

l q
2ðf7f�5 � 2f7f

�
6ðM2

Bs
�M2

�ÞÞ þ q2ðf3f�2 � f6f
�
5 � 6m2

l ðjf7j2 þ jf6j2Þ þ 4ðjf4j2
� jf1j2ÞÞ þ �ðq2 þ 2m2

l Þðjf2j2 þ f2f
�
3ðq2 �M2

Bs
þM2

�Þ þ 2�2jf6j2Þg; (64)

with

U1 ¼ m2
l q

2ð6M2
Bs
ðM2

� þ q2Þ � 3ðM2
� � q2Þ2 � 3M4

Bs
� 5�Þ þ q2U2; U2 ¼ �q2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2ðq2 � 4m2

l Þ
q

u
ffiffiffiffi
�

p
;

U3 ¼ 6ðM6
Bs
�M6

�Þ þ 9M4
�q

2 � 3q6 � 3M4
Bs
ð6M2

� þ 5q2Þ
þM2

Bs
ð18M4

� þ 6q2M2
� þ 12q4 � �Þ þ �ðM2

Bs
þM2

�Þ þ q2ðM2
Bs
�M2

� � q2ÞU2;

U4 ¼ 6ðM2
Bs
�M2

�Þ2 � 6q2ðM2
Bs
þM2

�Þ þ 3q4 � �;

and u and � are defined in Eqs. (40) and (41), respectively.
We should add a few words about the lepton polarization

asymmetry. We have seen that the expressions for various
double-lepton polarization asymmetries are functions of q2

and the parameters of NP models. From an experimental
point of view, it would be more interesting if we could
eliminate the dependency on one parameter, and this we
can easily do by performing an integration on q2. This will
give us the average lepton polarization asymmetry, which
is defined as

hPiji ¼
R
all q2 Pij

dB
dq2

dq2R
all q2

dB
dq2

dq2
: (65)

E. Helicity fractions of � in Bs ! �‘þ‘�

We now discuss helicity fractions of� in Bs ! �‘þ‘�,
which are interesting variables and are as such independent
of the uncertainties arising due to form factors and other

input parameters. The final-state meson helicity fractions
were already discussed in the literature for B !
K�ðK1Þ‘þ‘� decays [88,89].
The explicit expression of the decay rate for B�

s !
�‘þ‘� decay can be written in terms of the longitudinal
(�L) and transverse (�T) components as

d�ðq2Þ
dq2

¼ d�Lðq2Þ
dq2

þ d�Tðq2Þ
dq2

; (66)

where

d�Tðq2Þ
dq2

¼ d�þðq2Þ
dq2

þ d��ðq2Þ
dq2

and

d�Lðq2Þ
dq2

¼ G2
FjVtbV

�
tsj2�2

211�5

uðq2Þ
M3

Bs

� 1

3
AL; (67)

IMPACT OF Z0 AND UNIVERSAL EXTRA . . . PHYSICAL REVIEW D 88, 014019 (2013)

014019-9



d��ðq2Þ
dq2

¼ G2
FjVtbV

�
tsj2�2

211�5

uðq2Þ
M3

Bs

� 4

3
A�: (68)

The different functions appearing in Eqs. (67) and (68)
can be expressed in terms of auxiliary functions
[cf. Eqs. (28)–(34)] as

AL ¼ 1

q2M2
�

½24jf7ðq2Þj2m2M2
��

þ ð2m2 þ q2ÞjðM2
Bs
�M2

� � q2Þf2ðq2Þ
þ�f3ðq2Þj2 þ ðq2 � 4m2ÞjðM2

Bs
�M2

� � q2Þf5ðq2Þ
þ�f6ðq2Þj2�; (69)

A� ¼ ðq2 � 4m2Þjf5ðq2Þ 

ffiffiffiffi
�

p
f4ðq2Þj2

þ ðq2 þ 2m2Þjf2ðq2Þ �
ffiffiffiffi
�

p
f1ðq2Þj2: (70)

Finally, the longitudinal and transverse helicity ampli-
tudes become

fLðq2Þ ¼ d�Lðq2Þ=dq2
d�ðq2Þ=dq2 ; f�ðq2Þ ¼ d��ðq2Þ=dq2

d�ðq2Þ=dq2 ;

fTðq2Þ ¼ fþðq2Þ þ f�ðq2Þ; (71)

so that the sum of the longitudinal and transverse helicity
amplitudes is equal to one, i.e., fLðq2Þ þ fTðq2Þ ¼ 1 for
each value of q2 [23].

V. NUMERICAL ANALYSIS

In this section we will examine the above derived physi-
cal observables and analyze the effects of different new
physics scenarios on them. The form factors are nonper-
turbative quantities and for them we rely on the LCSR
approach for the numerical calculations. The numerical
values of the LCSR form factors along with the different
fitting parameters [52] are summarized in Table I. In
addition to the parameters corresponding to different NP
models there are some standard inputs, which are collected
in Table III.

The strength of the other NP parameters that correspond
to the UED and Z0 models are varied such that they lie
inside the bounds given by different flavor decays observed
so far. We emphasize here that in all the figures the band
corresponds to the uncertainties in different input parame-
ters where form factors are the main contributors
(c.f. Table I) and we have defined q2 ¼ s. The NP curves

are plotted by varying the values of NP parameters in the
range summarized in Table IV.
Semileptonic Bs decay are ideal probes to study physics

in and beyond the Standard Model. In this context, there
are a large number of observables which are accessible in
these decays. However, in general the branching ratio for
semileptonic decays is prone to many sources of uncer-
tainties. The major source of uncertainty originates from
the B ! � transition form factors that can cause a roughly
20–30% uncertainty in the differential branching ratio.
This goes to show that the differential branching ratio
may not be a suitable observable to look for NP effects
unless these effects are very drastic. In the absence of the
precise form factors, it is still possible to constraint
new physics with the help of observables that exhibit
reduced sensitivity to the form factors. In this regard the
most important observables are the zero position of the
forward-backward asymmetry, different lepton polariza-
tion asymmetries, and the helicity fractions of the final-
state meson. This will become clear in Figs. 2–14, where
we will see that the gray band corresponding to the un-
certainties in different input parameters totally shrinks.
The SM predicts the zero crossing of AFBðq2Þ at a

well-determined position that is free from the hadronic
uncertainties at the LO in the strong coupling �s

[12–14]. For this reason, the zero position of AFB is an
important observable in the search for new physics. In
order to make this point clear, the zero position (q20) is

just the root of Eq. (46), which can be written as

q20 ¼ � Ceff
7

<ðCeff
9 ðq20ÞÞ

mb

�
�
T2ðq20Þ
A1ðq20Þ

ðMBs
�M�Þ þ T1ðq20Þ

Vðq20Þ
ðMBs

þM�Þ
�
:

(72)

It is really spectacular that for the B ! Vlþl� decays, we
can find that with the use of effective theories like soft-
collinear effective theory both ratios of the form factors
appearing in Eq. (72) have no hadronic uncertainty, i.e., all
dependence on the intrinsically nonperturbative quantities
cancels. Therefore, one can simply write

T2ðq2Þ
A1ðq2Þ

¼ MBs

MBs
�M�

;
T1ðq2Þ
Vðq2Þ ¼ MBs

MBs
þM�

;

and by using these relations the short-distance expression
for the zero position of AFB is given by [13]

TABLE III. Default values of input parameters used in the
calculations.

mBs
¼ 5:366 GeV, mb ¼ 4:28 GeV, ms ¼ 0:13 GeV,

m� ¼ 0:105 GeV, m ¼ 1:77 GeV, fB ¼ 0:25 GeV,
jVtbV

�
tsj ¼ 45� 10�3, ��1 ¼ 137, GF ¼ 1:17� 10�5 GeV�2,

B ¼ 1:54� 10�12 sec , m� ¼ 1:020 GeV.

TABLE IV. The numerical values of the Z0 parameter.

jBsbj � 10�3 �sb½�� SLL � 10�2 DLL � 10�2

S1 1:09� 0:22 �72� 7 �2:8� 3:9 �6:7� 2:6
S2 2:20� 0:15 �82� 4 �1:2� 1:4 �2:5� 0:9
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q20 ¼
2mbMBs

<½Ceff
9 ðq20Þ�

Ceff
7 : (73)

Recently LHCb published its results on AFBð �B !
�K��þ��Þ which show, with small error bars, that
the zero position of AFBð �B ! �K��þ��Þ is close to the
SM’s zero position. Like �B ! �K��þ�� decay, the
semileptonic decay Bs ! ��þ�� also occurs through
the quark-level transition b ! s�þ��. Therefore, future
measurements of theAFBðBs ! ��þ��Þwill shed more
light on NP in the flavor sector.

The other ‘‘optimized’’ observables are the various po-
larization asymmetries attached to the final-state leptons
and meson, where the uncertainties are also mild. In this
regard the longitudinal and normal lepton polarization
asymmetries are a good tool to probe the NP. On the other
hand, the transverse lepton polarization asymmetry
[c.f. Eq. (53)] is proportional to the imaginary part of the
auxiliary functions and hence will be negligible in
the models where we have real couplings. In addition to
the single-lepton polarization, we will also discuss the
dependence of double-lepton polarization asymmetries
on q2 and will also give the numerical values of their
averages, which can be obtained after an integration on q2.

Another interesting observable in this list is the study of
the spin effects of the final-state meson, which for our case
is the � meson. A detailed discussion about the NP effects
on the longitudinal and transverse helicity fractions has
been done in the forthcoming numerical analysis, which
will allow us to uncover the potential of various NP
scenarios.

Similarly, the polarized and unpolarized CP-violating
asymmetries are a useful tool in finding the distinguishing
features from the SM as well as helping us to segregate the
two NP models. It is worth mentioning that the FCNC
transitions are proportional to the CKM matrix elements,
VtbV

�
ts, VcbV

�
cs, and VubV

�
us, where the latter two are highly

suppressed compared to VtbV
�
ts. This will eventually sup-

press the value of CP-violation asymmetries in the SM and
also in the UEDmodel. Because of the extra phase in the Z0
model we are expecting a prominent deviation. Therefore,
the study of theCP-violation asymmetries will provide key
evidence of the NP coming through the extra Z0 boson.
This will be discussed in a separate paper [90].

The only free parameter in the UEDmodel is the inverse
of the compactification radius, i.e., 1=R. Taking into

account the LO contributions due to the exchange of KK
modes as well as already available next-to-next-to-leading
order corrections to B ! Xs�, Haisch et al. [91] have
determined that the lower bound on the inverse of the
compactification radius is 600 GeV. Using the electroweak
precision measurements and also some cosmological con-
straints, the lower limit on the inverse of the compactifica-
tion radius is found to be in or above the 500 GeV range
[92,93]. It is well known that by increasing 1=R the values
of different physical observables come closer to their SM
values. Therefore, in our numerical analysis we take the
value of 1=R to be 500 GeV just to see the maximum
possible deviation from the SM value.
On the other hand, the effects of the family nonuniversal

Z0 boson on the b ! s transition have attracted much more
attention and have been widely studied, where it is argued
that the behavior of a family nonuniversal Z0 boson is
helpful to resolve many puzzles in B-meson decays, such
as the �K puzzle and anomalous �Bs � Bs mixing [94–98].
In the literature the differential decay width and forward-
backward asymmetry of Bs ! ��þ�� decay have been
studied in the Z0 model using three different scenarios
which correspond to different values of the left- and
right-handed couplings of Z0 with leptons, i.e., SLL and
DLL, as well as the right-handed coupling with quarks, i.e.,
Bsb and these are collected in Table IV [98]. In the present
study we will use these limits to study their impact on the
branching ratio and on the various asymmetries mentioned
above.
The numerical results of the branching ratios, the

forward-backward asymmetry, the different polarization
asymmetries of the final-state leptons, and the helicity
fractions of the final-state � meson as a function of q2 in
Bs!�lþl� decays are presented in Figs. 1–14. Figures 1(a)
and 1(b) describe the differential branching ratio of Bs !
��þ��ðþ�Þ decay, where one can see that—for the
choice of the parameters made in accordance with the
current data on various flavor physics decay modes—our
results lie close to the SM predictions. This can also be
summarized in Table V. We should mention that when we
have muons as the final-state leptons [cf. Fig. 1(a)] the bands
for two Z0 scenarios overlap. We can also see that the value
of the branching ratio lies well within the range of the
experimental limits for different choices for the values of
NP parameters, and one can notice that the NP contributions
are overshadowed by the uncertainties involved in different
input parameters. Therefore, to look for NP we have to
calculate the observables where hadronic uncertainties al-
most have no effect and which are almost independent of the
choice of form factors. Among them the most pertinent are
the zero position of the forward-backward asymmetry, the
lepton polarization asymmetries, the helicity fractions of the
final-state meson, and CP asymmetries, which are almost
free from the hadronic uncertainties and serve as handy tools
for extracting an NP signature. This is clear from Figs. 2–14,

TABLE V. Branching ratio of Bs ! �lþl� in the SM and
different NP scenarios. The central values of the form factors
and other input parameters are used.

Model Bs ! ��þ�� Bs ! �þ�

SM 1:58� 10�6 2:37� 10�7

UED 0:91� 10�6 0:94� 10�6

Z0� 1:86� 10�6 3:07� 10�7
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where the gray band, corresponding to the uncertainties in
the form factors and other input parameters of the SM, is too
narrow.

As we have already mentioned, at the leading order in
the strong coupling constant �s in the SM the destructive
interference between the photon penguin (Ceff

7 ) and the Z
penguin (Ceff

9 ) make the forward-backward asymmetry

equal to zero at a particular position which is independent

of the form factors, as depicted in Eq. (73). For the decay
Bs ! ��þ��, the value of the zero crossing is approxi-
mately q2 ’ 1:6 GeV2. The deviation of the zero crossing
from the SM value gives us some clues for the NP.
Figure 2(b) shows the effect of various NP scenarios on
the zero position of the forward-backward asymmetry for
Bs ! ��þ�� decay. Working with B ! K�lþl�, where
the experimental results of LHCb lie close to the SM
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FIG. 2 (color online). The differential forward-backward asymmetry for the Bs ! �lþl� (l ¼ �, ) decays as functions of q2. The
gray, green (light gray), and red (dark gray) bands correspond to the Standard Model, and Z0 scenarios S1 and S2, respectively. The
dashed blue line corresponds to the UED model. In (b) and (d) the solid, thin dashed blue, thick dashed green (light gray), and thick
dashed red (dark gray) lines correspond to the SM, the UED model, and the Z0-model scenarios I and II, respectively. The figures in the
right panel are plotted for central values of the form factors and other input parameters.
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FIG. 1 (color online). The differential width for the Bs ! �lþl� (l ¼ �, ) decays as functions of q2 ¼ s. The gray, green, and red
bands correspond to the Standard Model, and Z0 scenarios S1 and S2, respectively. The dashed blue line corresponds to the UED model.
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value, we can see that only a small deviation from the SM
zero position of AFB arises in case of the Z0 model. In
the case of the UED model the value of the Wilson
coefficient C7 is significantly reduced, whereas C9 almost
remains unaltered for 1=R ¼ 500 GeV. By looking at
Eq. (73) we can see that the zero position is directly
proportional to C7, and therefore we expect a large
deviation in the UED model, which is obvious from
Fig. 2(b). We expect that future data from the LHCb
measurement of the forward-backward asymmetry in
Bs ! ��þ�� will help us in observing new physics
and will also give us an opportunity to distinguish be-
tween various NP scenarios.

It has been pointed out by Beneke et al. [14] that the
next-to-leading order corrections to the lepton invariant
mass spectrum in B ! K�lþl� is small, but there is a
large correction to the predicted location of the zero
position of the forward-backward asymmetry which is
estimated to be 30%. Such a calculation must be per-
formed for the Bs ! �lþl� decays before one can say
anything about the NP by measuring forward-backward
asymmetry in these decays.

Figures 3(a)–3(d) show the dependence of the longi-
tudinal lepton polarization asymmetry for the Bs !
�lþl� decay on the square of the momentum transfer

for different NP models. In case of the UED model, the
value of the longitudinal lepton polarization lies close to
the SM value, where a significant deviation is obtained
in the case of the Z0 model. This can also be seen
quantitatively from Table VI, where an 11% deviation
is observed in the case of the Z0 model for the central
values of its parameters.
Figures 4(a)–4(d) display the behavior of the normal

lepton polarization asymmetry for Bs ! �lþl� with the
square of the momentum transfer in the SM and in NP
models. From Eq. (52) one can see that it is proportional
to the mass of the leptons. Therefore, when we have
muons as final-state leptons we can see that its SM value
and the deviation from this value through NP are only
significant in the low-q2 region and that these effects are
almost vanish when we increase the value of q2. Similarly,
we have drawn the normal lepton polarization asymmetry
when ’s are the final-state leptons in Figs. 6(c) and 6(d).
We can see that in the SM the value of the normal lepton
polarization asymmetry is positive throughout almost the
entire kinematical region. It can be easily seen that the
value in the Z0 model is also quite different from that of
the SM value. The most interesting effect comes in the
UEDmodel where the value of this asymmetry is negative
in almost the entire available q2 range. Hence it will be a
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FIG. 3 (color online). The longitudinal lepton polarization asymmetry for the Bs ! �lþl� (l ¼ �, ) decays as functions of q2. The
legends are the same as in Fig. 2.
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clear signal of new physics and by measuring its sign
we can distinguish between the NP models under
consideration.

Just like the normal lepton polarization asymmetry the
transverse lepton polarization asymmetry is also propor-
tional to the lepton mass. In addition to this it is also
proportional to the imaginary part of the combination of
different auxiliary functions and therefore the Wilson co-
efficients as well. The Wilson coefficients remain real in

the SM and the UED model but not in the Z0 model.
However, in this model the imaginary part is also too
small. Hence the value of the transverse lepton polariza-
tion asymmetry remains too small to be measured, and
Figs. 5(a) and 5(b) portray this fact.
The dependence of various double-lepton polarization

asymmetries on q2 for the aforementioned decay in the
SM and various NP scenarios is given in Figs. 6–12. In
Figs. 6(a)–6(d) we have plottedPLL as a function of q

2. It is
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FIG. 5 (color online). The transverse lepton polarization asymmetry for Bs ! �þ� decays as a functions of q2. The legends are
the same as in Fig. 2.
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FIG. 4 (color online). The normal lepton polarization asymmetry Bs ! �lþl� (l ¼ �, ) decays as functions of q2. The legends are
the same as in Fig. 2.
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clear from Eq. (58) that the double longitudinal lepton
polarization asymmetry is proportional to the inverse of
the mass of the lepton, and therefore it is expected to have a
large value when the final-state leptons are muons com-
pared to the case when we have ’s, and it is also clear from
the figures. We can also see that the dependency of PLL on
NP parameters is small for the� channel. However, for the
 channel the maximum shift comes in the Z0 model where
hPLLi deviates by almost an order of magnitude from the
SM value (cf. Table VII). Its measurement will help us in

identifying the NP effects arising due to the extra gauge
boson in the Z0 model.
By looking at Eq. (7), we can see that PLN is

proportional to the imaginary part of the different
auxiliary functions and therefore the Wilson coefficients
as well; therefore, its nonzero value is expected only in
the Z0 model. However, the imaginary part in this case is
small, and therefore its values is expected to be small.
Figures 7(a) and 7(b) display this fact, which quantitatively
can also be seen in Table VII.
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FIG. 6 (color online). PLL for the Bs ! �lþl� (l ¼ �, ) decays as functions of q2. The legends are the same as in Fig. 2.
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FIG. 7 (color online). PLN for the Bs ! �lþl� (l ¼ �, ) decays as functions of q2. The legends are the same as in Fig. 2.
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FIG. 8 (color online). PLT for the Bs ! �lþl� (l ¼ �, ) decays as functions of q2. The legends are the same as in Fig. 2.
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FIG. 9 (color online). PNN for the Bs ! �lþl� (l ¼ �, ) decays as functions of q2. The legends are the same as in Fig. 2.
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FIG. 11 (color online). PTN for the Bs ! �lþl� (l ¼ �, ) decays as functions of q2. The legends are the same as in Fig. 2.
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FIG. 10 (color online). PTL for the Bs ! �lþl� (l ¼ �, ) decays as functions of q2. The legends are the same as in Fig. 2.
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FIG. 13 (color online). The longitudinal helicity fractions for the Bs ! �lþl� (l ¼ �, ) decays as functions of q2. The legends are
the same as in Fig. 2.
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FIG. 12 (color online). PTT for the Bs ! �lþl� (l ¼ �, ) decays as functions of q2. The legends are the same as in Fig. 2.
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Figures 8(a)–8(d) depict the behavior of PLT with q2,
where we can see that the new physics effects are quite
promising both for the � and  channels in almost the
whole range of available q2. Quantitatively we can see
from Table VII that the average value hPLTi in the UED
model is close to the SM value, whereas in the Z0 model the
average value of PLT is significantly suppressed in magni-
tude from its SM value in addition to having its sign flipped
for the  channel.

In Figs. 9(a)–9(d) we display the effects of various NP
models on PNN. We can see that the value of PNN shows a
strong dependence on the parameters of NP, which is quite
prominent in both the� and  channels. From Table VII, it
is clear that in the Z0 model the value of PNN is significantly
different not only from the SM value but also from the

UED model. Therefore the experimental observation of
this observable will help us to segregate the Z0 model
from both the SM as well as from the UED model.
The situation for PTL is not so interesting for the �

channel because its average value is small in this case.
However, when we have ’s as final-state leptons, the
effects of the extra gauge boson in the Z0 model reduce
the average value of PTL by 50%. This can be seen
quantitatively from Table VII and it is also depicted in
Figs. 10(a)–10(d).
In Eq. (11) we can see that the value of PTN comes from

the imaginary part of various Wilson Coefficients, and
therefore—as expected—its value is too small to measure.
This is obvious from Figs. 10(a)–10(d) and also from
Table VII.

TABLE VI. Average values of various single-lepton polarizations for the central values of the
form factors. The values in the bracket are for the þ� channel. The upper (lower) values
correspond to the upper (lower) limits of the two Z0 scenarios.

Model hPLi hPNi hPTi
SM �0:859ð�0:322Þ �0:0334ð0:068Þ 0.0003(0.0028)

UED �0:857ð�0:462Þ �0:0451ð�0:197Þ 0.0007(0.0091)

Z0ðS1Þ �0:972þ0:108
�0:024ð�0:365þ0:031

þ0:075Þ �0:0445þ0:007
�0:001ð0:023þ0:019

þ0:016Þ �0:0005þ0:005
�0:004ð0:0012þ0:035

�0:023Þ
Z0ðS2Þ �0:9310:066�0:037ð�0:346þ0:018

�0:001Þ �0:040þ0:001
�0:002ð0:046þ0:012

þ0:009Þ �0:0006þ0:004
�0:0036ð�0:0004þ0:0023

�0:021 Þ
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FIG. 14 (color online). The transverse helicity fractions for the Bs ! �lþl� (l ¼ �, ) decays as functions of q2. The legends are
the same as in Fig. 2.
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The case in which both the leptons are transversely
polarized—that is,PTT—becomes important for the  chan-
nel. Here we can see that its behavior with q2 is very
different in the Z0 model—where it has positive values—
compared to its values in the SM and in the UED model,
where the value of PTT is negative. This fact is depicted in
Figs. 12(a)–12(d) and numerically given in Table VII.

The longitudinal (fL) and the transverse (fT) helicity
fractions of the final-state�meson are depicted in Figs. 13
and 14. In Fig. 13 one can see that the values of longitu-
dinal helicity fractions shift significantly for some of the
NP scenarios when we have ’s as the final-state particles.
The maximum deviation comes in the UED model and the
reason is the significant modification of the Wilson coef-
ficients C7 and C9 in this model compared to their SM
values. Similar effects can also be seen in case of the
transverse helicity fractions.

Just to summarize, in the present study we have ob-
served the sizeable difference between the predictions of

various physical observables in the SM and two different
beyond the SM scenarios, namely, the Z0 and UED models.
It is important to keep in mind the fact that in certain
physical observables the NP effects are obscured by the
uncertainties arising due to form factors, but in different
lepton polarization asymmetries their effects are still con-
siderable. We hope that the experimental study of
this channel will be a valuable source for providing an
indirect way to uncover the new physics effects in an
indirect way.
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