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In this work we compare the Gunion-Bertsch approximation of the leading order perturbative QCD

radiation matrix element to the exact result. To this end, we revisit the derivation of the Gunion-Bertsch

approximation as well as perform extensive numerical comparisons of the Gunion-Bertsch and the exact

result. We find that when employing the matrix elements to obtain rates or cross sections from phase space

integration, the amplitude by Gunion and Bertsch deviates from the correct result in characteristic regions

of the phase space. We propose an improved version of the Gunion-Bertsch matrix element which agrees

very well with the exact result in all phase space regions.
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I. INTRODUCTION

When studying the dynamics of the partonic stage of
relativistic heavy ion collisions based on microscopic per-
turbative QCD (pQCD) processes or on rate equations for
such processes, it has been found that elastic interactions
alone are not sufficient to describe the evolution of the
system [1–4]. Due to the numerical complexity of such
dynamic approaches, the incorporation of inelastic particle
production and annihilation processes has mostly been
based on leading order matrix elements. A commonly
used approximation to the leading order pQCD matrix
element for partonic 2 $ 3 processes is a result derived
by Gunion and Bertsch (GB) in 1981 [5]. This approxima-
tion gives a comparatively simple expression for the gluon
radiation amplitude in terms of the transverse momentum
of the radiated gluon k? and the transverse exchanged
momentum q?. It has been widely used when solving
transport problems [6–13], for example via rate equations
or via microscopic transport approaches, most notably the
microscopic transport model Boltzmann approach to multi-
parton scatterings (BAMPS) [14–17]. In Refs. [18–20]
some efforts are made to go beyond the soft GB approxi-
mation while still obtaining a relatively compact form.

Recently, the results obtained within the BAMPS
framework, especially with respect to the computed shear
viscosity [21], have been challenged in a paper by
Chen et al. [22], who claim that a mis- or double-counting
of symmetry factors when applying the GB matrix element
to inelastic processes might lead to an overestimation of
interaction rates in BAMPS by a factor of 6. Also a recent
work by Zhang [23] has addressed this issue and finds
numerical discrepancies between cross sections based on
the GB approximation compared to full leading order
results for the 2 ! 3 amplitudes, which have also been

known since the early 1980s [24,25]. The numerical dis-
crepancy found in Ref. [23] is much less pronounced than
the one claimed in Ref. [22]. However, it is not fully clear
how the results of these two works compare since both use
different screening schemes.
In this work we will address these issues in great detail

by providing extensive numerical comparisons between
the GB approximation and the exact leading order pQCD
result as well as by analytically revisiting the derivation of
the GB approximation. We will show that the approxima-
tion by Gunion and Bertsch needs to be carefully corrected
in certain phase space regions when being employed to the
computation of cross sections or rates from the matrix
element. To this end we propose an improved version of
the GB matrix element which is valid in all regions of
phase space. However, we want to emphasize that the
deviations of rates computed in the original GB approxi-
mation compared to rates computed from the improved GB
and the exact matrix element are caused deep within the
approximations made by Gunion and Bertsch and are not
given by simple symmetry factors as argued in Ref. [22].
The paper is organized as follows. After a short revisit of

the GB calculation, we propose an improved version of the
matrix element in Sec. II. In Sec. III the exact matrix
elements for 2 ! 3 processes are introduced, whereas the
phase space integration needed to obtain a total cross
section is outlined in Sec. IV. Finally, we will compare
the original and improved GB cross section with the exact
result and discuss deviations.

II. GUNION-BERTSCH MATRIX ELEMENT

In this section we will argue that the approximation to
the leading order pQCD matrix element for qq0 ! qq0g
processes (and more generally for other gluon radiation
processes as well) as computed by Gunion and Bertsch [5]
needs to be carefully corrected when being applied to the
computation of cross sections or rates. This correction
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consists of two parts: (a) keeping a kinematic factor
ð1� xÞ2, where x is the fraction of light cone momentum
carried by the radiated gluon, and (b) respecting the sym-
metry of the process by explicitly combining results from
Aþ ¼ 0 and A� ¼ 0 calculations, restricting the emission
of gluons to the respective forward direction.

We start by reviewing the derivation of the Gunion-
Bertsch approximation, taking the example of qq0 !
qq0g processes as in the original publication [5]. In leading
order this process is given by the five Feynman diagrams
shown in Fig. 1.

In the following we label the 4-momentum of the
incoming (outgoing) quarks with p1 and p2 (p3 and p4).
The radiated gluon is denoted with k, while q is the internal
momentum transfer (the momentum of the internal gluon
propagator). Furthermore, we are working in light cone
coordinates where in the center of momentum frame the
momenta of the incoming particles are given by

p
�
1 ¼ ð ffiffiffi

s
p

; 0; 0; 0Þ (1)

p�
2 ¼ ð0; ffiffiffi

s
p

; 0; 0Þ: (2)

The Lorentz-invariant quantity

x ¼ kþ=pþ
1 (3)

characterizes the fraction of light cone momentum carried
away by the radiated gluon. It can be related to the rapidity
of the emitted gluon via

x ¼ k?ffiffiffi
s

p ey: (4)

The Gunion and Bertsch matrix element is derived in the
high energy limit, i.e. the radiated gluon and the momen-
tum transfer of the process are soft,

k? � ffiffiffi
s

p
q? � ffiffiffi

s
p

: (5)

The third approximation explicitly stated by GB relates k?,
q?, and x,

xq? � k?: (6)

With these approximations and from the constraint that all
external particles are on-shell, one can explicitly specify k
and q in light cone coordinates:

k� ¼
�
x

ffiffiffi
s

p
;
k2?
x

ffiffiffi
s

p ;k?
�

(7)

q� ¼
�
�q2?ffiffiffi

s
p ;

k2?=xþ q2? � 2q?k?
ð1� xÞ ffiffiffi

s
p ;q?

�
: (8)

The original computation of the GB approximation has
been carried out in the light cone gauge, Aþ ¼ 0. This
implies that the þ component of the polarization vector
�ðkÞ is also zero. The physical polarizations of the emitted
gluon must be transverse to its momentum, �ðkÞ � k ¼ 0.
With these two constraints, the two physical polarization
vectors, i ¼ 1, 2, are given by

�
�
ðiÞðkÞ ¼

�
0;
2�ðiÞ? � k?

x
ffiffiffi
s

p ;�ðiÞ?

�
; (9)

where �ð1Þ? ¼ ð1; 0Þ and �ð2Þ? ¼ ð0; 1Þ are possible choices.

For brevity we will suppress the polarization index (i)
in the following, keeping in mind that the final
polarization sum will simply amount to the replacementP

�jp � �?j2 ¼ p2.
The evaluation of the Feynman diagrams in the GB

approximation is detailed in the Appendix; we list the
results here:

iMqq0!qq0g
1 ’ ig3�a

ij�
a
mn�

b
jl�ws�w0s0

2s

q2?
ð1� xÞ 2k? � �?

k2?

iMqq0!qq0g
2 ’ �ig3�a

jl�
a
mn�

b
ij�ws�w0s0

2s

q2?
ð1� xÞ 2k? � �?

k2?
iMqq0!qq0g

3 ’ 0

iMqq0!qq0g
4 ¼ 0

iMqq0!qq0g
5 ’ g3fabc�a

il�
c
mn�ws�w0s0

2s

q2?
ð1� xÞ

� 2ðq? � k?Þ � �?
ðq? � k?Þ2

: (10)

Note that the diagrams corresponding to radiation from
the lower quark line are either exactly (diagram 4) or
approximately (diagram 3) zero in the Aþ ¼ 0 gauge.
The common 2s

q2?
factors are already indicative of whatFIG. 1. Feynman diagrams for qþ q0 ! qþ q0 þ g.
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after squaring the amplitude will be the factorized contri-
bution of the elastic qq0 ! qq0 process in small angle
approximation.

Using ½�a; �b�il ¼ ifabc�c
il the sum of the five

diagrams, Eq. (10), iMqq0!qq0g ¼ P
5
j¼1 iM

qq0!qq0g
j , can

be computed

iMqq0!qq0g ’ �g3fabc�a
mn�

c
il�ws�w0s0

2s

q2?
ð1� xÞ

� 2�? �
�
k?
k2?

þ q? � k?
ðq? � k?Þ2

�
: (11)

Squaring the amplitude and taking the averages over the
initial and sums over the final spin and color states yields

jMj2 ’ 24

9
g6

4s2

q4?
ð1� xÞ2

�
k?
k2?

þ q? � k?
ðq? � k?Þ2

�
2

¼ 24

9
g6

4s2

q4?
ð1� xÞ2 q2?

k2?ðq? � k?Þ2
: (12)

Note that the algebraic simplification employed when
going from the first to the second line of Eq. (12) is strictly
only valid when not screening the propagator terms 1=k2?
and 1=ðq? � k?Þ2 with a Debye mass, cf. Sec. V. When
introducing the squared amplitude for the elastic qq0 !
qq0 process in the usual small angle (sa) approximation,

jMqq0!qq0 j2sa ¼ 2
9g

44s2=q4?, Eq. (12) can be rewritten as

jMqq0!qq0gj2 ’ 12g2jMqq0!qq0 j2sað1� xÞ2

� q2?
k2?ðq? � k?Þ2

; (13)

explicitly demonstrating that in the high energy limit the
matrix element of the 2 ! 3 process factorizes into an
elastic 2 ! 2 part and a gluon emission amplitude.

The factor ð1� xÞ2 in Eq. (12) or (13) leads to a sizable
suppression of the amplitude at forward rapidity, where
x > k?=

ffiffiffi
s

p
, which is immediately evident from Eq. (4). At

the maximal rapidity that is kinematically allowed for a
given transverse momentum, ymax ¼ ln ðk?=

ffiffiffi
s

p Þ, x is 1,
and the factor ð1� xÞ2 completely suppresses the matrix
element. While Gunion and Bertsch have the (1� x) terms
in their intermediate results for the single diagrams,
cf. Eq. (10), they were mostly interested in emission spec-
tra in the mid-rapidity region, x ’ k?=

ffiffiffi
s

p � 1, and thus
omitted the (1� x) terms from their final results. The
amplitude then simplifies to

jMqq0!qq0gj2 ’ 12g2jMqq0!qq0 j2sa
q2?

k2?ðq? � k?Þ2
; (14)

which is the formula that has been mostly used in the
literature as the GB matrix element since then [6–12] and
that has also been implemented in the transport model
BAMPS [14]. When computing cross sections or rates
from Eq. (12) or (13), however, the phase space integration

covers the entire accessible rapidity region, and factors
(1� x) must not be omitted. Thus Eq. (12) or (13) rather
than Eq. (14) needs to be employed when computing rates
for 2 ! 3 processes in the GB approximation.
The second modification that has been mentioned at the

beginning of this section is somewhat more subtle. In order
to arrive at the simple results for the single diagrams as
noted in Eq. (10) when not setting x ’ k?=

ffiffiffi
s

p ’ 0, approx-
imations are necessary that require (see the Appendix for
more details)

x2s � k2? (15)

or equivalently

kþ � k� , y � 0: (16)

The results, Eqs. (12) and (13), are thus only valid at mid
rapidity, where terms�x can be neglected, and for forward
emitted gluons, where x2s � k2? holds, but not in the

backward rapidity region. The requirement (15) goes
beyond the approximations (5) and (6) and has not been
mentioned in the original GB publication.
Qualitatively, the need for a restriction such as Eq. (15)

or (16) can be understood when noting that the process
qq0 ! qq0g is symmetric in interchanging q and q0, and
therefore the resulting amplitude should be symmetric
in the rapidity of the emitted gluon. Terms including x,
however, are evidently not symmetric in y, cf. Eq. (4), and
thus the results (12) and (13) do not obey the symmetry that
should be present. This consideration nicely matches the
analytic finding that Eqs. (12) and (13) are valid only in the
forward and mid-rapidity regions.
One can, however, carry out the same calculation in the

A� ¼ 0 gauge. In this gauge diagrams 3, 4, and 5 have
sizable contributions, while diagrams 1 and 2 do not con-
tribute to the final amplitude. Setting

x0 ¼ k?ffiffiffi
s

p e�y (17)

the final result for the averaged squared matrix element in
the A� ¼ 0 gauge reads

jMqq0!qq0gj2 ’ 12g2jMqq0!qq0 j2sað1� x0Þ2

� q2?
k2?ðq? � k?Þ2

: (18)

This is simply the result obtained from the Aþ ¼ 0 gauge,
cf. Eq. (13), with x being replaced by x0. Since both results
are also valid at mid rapidity, it is self-evident to combine
Eqs. (12) and (18) to
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jMqq0!qq0gj2 ’ 12g2jMqq0!qq0 j2sa
q2?

k2?ðq? � k?Þ2
� ½ð1� xÞ2�ðyÞ þ ð1� x0Þ2�ð�yÞ�

¼ 12g2jMqq0!qq0 j2sað1� �xÞ2 q2?
k2?ðq? � k?Þ2

;

(19)

where we have defined

�x ¼ k?ffiffiffi
s

p ejyj: (20)

In the following we will refer to this result as the improved
GB matrix element since it is not only valid at mid rapidity
but also at forward and backward rapidity. In Sec. V we
will compare this result to the exact matrix element without
any approximation, which is briefly discussed in Sec. III.

As a note, the idea of decomposing the phase space in
forward and backward rapidities was also used in Ref. [26]
for the inelastic scattering of a light and heavy quark in the

GB approximation, although the ð1� �xÞ2 factor was
neglected.
The observed factorization of the GB matrix element

into an elastic part and a gluon emission amplitude in the
high energy limit, cf. Eq. (13), immediately implies that
the GB calculation is also valid for other 2 ! 3 processes,
such as qg ! qgg or gg ! ggg. In the high energy limit
of the GB approximations, the specific nature of the scat-
tering particles becomes irrelevant for the structure of the
resulting matrix elements. Therefore, Eq. (19) also holds
for processes other than the one explicitly considered here,
if one takes into account the different color prefactors of
the corresponding 2 ! 2 small angle amplitudes,

jMgg!ggj2sa ¼ 9

4
jMqg!qgj2sa ¼

�
9

4

�
2jMqq0!qq0 j2sa: (21)

III. EXACT MATRIX ELEMENT

The exact matrix elements for the 2 ! 3 processes in-
volving light partons have been calculated in Refs. [24,25].
For qq0 ! qq0g the result is relatively simple, [24]

jMqq0!qq0gj2 ¼ g6

8
½ðs2 þ s02 þ u2 þ u02Þ=tt0�½ðp1kÞðp2kÞðp3kÞðp4kÞ��1fC1½ðuþ u0Þðss0 þ tt0 � uu0Þ þ uðstþ s0t0Þ

þ u0ðst0 þ s0tÞ� � C2½ðsþ s0Þðss0 � tt0 � uu0Þ þ 2tt0ðuþ u0Þ þ 2uu0ðtþ t0Þ�g; (22)

with the constants C1 ¼ ðN2 � 1Þ2=4N3 and C2 ¼ ðN2 � 1Þ=4N3, where N ¼ 3 is the number of colors. The Mandelstam
variables for the 2 ! 3 process are defined as

s¼ðp1þp2Þ2 t¼ðp1�p3Þ2 u¼ðp1�p4Þ2 s0 ¼ ðp3þp4Þ2 t0 ¼ ðp2�p4Þ2 u0 ¼ ðp2�p3Þ2: (23)

However, the expression for the matrix element has been simplified to such an extent that it is not obvious anymore how to
identify the internal propagators which are usually screened with a mass of the order of the Debye mass in thermal QCD.
We do not explicitly quote the result for qg ! qgg here; it is also given in Ref. [24].

The expression for gg ! ggg is considerably more complicated but can still be expressed in a relatively compact form
due to its symmetry [24],

jMgg!gggj2¼g6

2
½N3=ðN2�1Þ�½ð12345Þþð12354Þþð12435Þþð12453Þþð12534Þþð12543Þþð13245Þþð13254Þ

þð13425Þþð13524Þþð14235Þþð14325Þ�

�ðp1p2Þ4þðp1p3Þ4þðp1p4Þ4þðp1p5Þ4þðp2p3Þ4þðp2p4Þ4þðp2p5Þ4þðp3p4Þ4þðp3p5Þ4þðp4p5Þ4
ðp1p2Þðp1p3Þðp1p4Þðp1p5Þðp2p3Þðp2p4Þðp2p5Þðp3p4Þðp3p5Þðp4p5Þ ;

(24)

with ðijklmÞ ¼ ðpipjÞðpjpkÞðpkplÞðplpmÞðpmpiÞ and p5

being the momentum of the third outgoing gluon. In our
notation p5 ¼ k. As for the other matrix elements, it is not
a priori obvious how onewould screen this matrix element.
For the purpose of this work, we introduce a cutoff pre-
scription in Sec. V that regulates the divergencies when
calculating the total cross section and allows for consistent
comparisons to the GB result.

IV. PHASE SPACE INTEGRATION
FOR CROSS SECTIONS

In the previous sections, the leading order pQCD matrix
elements for radiative processes have been introduced both
in their exact form and in the (improved) approximation by
Gunion and Bertsch. These matrix elements depend on
four independent phase space variables. A possible choice
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for these variables that is most appropriate for the GB
approximation of the matrix element is shown later in
this section, cf. Eq. (26). In the following we outline the
procedure for the phase space integration that is needed to
obtain the total cross section from the matrix elements
presented in Secs. II and III. Full energy and momentum
conservation are taken into account. In general, differential
cross sections (e.g. d�=dy) can be obtained from this
procedure by projecting out variables with delta functions
[e.g. �ðyÞ]. It is these differential and total cross sections
that are then used in Sec. V to numerically check the
improved GB approximation against the known exact
result as they are easier to visualize than the bare matrix
elements.

The total cross section of a 2 ! 3 process is defined by

�2!3 ¼ 1

2E12E2vrel

1

�

Z d3p3

ð2�Þ32E3

d3p4

ð2�Þ32E4

d3k

ð2�Þ32k0
� ð2�Þ4�ð4Þðp1 þ p2 � ðp3 þ p4 þ kÞÞjM2!3j2;

(25)

where we used the same notation as before. The relative

velocity is defined by vrel ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP�

1 P2�Þ2 �m2
1m

2
2

q
=E1E2,

and the symmetry factor � ¼ n! accounts for n identical
particles in the final state. Note that this symmetry factor
is not needed when computing cross sections from the
(improved) GB matrix element. In this case the specific
choice and identification of the outgoing momenta, where
p5 ¼ k is the momentum of the radiated gluon, selects a
specific configuration and thus obviates the need for a
symmetry factor 1=�. This is taken into account for all
calculations involving the original or improved GB matrix
elements in this paper and has also been correctly imple-
mented in BAMPS from the beginning [14].

Equation (25) can be used to calculate the total cross
section of the GB and exact matrix elements by performing
the nine-dimensional integration. However, it is numeri-
cally more efficient to analytically integrate out the
delta function to end up with only a five-dimensional
integration, which can be reduced to a four-dimensional
integration by performing one angle integration directly.
After this and switching to the GB coordinates from Sec. II,
the total cross section reads [14]

�2!3 ¼ 1

256�4

1

�

1

s

Z s=4

0
dq2?

Z s=4

0
dk2?

Z ymax

ymin

dy
Z �

0
d�

� jM2!3j2
X�

@F

@y3

��������F¼0

��1
; (26)

where y3 denotes the rapidity of particle 3 and � the angle
between q? and k?. The available phase space limits the
rapidity to ymax =min ¼ �arccosh½ ffiffiffi

s
p

=2k?�. Due to the

transformation of the delta function, ð@F=@y3Þ�1 must be
summed over the roots of

F ¼ ðp1 þ p2 � p3 � kÞ2
¼ s� 2

ffiffiffi
s

p ðq? cosh y3 þ k? cosh yÞ þ 2q?k? cos�

þ 2q?k?ðcosh y3 cosh y� sinh y3 sinh yÞ: (27)

We have numerically checked that both Eqs. (25) and
(26) give the same results for the GB and exact matrix
elements, respectively.

V. NUMERICAL COMPARISON

We have carried out extensive numerical comparisons
between the exact matrix element and the matrix element
calculated in the GB approximation. In order to obtain a
picture as complete as possible, we have investigated
differential cross sections such as d�=dy, d�=dx, and
d�=dk?dq? in addition to the total cross section. All
calculations take into account the full kinematics accord-
ing to Eq. (25) or (26), ensuring energy and momentum
conservation.
Both the exact and GB matrix elements are divergent

for infrared and collinear configurations. In thermal quan-
tum field theory, these divergencies can be cured by
loop resummations of the propagator, which leads to an
extra term with the self-energy in the propagator.
Phenomenologically, this self-energy can be mimicked
with a Debye mass mD that modifies the propagator terms
and makes them infrared-safe,

1

q2?
! 1

q2? þm2
D

: (28)

However, due to their compact notation, it is not
straightforward to identify the propagator terms in the
exact matrix elements. Therefore, for all numerical calcu-
lations of total or differential cross sections from both the
exact and the GB matrix elements, we choose a simple
cutoff procedure to cure the divergencies. The integrand is
set to zero when the scalar product of any incoming or
outgoing 4-momenta is smaller than a cutoff �2, pi � pj <

�2 with i, j ¼ 1 . . . 5. Formally this is expressed by multi-
plying the integrand in Eq. (25) with �ðpi � pj ��2Þ,
where �2 is chosen to be proportional to the Debye mass,

�2 ¼ �m2
D: (29)

It is immediately obvious from Eq. (24) that this prevents
divergencies of the integrand. For propagator terms this
scheme acts similarly to the Debye screening, but the
restrictions to the phase space potentially go beyond
Debye screening only propagator terms. The resulting
numerical values for the total or differential cross sections
need thus not be the physically correct values and are
consequently given in arbitrary units where necessary.
Still this cutoff prescription allows for consistent and
well-defined comparisons between the GB approximation
and the exact leading order matrix elements which is the
focus of this study. If not mentioned otherwise, we set
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� ¼ 0:001 to reduce the screening effect as much as
possible. In the last part of the section, we will discuss
the impact of different � and compare this cutoff procedure
to the standard Debye screening procedure for more physi-
cal scenarios.

The calculations in the remainder of the section are done
for a temperature of T ¼ 400 MeV. The coupling is set
constant, 	s ¼ 0:3. If not stated otherwise, we use the
average thermal value for massless particles for the
squared center of mass energy, s ¼ 18T2 ’ 2:88 GeV2,
and determine � from the usual gluon Debye mass for

Boltzmann statistics,m2
D ¼ 8	s

� ðNc þ nfÞT2. For nf ¼ 3 at

the given temperature and coupling, the Debye mass is
m2

D ’ 0:73 GeV2.
Figure 2 compares the rapidity spectrum of the emitted

gluon as given by different approximations of the matrix
element by depicting the differential cross section d�=dy
for the process qq0 ! qq0g. This process is the clearest to
study since only one (the emitted) gluon is involved.
Furthermore, it is the process that has been studied in the
original GB publication, cf. Sec. II. The plot nicely dem-
onstrates the shortcomings of the standard GB matrix
element, Eq. (14), in the forward and backward region.

The exact matrix element, Eq. (22), only peaks at mid
rapidity and does not have any sizable contribution at
forward or backward rapidity. The gluon emission into
the forward and backward region is suppressed since the
phase space is occupied by the two quarks which just
scatter off with a small angle. Furthermore, the cross
section is symmetric in the rapidity of the emitted gluon
as it must be for this process. The standard GB matrix
element without the ð1� xÞ2 term [Eq. (14)] is very similar
at mid rapidity but has two additional large contributions at
forward and backward rapidity. Thus, this matrix element
would allow that, for instance, the gluon is emitted into the

backward region and that one of the quarks is located at
mid rapidity. Although the matrix element itself is sym-
metric in y, the curve is not since in our implementation the
pz of particle 3 is restricted to positive values to ensure that
the particle only scatters off with a small angle.1

The matrix element with the GB approximation and the
term ð1� xÞ2, Eq. (12), has the same value at mid rapidity
as the other matrix elements since x is small in this region.
However, at forward rapidity the ð1� xÞ2 factor leads to a
significant reduction compared to the pure GB result. Here
the curve lies right on top of the curve from the exact
matrix element. Nevertheless, as discussed in Sec. II, the
curve with ð1� xÞ2 is not symmetric anymore due to the
asymmetric y dependence contained in x. The last curve in
Fig. 2 shows the cross section of our proposed improve-
ment of the GB matrix element, Eq. (19). At forward and
mid rapidity, it agrees with the previously mentioned
curve. At backward rapidity the modified ð1� �xÞ2 term
removes the excess and reconciles the shape of the GB
approximation with the symmetry of the process.
The overall agreement between the differential cross

sections from the improved matrix element and from the
exact result is remarkably good. The difference between
the approximation and the exact result is on the level of a
few percent over the entire y range. This striking agree-
ment is also visible in other differential cross sections
such as d�=dq2?dk

2
? and d�=dx. In Fig. 3 the transverse

momentum distributions d�=dk2? and d�=dq2? are

depicted. At small k2T and q2T , where the contribution to
the cross section is largest, the deviation between the
improved GB and the exact result is less than 5%. The
asymmetry between the k2T and q

2
T distributions is due to an

interplay between the cutoffs and the (1� x) factor for the
GB matrix element. The presence of this asymmetry in the
exact curves is a further indicator that the (1� x) factor is
essential in describing the exact result.
Figure 2 was done for the simplest process, qq0 ! qq0g,

where only one gluon is involved. However, the findings
also hold for qg ! qgg and gg ! ggg. Since gluons
are indistinguishable particles, we plot the d�=dy for
qg ! qgg of all outgoing gluons in Fig. 4. Since we
choose the incoming gluon to be particle 1 and the process
favors small angle scattering, there is a peak at forward
rapidity in addition to the gluon peak at mid rapidity. Again
the curve from the improved GB matrix element reprodu-
ces the curve from the exact one very well. This also holds
for gg ! ggg, where one gets an additional gluon peak
in the backward region which corresponds to the third
outgoing gluon. 0
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 1000
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y 
(a
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.)

y

−x = kT /√s * e |y |

qq ’ → qq ’g

exact

original GB, without (1-x)2

GB, with (1-x)2, x = kT /√s * ey

improved GB, with (1-−x)2,

FIG. 2 (color online). Differential cross section d�=dy for the
process qq0 ! qq0g calculated with the exact [Eq. (22)], GB
(14), GB with ð1� xÞ2 (12), and improved GB with ð1� �xÞ2
(19) matrix element.

1This constraint is necessary if one transforms from
Mandelstam t to q2? for such a small angle favoring process,
since q2? can be small for an outgoing particle which moves
exactly in the other direction than it moved before the reaction,
but in this case the scattering angle is not small anymore; thus, t
becomes large, and t ’ q2? does not hold anymore.
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Since all differential cross sections for the improved GB
and exact matrix elements agree nicely, it is not a surprise
that this is also true for the total cross sections. In Fig. 5
the ratios of the total cross sections �2!3 for different
processes from the improved GB to those obtained from
the exact matrix elements are depicted as a function of the
squared center-of-mass energy s. The exact and improved
cross sections agree very well for all processes and virtu-
ally all s. Only at very small s, below the thermal average
s ¼ 18T2 ’ 2:88 GeV2, there is a slight discrepancy up to
about 40%. The original GB cross section for gg ! ggg as
it was previously implemented in BAMPS is about a factor
of 3 larger than the exact cross section. The same is true for
the other processes (not plotted).

Figure 6 shows the dependence of the total cross section
on the cutoff � ¼ �2=m2

D. The improved GB matrix ele-
ment works best for small � where the matrix elements are
dominated by small k? and q?. At larger � most of the

phase space at small k? and q? is cut away, and other
phase space regions play the dominant role, in which the
GB approximation is not as good. Hence, the ratio rises. At
� * 0:6 (indicated by the gray band in the figure) the cutoff
is so large that the entire available phase space is cut away,
and the GB as well as exact cross sections are zero. For
such severe cutoffs, the comparison scheme is not reliable
anymore, and the previously introduced Debye screening
would be more realistic. However, the comparison to the
exact matrix element with standard Debye screening is not
done in this paper since the identification of the propaga-
tors in the compact results of the exact matrix elements
is not known. Also note that Fig. 6 is made for thermal
s ¼ 18T2. For larger values of s, the cutoff parameter � at
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FIG. 3 (color online). Differential cross sections d�=dk2? and
d�=dq2? as a function of k2T=s and q2T=s, respectively, for the
process qq0 ! qq0g calculated with the exact [Eq. (22)] and
improved GB [Eq. (19)] matrix element.
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exact and improved GB matrix element.
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FIG. 5 (color online). Ratio of total cross section �2!3 of the
improved GB matrix element [Eq. (19)] to the exact one
(see Sec. III) as a function of s for qq0 ! qq0g, qg ! qgg,
and gg ! ggg. In addition, the ratio of the original GB cross
section (14) as it was previously implemented in BAMPS to the
exact cross section is plotted for gg ! ggg.
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which the ratio deviates from unity becomes significantly
larger. Thus, in summary, the improved GB approximation
works best for larger s and/or smaller screening cutoffs �.

Our improved GB result is therefore an especially good
approximation for studying jet effects in heavy-ion colli-
sions. For bulk dynamics, where the mean s is smaller, it is
important how strong the screening effects actually are and
if one is already in the regime of large �where the improved
GB matrix element might deviate from the exact matrix
element. To explore this in more detail, in Fig. 7 we
explicitly compare the improved GB differential cross sec-
tion obtained from the cutoff procedure to the one obtained
using the standard Debye screening according to Eq. (28),
which is for qq0 ! qq0g [cf. Eqs. (12) and (19)],2

jMqq0!qq0gj2 ¼ 32

3
g6

s2

ðq2? þm2
DÞ2

ð1� �xÞ2

�
�

k?
k2? þm2

D

þ q? � k?
ðq? � k?Þ2 þm2

D

�
2
:

(30)

Now to get a feel for the quality of the improved GB
approximation for Debye screened thermal processes, one
can either try to match the total cross sections or the
differential cross sections d�=dy at mid rapidity. Doing
this, the necessary parameter � can be determined to be of
the order of � 	 0:4 to 0.5. As can be seen from Fig. 6, the
deviations between the improved GB and exact result in
this � region vary roughly between �=�exact 	 4 and
�=�exact 	 9. However, Fig. 7 also clearly demonstrates

the distortion of the phase space due to extreme choices of
the cutoff. Large rapidities are cut away entirely while the
standard Debye screening procedure leaves the whole
phase space available. It is questionable whether the strong
cuts in the cutoff procedure make physical sense. The
comparison is thus a rather qualitative one and should be
regarded as a first estimate of the quality of the (improved)
GB approximation in the region of thermal processes with
a standard Debye screening.
As discussed in Sec. II, the factorization of the GB

approximation into an elastic 2 ! 2 part and a radiation
amplitude features the elastic amplitude in small angle

approximation, jM2!2j2sa / 1=q4?. If one, however,

instead employs the exact binary matrix element for the t
channel which is

jM2!2j2 / 1

t2
; (31)

the agreement between the exact and the improved GB
result becomes much better at large �, which is illustrated
in Fig. 8. The ratio is of the order of 1 over the entire �
range, and the deviation is at most 50% for all processes. In
contrast to the previous result with the approximated 2 ! 2
matrix element (cf. Fig. 6), the ratio for small � is not 1
anymore but 0.9. This is probably due to the fact that
different approximations are employed for the 2 ! 2 and
the radiative part of the matrix element. However, since the
numerical agreement is so good also in the region of
thermal processes at larger �, the combination of the
improved GB approximation (19) for the radiation ampli-
tude with the exact 2 ! 2 part (31) might be implemented
in our transport model BAMPS.

VI. SUMMARY

The inelastic gluon Bremsstrahlung matrix element
derived by Gunion and Bertsch for qq0 ! qq0g has been
compared to the exact matrix element for this process by
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FIG. 7 (color online). Differential cross section d�=dy for the
process qq0 ! qq0g calculated with the improved GB matrix
element with the standard Debye screening and the cutoff
procedure for different �.
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FIG. 8 (color online). As Fig. 6 but in addition the improved
GB cross section with the exact 2 ! 2 matrix element (22 t)
instead of the 2 ! 2 matrix element in small angle approxima-
tion (22 q?).

2The implementation in BAMPS does not screen the 1=k2?
term in the bracket since small k? are regularized by the Landau-
Pomeranchuk-Migdal (LPM) effect [27]. However, since the
LPM effect is not employed in this study, we regularize also
this term with the Debye mass.
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performing full phase space integrations and analyzing the
total and differential cross sections. Although it agrees
very well with the exact result at mid rapidity (the region
in which Gunion and Bertsch were mainly interested),
large deviations have been found at forward and backward
rapidity. Based on a detailed analytic investigation of the
underlying approximations, we propose an improved ver-
sion of the GBmatrix element which agrees very well in all
phase space regions with the exact result. This remarkable
agreement holds for virtually all center-of-mass energiesffiffiffi
s

p
and most cutoff parameters � as well as for the other

radiative processes qg ! qgg and gg ! ggg.
In contrast to the claim in Ref. [22], the deviation

between the GB matrix element and the exact result does
not originate from a miscounting of symmetry factors but
lies deep in the approximations of GB in forward and
backward rapidities. Although the reasoning in Ref. [22]
accidentally (and thus only effectively) holds for gg !
ggg due to the symmetry of the process, it fails for asym-
metric processes such as qg ! qgg or qq0 ! qq0g.

The implementation of the new improved GB matrix
element in our transport model BAMPS is currently under
way. From Fig. 5 we expect at most a factor of 3 difference
in the rates, although this should be reduced by the iterative
computation of cross sections due to the implementation of
the LPM effect [27]. The difference in the phase space
sampling of the outgoing particles will have a large impact
in particular on jet observables. For instance, we expect
much less suppression of high energy particles, which will
increase the small nuclear modification factor of BAMPS
[17,27] and bring it closer to the data. The effect on bulk
observables will also be of great interest. Although we
expect a decrease of the elliptic flow [16] and an increase
of the shear viscosity [21], one must wait for the numerical
results to see how large the effect will actually be. As part
of this study, we will also implement the running coupling
for elastic and radiative processes which is expected to
lead to a rising RAA curve with transverse momentum.
Furthermore, we plan to generalize the new improved
GB matrix element also to the heavy flavor sector and
study its impact on the heavy quark energy loss [28–30].

ACKNOWLEDGMENTS

We would like to thank J. Aichelin, A. Dumitru,
P. B. Gossiaux, and A. Peshier for stimulating and
helpful discussions. This work was supported by the
Bundesministerium für Bildung und Forschung (BMBF)
and by the Helmholtz International Center for FAIR within
the framework of the LOEWE program launched by the
State of Hesse. Numerical computations have been per-
formed at the Center for Scientific Computing (CSC).
J. U. is grateful for the kind hospitality at Tsinghua
University, where part of this work has been done.
Furthermore, J. U. would like to thank the DAAD and the
Helmholtz Research School for Quark Matter studies for

financial support. Z. X. is supported by the NSFC under
Grant No. 11275103.

APPENDIX: DETAILED GB CALCULATION

The purpose of this Appendix is to provide some more
details on the computation of the qq0 ! qq0g matrix ele-
ment in the Gunion and Bertsch approximation, cf. Sec. II
and the diagrams shown in Fig. 1. The focus is on high-
lighting crucial steps and approximations that are needed
to arrive at the results in Eq. (10).
We define

J�rsðp; p0Þ ¼ �urðpÞ
�usðp0Þ; (A1)

where s and r are the spin indices of the spinors u and �u.
Setting p0 ¼ pþ q and assuming that q � p, the Gordon
identity [31] for Eq. (A1) can be simplified to give

J
�
rsðp; pþ qÞ ’ ð2pþ qÞ��rs: (A2)

This eikonal approximation essentially amounts to describ-
ing the problem in scalar QCD and is responsible for the
fact that the amplitudes of different 2 ! 3 processes only
differ by the color factor of the factorized elastic ampli-
tude, cf. Eq. (21). Furthermore, we define

���
rs ðp; k; p0Þ ¼ �urðpÞ
�ð6kþmÞ
�usðp0Þ

¼ X
t

J�rtðp; kÞJ�tsðk; p0Þ: (A3)

With these definitions and the kinematics as given in
Sec. II, we can compute the matrix elements of the
diagrams.

1. Diagram 1

The Feynman rules for diagram 1, cf. Fig. 1, give

iMqq0!qq0g
1 ¼ F1

q2ðp3 þ kÞ2 �
	�
ws ðp3; p3 þ k; p1Þ

� �
	ðkÞg��J
�
w0s0 ðp4; p2Þ

’ F1�ws�w0s0

q2ðp1 þ qÞ2 ð2p1 þ qÞ�ð2p2 � qÞ�
� ð2p1 þ 2q� kÞ	�
	ðkÞ; (A4)

with F1 ¼ �ig3�a
ij�

c
mn�

b
jl�

ac. Employing the kinematic

approximations from Sec. II to the single terms

ðp1 þ qÞ2 ’ ðk? � xq?Þ2
ð1� xÞx (A5)

ð2p1 þ qÞ�ð2p2 � qÞ� ’ 2s (A6)

ð2p1 þ 2q� kÞ	�
	 ’ 2

x
ðk? � xq?Þ � �? (A7)

together with q2 ’ �q2? and Eq. (6) yields the result

listed in Eq. (10). Equation (A6) requires the restriction
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x2s � k2?, Eq. (15), in addition to the standard GB

approximations (5) and (6).

2. Diagram 2

The Feynman rules for diagram 2 give

iMqq0!qq0g
2 ¼ F2

q2ðp1 � kÞ2 �
�	
ws ðp3; p1 � k; p1Þ

� �
	ðkÞg��J
�
w0s0 ðp4; p2Þ

’ F2�ws�w0s0

q2ðp1 � kÞ2 ð2p1 þ q� 2kÞ�ð2p2 � qÞ�
� ð2p1 � kÞ	�
	ðkÞ; (A8)

with F2 ¼ �ig3�a
jl�

c
mn�

b
ij�

ac. The kinematic approxi-

mations

ðp1 � kÞ2 ’ � k2?
x

(A9)

ð2p1 þ q� 2kÞ�ð2p2 � qÞ� ’ 2sð1� xÞ (A10)

ð2p1 � kÞ	�
	 ’ 2

x
k? � �? (A11)

together with q2 ’ �q2? lead to the result listed in Eq. (10).

Again Eq. (A10) requires the restriction to forward
emission, x2s � k2?, in addition to the standard GB

approximations (5) and (6).

3. Diagram 3

In order to explicitly compute diagrams 3 and 4, the
components of the momentum transfer q need to be re-
determined from the on-shell conditions (p2

3¼ðp1þqÞ2¼0
and p2

4 ¼ ðp2 � q� kÞ2 ¼ 0) and the choice of keeping k
in the form given in Eq. (7),

q� ’
�
�x

ffiffiffi
s

p
;
q2?ffiffiffi
s

p ;q?
�
: (A12)

With this definition diagram 3 can be evaluated as

iMqq0!qq0g
3 ¼ F3

q2ðp4 þ kÞ2 J
�
wsðp3; p1Þg��

� �	�
w0s0 ðp4; p4 þ k; p2Þ�
	ðkÞ

’ F3�ws�w0s0

q2ðp2 � qÞ2 ð2p1 þ qÞ�ð2p2 � qÞ�
� ð2p2 � 2q� kÞ	�
	ðkÞ; (A13)

with F3 ¼ �ig3�a
il�

c
mj�

b
jn�

ac. Employing the usual kine-

matic approximations simplifies the single terms

ðp2 � qÞ2 ’ xs (A14)

ð2p1 þ qÞ�ð2p2 � qÞ� ’ sð2� xÞ (A15)

ð2p2 � 2q� kÞ	�
	 ’ 2ðq? þ k?Þ � �?: (A16)

Combining these approximations yields

iMqq0!qq0g
3 ’ F3�ws�w0s0

2s

q2?

2� x

s
ðq? þ k?Þ � �?;

(A17)

which is suppressed by 1=s compared to the other diagrams
listed in Eq. (10) and thus in the GB approximations

justifies setting iMqq0!qq0g
3 ’ 0.

4. Diagram 4

Diagram 4 is given by

iMqq0!qq0g
4 ¼ F4

q2ðp2 � kÞ2 J
�
wsðp3; p1Þg��

� ��	
w0s0 ðp4; p2 � k; p2Þ�
	ðkÞ

’ F4�ws�w0s0

q2ðp2 � kÞ2 ð2p1 þ qÞ�ð2p2 � q� 2kÞ�
� ð2p2 � kÞ	�
	ðkÞ; (A18)

with F4 ¼ �ig3�a
il�

c
jn�

b
mj�

ac. Since ð2p2 � kÞ	�
	 ¼ 0

without any further approximation, diagram 4 does not
contribute.

5. Diagram 5

Diagram 5 which describes the gluon emission off the
exchanged gluon is the most tedious one to evaluate. It is
given by

iMqq0!qq0g
5 ¼ F5

q2ðq� kÞ2 J
�0
wsðp3; p1ÞJ�0

w0s0 ðp4; p2Þg��0g��0

� �
	ðkÞ½g��ðk� 2qÞ	 þ g�	ðqþ kÞ�
þ g	�ðq� 2kÞ��

’ F5�ws�w0s0

q2ðq� kÞ2 ½Aþ Bþ C�; (A19)

with F5 ¼ g3fabc�a
il�

c
mn and

A ¼ ½ð2p1 þ q� kÞ�ðqþ kÞ��½ð2p2 � qÞ	�
	�

’ 2� x

1� x

k2?
x
q? � �? (A20)

B ¼ ½ð2p2 � qÞ�ðq� 2kÞ��½ð2p1 þ q� kÞ	�
	�
’ �4sk? � �? (A21)

C ¼ ½ð2p1 þ q� kÞ�ð2p2 � qÞ��½ðk� 2qÞ	�
	�
’ 2sð2� xÞq? � �?: (A22)

The term A is not proportional to s and thus can be
neglected in respect to B and C. Together with the approx-
imations for the propagators, q2 ’ �q2? and
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ðq� kÞ2 ’ � ðq? � k?Þ2
ð1� xÞ ; (A23)

this leads to the result in Eq. (10), where additionally approximation (6) needs to be employed in collecting the above given
terms. The constraint x2s � k2? is needed in the computation of diagram 5 when approximating the first term of C as given
in Eq. (A22).
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