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We revisit QCD sum rules for the decay constants of heavy-light mesons. In the sum rules for the vector

mesons B�
ðsÞ and D�

ðsÞ we improve the accuracy of OPE, taking into account the Oð�2
s Þ terms in the

perturbative part and calculating the Oð�sÞ corrections to the quark-condensate contribution. With this

accuracy, we obtain the ratios of decay constants: fB�=fB ¼ 1:02þ0:07
�0:03, fD�=fD ¼ 1:20þ0:10

�0:07. The sum rule

predictions for the decay constants of pseudoscalar mesons are updated with the results fB ¼
ð207þ17�9 Þ MeV, fBs

¼ ð242þ17�12Þ MeV, fD ¼ ð201þ12�13Þ MeV, fDs
¼ ð238þ13

�23Þ MeV. In order to assess

the sensitivity of our calculation to the form of the sum rule, we consider alternative versions such as

the power moments and Borel sum rules with different weights of the spectral density. We also

investigated the heavy-quark limit of the sum rules for vector and pseudoscalar mesons, estimating the

violations of the heavy-quark spin and flavor symmetry.
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I. INTRODUCTION

The decay constants of heavy-light mesons are the sim-
plest hadronic matrix elements relevant for heavy-flavor
physics. The constants of pseudoscalar mesons, fDðsÞ and

fB, received much attention because they determine the
long-distance QCD dynamics in the leptonic weak decays
DðsÞ ! ��� and B ! ���, respectively (see, e.g., the

review [1] and a more recent measurement [2]). The accu-
racy of fBsðdÞ is vital for the analysis of the leptonic flavor-

changing neutral current decay BsðdÞ ! �þ�� [3]. Recent

determinations of the decay constants of B and D mesons
in lattice QCD with dynamical flavors quote an impressive
precision [4–7].

The decay constants fB� and fD� of the heavy-light
vector mesons B� and D� cannot be directly probed in
weak decays. Nonetheless, they also play an important
role in heavy flavor phenomenology. To bring only one
example: an accurate knowledge of fB� and fD� is needed
in the calculation of the strong couplings B�B� andD�D�
from QCD light-cone sum rules [8]. Furthermore, the
deviation of fB�ðD�Þ from fBðDÞ calculated at finite masses

allows one to assess the violation of the heavy-quark spin
symmetry. In lattice QCD, we are aware of only one recent
calculation of fD� and fD�

s
in [9].

In continuum QCD, the hadronic decay constants are
determined from QCD (SVZ) sum rules [10] based on the
operator-product expansion (OPE) for the two-point corre-
lation functions of quark currents. The sum rules for heavy-
light mesons have a long history, starting from the very
early papers [11,12] (see also, e.g., [13,14]) in the frame-
work of full QCD, as well as using the heavy-quark ex-
pansion [15], followed by sum rules in heavy-quark
effective theory (HQET) [16–19]. The gluon radiative
corrections to the correlation functions at Oð�sÞ (two-
loop) level calculated in [20,21] play an important role.
The sum rule for the heavy-light vector mesons with this
accuracy can be found, e.g., in [22].

A substantial improvement of the OPE was achieved in
[23] where the Oð�2

sÞ (three-loop) contribution to the
perturbative part of the correlation function was calculated.
The results are available in a seminumerical form. These
NNLO corrections were implemented in the sum rule
determination of the BðsÞ decay constants for finite

heavy-quark masses in [24], and in the framework of

HQET in [25]. Note that the MS scheme chosen for the
heavy-quark mass in [24] leads to a reasonable suppression
of gluon radiative corrections in the perturbative part of the
sum rules.
In this paper we revisit QCD sum rules for heavy-light

meson decay constants. Our main goal is to upgrade the
accuracy of the sum rules for the vector-meson decay
constants fB� and fD� , including the three-loop, Oð�2

sÞ
terms in the OPE for the correlation function and calculat-
ing the missing Oð�sÞ corrections to the quark condensate
contribution. In parallel, we update the decay constants of
pseudoscalar heavy-light mesons. We also evaluate the
ratios of decay constants, sensitive to the violation of the
heavy-quark and SUð3Þfl symmetries in bottom and
charmed mesons. In addition to the standard sum rule
calculation, we obtain upper bounds for decay constants
following from the positivity of the spectral density in the
dispersion relations and independent of the quark-hadron
duality assumption. Furthermore, to assess the sensitivity
of our results to the particular form of the sum rule with
Borel exponent, we employ certain modifications of sum
rules with different weights in the dispersion integrals, as
well as their power moments.
In what follows, in Sec. II we present a brief outline of

the method. Section III contains a discussion of the input
parameters and the numerical results. Section IV is devoted
to the alternative sum rules and contains their comparison
with the conventional Borel sum rules. In Sec. V we
consider the heavy-quark limit of the sum rules. Our con-
cluding discussion is presented in Sec. VI.
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II. OUTLINE OF THE SUM RULE DERIVATION

Here we remind the main steps leading to the standard
QCD sum rule [10] for a decay constant. For the heavy-
light vector mesons, which are the main objects of our
study, one needs the following two-point correlation
function:

���ðqÞ ¼ i
Z

d4xeiqxh0jTfj�ðxÞjy�ð0Þgj0i

¼ ð�g��q
2 þ q�q�Þ ~�Tðq2Þ þ q�q��Lðq2Þ;

(1)

where j� ¼ �q��Q is the interpolating heavy-light quark

current,Q ¼ c, b and q ¼ u, d, s. In this paper finite quark

masses in MS scheme are considered. In (1), the relevant

invariant amplitude is ~�Tðq2Þ, multiplying the transverse
kinematic structure. To avoid kinematical singularities, it is
more convenient to rescale it, introducing

�Tðq2Þ � q2 ~�Tðq2Þ; (2)

that is, to consider the coefficient at �g�� in ���ðqÞ.
In what follows, we also need the standard definition of
the correlation function with pseudoscalar heavy-light
currents:

�5ðqÞ ¼ i
Z

d4xeiqxh0jTfj5ðxÞjy5 ð0Þgj0i; (3)

where j5 ¼ ðmQ þmqÞ �qi�5Q.

The decay constants of the heavy-light vector meson
H� ¼ fB�; D�g and pseudoscalar meson H ¼ fB;Dg are
defined in a standard way,

h0jj�jH�ðqÞi ¼ mH��ðH
�Þ

� fH� ; h0jj5jHðqÞi ¼ m2
HfH;

(4)

where �ðH
�Þ

� is the polarization vector of H�. These decay
constants squared enter the ground-state pole terms of the
hadronic dispersion relations for the correlation functions
(1) and (3). The invariant amplitudes defined according to
(2) and (3) obey double-subtracted dispersion relations in
the variable q2:

�Tð5Þðq2Þ ��Tð5Þð0Þ � q2
�
d�Tð5Þðq2Þ

dq2

���������q2¼0

¼ ðq2Þ2
�

Z
ds

Im�Tð5ÞðsÞ
s2ðs� q2Þ : (5)

The spectral densities,

�TðsÞ � 1

�
Im�TðsÞ

¼ m2
H�f2H�	ðs�m2

H� Þ þ �h
TðsÞ
ðs� ðmH þmPÞ2Þ;

(6)

�5ðsÞ � 1

�
Im�5ðqÞ

¼ m4
Hf

2
H	ðs�m2

HÞ þ �h
5ðsÞ
ðs� ðmH� þmPÞ2Þ;

(7)

are positive definite and, according to unitarity, are given
by the sums over all hadronic contributions with the quan-
tum numbers of H� and H, respectively. In the above, the
ground-state contribution is written separately and a ge-
neric notation �h

Tð5ÞðsÞ is introduced for the spectral density
of excited and continuum states; mP is the mass of the
lightest pseudoscalar meson, � or K, depending on the

flavor content of Hð�Þ. Note that in the pseudoscalar chan-
nel there is a gap between the ground state H and the
threshold mH� þmP of the lowest continuum state,
whereas in the vector D�ðB�Þ channel the threshold mH þ
mP lies below (above but very close to) the ground state
H�. Note also that the vector mesons with strangeness D�

s

and B�
s are strongly coupled to DK and BK continuum

states, respectively, both having larger thresholds than the
vector meson masses, whereas the channels Ds� and Bs�
are decoupled in the limit of isospin symmetry.
In QCD, the local OPE for the correlation function (1) is

valid at q2 � m2
Q, far from hadronic thresholds. This

expansion includes a perturbative part and contributions
of the vacuum condensates. The latter, ordered accord-
ing to their operator dimension d, are taken into account
up to d ¼ 6:

�OPE
Tð5Þ ðq2Þ ¼ �

ðpertÞ
Tð5Þ ðq2Þ þ�h �qqi

Tð5Þðq2Þ þ�hGGi
Tð5Þ ðq2Þ

þ�h �qGqi
Tð5Þ ðq2Þ þ�h �qq �qqi

Tð5Þ ðq2Þ; (8)

where the contributions of the quark, gluon, quark-gluon,
and four-quark condensates with dimensions d ¼ 3, 4, 5, 6
are indicated by the indices h �qqi, hGGi, h �qGqi and h �qq �qqi,
respectively. The contributions of d ¼ 4, 5, 6 condensates
are very small in the region where we consider OPE; hence
it is justified to neglect the terms of OPE stemming from
the condensates of larger dimension. The perturbative part
of the OPE is usually represented in a form of a dispersion
integral:

��
ðpertÞ
Tð5Þ ðq2Þ ¼ ðq2Þ2

Z 1

ðmQþmqÞ2
ds

�ðpertÞ
Tð5Þ ðsÞ

s2ðs� q2Þ : (9)

Here, as in (5), the two subtractions are needed due to the
s ! 1 asymptotics of the leading order (LO) perturbative
contributions:

�ðpert;LOÞ
T ðsÞ ¼ 1

8�2
sð1� zÞ2ð2þ zÞ; (10)

�ðpert;LOÞ
5 ðsÞ ¼ 3ðmQ þmqÞ2

8�2
sð1� zÞ2; (11)
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given by the simple heavy-light loop diagrams, where z ¼
m2

Q

s . In the above, for simplicity, the light-quark masses are

neglected, except in the factor (mQ þmq) for the

pseudoscalar-current density. The relevant mass correc-
tions are presented in Appendix A 1.

The perturbative part of OPE includes NLO (two-loop)
and NNLO (three-loop) terms:

�
ðpertÞ
Tð5Þ ðsÞ ¼ �

ðpert;LOÞ
Tð5Þ ðsÞ þ

�
�s

�

�
�
ðpert;NLOÞ
Tð5Þ ðsÞ

þ
�
�s

�

�
2
�ðpert;NNLOÞ
Tð5Þ ðsÞ: (12)

The NLO corrections are known from early papers [20,21]
and are determined by a sum of three two-loop diagrams
originating from gluon exchanges in the heavy-light quark
loop. We have once more recalculated these diagrams for
vector- and pseudoscalar-current correlation functions in

both pole- and MS-mass (our default) scheme and con-
firmed the results of previous calculations [20,21], given
for pseudoscalar currents, e.g., in [24] and for vector
currents in [22]. The analytical formulas for the NLO
gluon radiative corrections are presented in Appendix A 1.

The NNLO corrections were calculated in [23] and
implemented in the sum rule determination of fBðsÞ in

[24] and fB;D in [25]. In this paper, we include these

corrections also in the OPE of the vector-current correla-
tion function. To this end, we follow the �s expansion of
the invariant amplitude �vðq2Þ introduced in [23], which

in our notation corresponds to ~�Tðq2Þ ¼ �Tðq2Þ=q2. For
the three-loop, Oð�2

sÞ term in this expansion we make use
of the color-structure decomposition given in Eq. (8) of
[23]. For the imaginary parts of separate contributions we
employ the formulas obtained from the seminumerical
Pade procedure and encoded in the program Rvs.m made
available by the authors of Ref. [23].

In the OPE (8) the contribution of the d ¼ 3 quark
condensate includes LO and NLO [one-loop, Oð�sÞ] con-
tributions. The latter for the pseudoscalar-current correla-
tion function were calculated in [16,24]. We repeated this
calculation and confirm their result. The NLO correction to
the quark-condensate term in the vector-current correlation
function is new. Finally, for the d ¼ 4, 5, 6 contributions of
gluon, quark-gluon and four-quark condensates to OPE, we
use the LO expressions known from the literature
[10,12,22]. For completeness, these expressions are also
collected in Appendix A 2.

In the case of nonstrange heavy-light mesons, the u, d
quark masses are neglected everywhere in the correlation
function, being negligibly small numerically in compari-
son with all other energy-momentum scales. In the sum
rules for the strange heavy-light mesons the s quark mass is
taken into account in the prefactor ðmQ þmsÞ2 of �5.

Apart from that, we include the Oðm2
sÞ terms in the LO

[OðmsÞ in the NLO] perturbative part and the OðmsÞ terms

in the LO quark-condensate contribution in both correla-
tion functions (see the expressions in Appendix A 1).
Substituting the OPE result (8) in the hadronic disper-

sion relation (5), we perform the standard Borel trans-
formation, after which the subtraction terms vanish.
One has

�OPE
T ðM2Þ ¼ m2

H�f2H�e
�m2

H�=M2

þ
Z 1

ðmHþmPÞ2
ds�h

TðsÞe�s=M2
(13)

and a similar relation for the pseudoscalar meson case. The
truncated OPE on the lhs is reliable at M2 >M2

min, where

the d ¼ 4, 5, 6 condensate contributions remain suffi-
ciently small numerically. On the other hand, below a
certain upper boundary M2 <M2

max the contributions of
higher states accumulated in the integral on the rhs in (13)
are suppressed with respect to the ground-state term due to
the Borel exponent. As usual, we apply the quark-hadron
duality approximation for the hadronic spectral density
�h
TðsÞ and replace the integral on the rhs of (13) by the

integral over the perturbative spectral density, introducing
an effective threshold:

�h
TðsÞ
ðs� ðmH þmPÞ2Þ ¼ �ðpertÞ

T ðsÞ
ðs� sH
�

0 Þ: (14)

After subtracting the part of the dispersion integral over
the perturbative spectral density from both sides of (13),
the final form of QCD sum rule reads

f2H� ¼ em
2
H�=M2

m2
H�

f�ðpertÞ
T ðM2; sH

�
0 Þ þ�h �qqi

T ðM2Þ

þ�ðd456Þ
T ðM2Þg: (15)

The analogous sum rule for the pseudoscalar meson
channel is

f2H ¼ em
2
H=M

2

m4
H

f�ðpertÞ
5 ðM2; sH0 Þ þ�h �qqi

5 ðM2Þ

þ�ðd456Þ
5 ðM2Þg: (16)

In above equations the notation

�ðpertÞ
Tð5Þ ðM2; s0Þ ¼

Z s0

ðmQþmqÞ2
dse�s=M2

�ðpertÞ
Tð5Þ ðsÞ; (17)

�ðd456Þ
Tð5Þ ðM2Þ ¼ �hGGi

Tð5Þ ðM2Þ þ�h �qGqi
Tð5Þ ðM2Þ þ�h �qq �qqi

Tð5Þ ðM2Þ;
(18)

is used for brevity. In (17) the �s expansion (12) of the
perturbative spectral density is then substituted. In terms of
(17), the sum over excited states and continuum contribu-

tions is simply equal to �ðpertÞ
Tð5Þ ðM2;1Þ ��ðpertÞ

Tð5Þ ðM2; s0Þ.
A specific ‘‘Borel window’’ is usually adopted for each

sum rule, defined as an intervalM2
min <M2 <M2

max where

the higher-dimensional condensate terms in OPE and the
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excited and continuum contributions are suppressed simul-
taneously. The actual size of this interval depends on the
quantum numbers of quark currents in the correlation
function. The effective threshold is usually fixed by fitting
the mass of the ground-state meson calculated from the
sum rule to its experimentally measured value. To obtain
an equation for the meson mass squaredm2

H� (m2
H) from the

sum rule (15) [(16)], it is sufficient to differentiate the rhs
of each sum rule over (�1=M2) and formally equate the
result to zero.

Apart from the sum rule, the dispersion relation for the

invariant amplitude �QCD
Tð5Þ , after Borel transformation,

yields an upper bound for the decay constant which simply
follows from the positivity of the hadronic spectral density
and is independent of the quark-hadron duality approxi-
mation (for earlier uses of the bounds see, e.g., [14,26]).
Formally, the upper bounds for f2

Hð�Þ are obtained, putting

sH
ð�Þ

0 ! 1 in (15) and (16).

III. NUMERICAL ANALYSIS OF BOREL
SUM RULES

In Table I the adopted intervals of QCD parameters
entering the sum rules (15) and (16) are collected. As is
well known, these sum rules are very sensitive to the value
of the heavy-quark mass. For a correlation function of
highly virtual quarks in full QCD involved in our calcula-

tion, we use, as in [24], the quark masses in theMS scheme.
Currently, there is a good agreement between various lat-
tice- and continuum-QCD determinations of b and c quark

masses; hence we simply take the intervals of their MS
values from [27]. In particular, the heavy-quark masses
extracted from the QCD quarkonium sum rules [30,31]
are very close to the average values we are using. For the
strange quark mass we double the theoretical uncertainty
quoted in [27], having in mind that the latter uncertainty is
dominated by the most recent lattice determinations. With
our choice, the interval of continuum QCD determinations
of ms (e.g. from the QCD sum rules [32]) with typically

larger errors is also covered. The nonstrange quark conden-
sate density h0j �qqj0i � h �qqi, (q ¼ u, d), is calculated from
the chiral perturbation theory (ChPT) relations derived in
[28], using the s quark mass as an input. The details can be
found, e.g., in [33]. Note that the SUð3Þfl symmetry viola-
tion in OPE originates not only from the quark mass differ-
ence ms �mu;d, but also from the difference between

strange and nonstrange quark-condensate densities. For
their ratio we adopt a rather broad interval from the review
[29], where also the d ¼ 4, 5, 6 condensate densities are
taken from. The latter are parametrized in a standard way:
ð�s=�Þh0jGa

��G
a��j0i � hGGi, h0jgs �qGa

��t
a���qj0i �

h �qGqi ¼ m2
0h �qqi. Furthermore, following [10], the four-

quark condensate density is factorized with an intermediate
vacuum insertion into the square of quark condensates
rvach �qqi2, with an additional coefficient rvac, parameteriz-
ing the deviation from the factorization.
For the running of the QCD coupling and quark masses

with an appropriate loop accuracy we employ the numeri-
cal program RunDec available from [34]. We adopt a
uniform renormalization scale � for the correlation func-
tion, strong coupling and quark masses. The running of the
quark-condensate density is taken into account in the same
approximation as for the quark masses; the gluon-
condensate density is renorminvariant and the running of
quark-gluon and four-quark condensates is negligible, i.e.,
their densities m2

0h �qqi and �srvach �qqi2, respectively, are
taken at a low scale � ¼ 1 GeV.
The choice of the three remaining parameters—Borel

mass M, renormalization scale � and effective threshold

sH
ð�Þ

0 —generally depends on the quantum numbers of quark

currents in the correlation function. In our analysis, for all
mesons containing one and the same heavy quark, b or c, a
uniform range ofM2 and� is chosen, whereas the effective
threshold depends also on the light-quark flavor and spin-
parity of the interpolating quark currents.
In the heavy-quark limit of the sum rules (see Sec. V

below), one expects that an ‘‘optimal Borel window’’
discussed in the previous section is located around

TABLE I. Input parameters used in the sum rules.

Parameters Values (comments)

Quark masses

�mbð �mbÞ ¼ 4:18� 0:03 GeV
[27]�mcð �mcÞ ¼ 1:275� 0:025 GeV

�msð2 GeVÞ ¼ 95� 10 MeV (error doubled)

Strong coupling

�sðMZÞ ¼ 0:1184� 0:0007
[27]�sð3 GeVÞ ¼ 0:255� 0:003

�sð1:5 GeVÞ ¼ 0:353� 0:006
Quark condensate h �qqið2 GeVÞ ¼ �ð277þ12�10 MeVÞ3 (ChPT �ms) [27,28]

d ¼ 4, 5, 6 condensates

h�ssi=h �qqi ¼ 0:8� 0:3

[29]

hGGi ¼ 0:012þ0:006
�0:012 GeV4

m2
0 ¼ 0:8� 0:2 GeV2

h�sGsi=h �qGqi ¼ h�ssi=h �qqi
rvac ¼ 0:1–1:0
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M2 � 2mQ�, where �� 1 GeV � �QCD does not scale

with the heavy mass. Specifically, for the correlation func-
tions with b quark (c quark) we adopt the lower boundary
of the Borel parameter M2

min ¼ 4:5 GeV2 (M2
min ¼

1:5 GeV2), so that the magnitude of the sum over d ¼ 4,
5, 6 condensate contributions to the OPE does not exceed
�5% of the perturbative part. The renormalization scale�,
being generally in the ballpark of M, is chosen so that one
retains the hierarchy of NNLO and NLO terms in the
perturbative part of OPE. We fix � ¼ 3:0 GeV (� ¼
1:5 GeV) as ‘‘default’’ renormalization scale in the corre-
lation functions with b (c) quarks. With this choice, at
M2 	 M2

min, the NNLO terms in OPE with b quark (c
quark) are less than 15% (30%) of NLO terms. The scale
dependence will be investigated by varying � within the
intervals indicated in Table II.

Finally, in the sum rule for each decay constant fHð�Þ

we determine the effective threshold sH
ð�Þ

0 , demanding

that the measured mass of the Hð�Þ meson is reproduced
from the differentiated sum rule with an accuracy no less
than 0.5%. Although we work in the isospin symmetry
limit, in the numerical analysis, for definiteness, mesons
with the flavor content c �d and b �d are taken. The Borel
parameter is constrained from above, M2 <M2

max, so
that the relative contribution of excited and continuum
states to the sum rule, which in our approximation is

equal to 1��ðpertÞ
Tð5Þ ðM2; s0Þ=�ðpertÞ

Tð5Þ ðM2;1Þ, remains less

than 50%.
The decay constants are numerically calculated from the

sum rules at M2
min <M2 <M2

max, taking for each M2 the

fitted value of sH
ð�Þ

0 . The results obtained at central input are

presented in Table II. To estimate the total uncertainty
of the calculated decay constants, we vary each input
parameter separately, assuming (conservatively) that they
are uncorrelated. Note on the other hand that the values of

the effective threshold sH
ð�Þ

0 , after fixing the meson mass,

are correlated with the Borel parameter. Hence, we do not
attribute a separate uncertainty related to the choice of

sH
ð�Þ

0 . To take into account, albeit rather conservatively,

the neglected d > 6 terms in the OPE, we attribute to
each calculated value of the decay constant an additional
theoretical error equal to the sum of d ¼ 4, 5, 6 condensate
contribution. All individual uncertainties—except very
small ones, with a magnitude 
 0:1 MeV—are presented
in Table II. Adding them in quadrature, we arrive at the
final results for the decay constants of heavy-light vector
and pseudoscalar mesons:

fB� ¼ ð210þ10
�12Þ½261� MeV;

fB ¼ ð207þ17�9 Þ½258� MeV;
(19)

fB�
s
¼ ð267þ14�20Þ½310� MeV;

fBs
¼ ð242þ17�12Þ½285� MeV;

(20)

fD� ¼ ð242þ20
�12Þ½297� MeV;

fD ¼ ð201þ12
�13Þ½237� MeV;

(21)

fD�
s
¼ ð314þ19

�14Þ½367� MeV;

fDs
¼ ð238þ13

�23Þ½266� MeV;
(22)

TABLE II. Details of the numerical analysis of QCD sum rules for decay constants. Here
�M2, ��, etc. denote the individual uncertainty of the decay constant (in MeV) due to the
variation of M2, �, etc. within the adopted intervals.

Corr. function �b
TðM2Þ �b

5ðM2Þ �c
TðM2Þ �c

5ðM2Þ
Default M2 [GeV2] 5.5 2.0

(range) (4.5–6.5) (1.5–2.5)

Default � [GeV] 3.0 1.5

(range) (3.0–5.0) (1.3–3.0)

Sum rule for fB� fB�
s

fB fBs
fD� fD�

s
fD fDs

Meson mass [GeV] [27] 5.325 5.415 5.280 5.367 2.010 2.112 1.870 1.968

Eff. threshold [GeV2] 34.1 36.7 33.9 35.6 6.2 7.6 5.6 6.3

Central value [MeV] 210.3 266.7 206.7 241.7 241.9 313.8 201.0 237.4

�M2 þ0:1
�1:8

þ5:7
�5:1

þ6:1
�4:5

þ8:1
�5:8

þ3:6
�5:0

þ13:4
�8:9

þ10:7
�12:1

þ8:6
�19:4

�� þ0:0
�5:3

þ0:0
�14:7

þ13:0
�0:0

þ10:3
�0:0

þ17:3
�3:9

þ8:3
�0:6

þ1:3
�3:5

þ3:5
�9:3

�mQ
þ9:0
�8:7

þ10:2
�10:0

þ7:6
�7:5 �8:2 �7:5 �8:1 þ1:6

�1:9
þ1:7
�2:1

�ms – �2:8 – �1:6 – þ3:8
�3:9 – �3:1

�hq �qi �3:2 �2:2 þ2:8
�2:9

þ2:1
�2:2 �4:0 �2:7 �3:0 �2:2

� hs �si
hq �qi – þ6:7

�6:9 – þ6:5
�6:7 – þ8:1

�8:3 – þ6:6
�6:9

�hGGi þ0:4
�0:2

þ0:3
�0:2

þ0:1
�0:3

þ0:1
�0:3

þ1:9
�0:9

þ1:6
�0:8

þ0:4
�0:8

þ0:4
�0:8

�m2
0 �0:9 �0:7 �0:3 �0:2 �0:7 �0:5 �0:5 �0:4

�d456 �4:0 �3:0 �0:9 �0:6 �4:6 �3:5 �2:8 �2:5
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where the duality-independent upper bounds are presented
in square brackets, with the uncertainties included in the
same way as in [26]. Note that for charmed mesons the
upper bounds are more restrictive than for bottom mesons.

As we can see from the above results, the QCD sum rule
predictions for decay constants of vector and pseudoscalar
mesons have similar uncertainties. We also calculated the
ratios of vector and pseudoscalar meson decay constants
dividing the corresponding sum rules by each other:

fB�=fB ¼ 1:02þ0:07
�0:03; fB�

s
=fBs

¼ 1:10þ0:05
�0:06; (23)

fD�=fD ¼ 1:20þ0:10
�0:07; fD�

s
=fDs

¼ 1:32þ0:04
�0:10: (24)

The individual uncertainties for the above ratios are treated
in the same way as for separate sum rules; in this case the
correlations result in somewhat smaller total uncertainties.
Finally, we also obtain the SUð3Þfl violating ratios of decay
constants:

fBs
=fB ¼ 1:17þ0:04

�0:03; fB�
s
=fB� ¼ 1:27þ0:05

�0:06; (25)

fDs
=fD ¼ 1:18þ0:04

�0:05; fD�
s
=fD� ¼ 1:30þ0:08

�0:05: (26)

IV. OTHER VERSIONS OF SUM RULES

Apart from the uncertainties caused by the input pa-
rameters, the overall accuracy of QCD sum rules is influ-
enced by the quark-hadron duality approximation (14).
One can argue that the ‘‘semilocal’’ duality used here can
be trusted, having in mind the positivity of the spectral
function and the fact that the mass of the ground-state
hadron is reproduced from the differentiated sum rule
with a high precision.

One possible strategy to assess the ‘‘systematic’’ uncer-
tainty of the adopted calculational procedure is to employ
other versions of QCD sum rules, based on the same
correlation function and same OPE, but differing from
the standard Borel sum rules by the weight function multi-
plying the spectral density in the dispersion integrals.
In the standard version, after Borel transformation, the
role of the weight function is played by the exponent
exp ð�s=M2Þ. Transforming the initial, q2-dependent dis-
persion integrals differently, one modifies the weight

function resulting in a redistribution of the spectral density
between the ground-state hadron and excited states. Below
we consider a few different versions of QCD sum rules for
decay constants and carry out their numerical analysis.

A. Power moments

First, we employ the very familiar power moments of the
QCD sum rules [10], obtained by differentiating over q2

the hadronic dispersion relations (5) for the invariant am-
plitude at some spacelike value q20 � m2

Q. Minimum two

differentiations are needed to get rid of subtraction terms.
For the lhs of (5) we use the OPE result (8) and for the
hadronic spectral density of excited and continuum states
the quark-hadron duality approximation (14). The decay
constants squared are then determined as

f2H� ¼ ðm2
H� � q20Þnþ1

m2
H�

�ðnÞ
T ðsH�

0 ; q20Þ;

f2H ¼ ðm2
H � q20Þnþ1

m4
H

�ðnÞ
5 ðsH0 ; q20Þ;

(27)

where the nth moment of the sum rule is

�ðnÞ
Tð5Þðs0; q20Þ �

Z s0

ðmQþmqÞ2
ds

ðs� q20Þnþ1
�ðpertÞ
Tð5Þ ðsÞ

þ
�
d

dq2

�
n½�h �qqi

Tð5Þðq2Þ þ�ðd456Þ
Tð5Þ ðq2Þ�jq2¼q2

0
;

(28)

with a power weight function in the dispersion integral. In
the numerical analysis we employ only the n ¼ 2, 3 mo-
ments to avoid the growth of higher-dimensional conden-
sate terms at larger n. The effective threshold is again
estimated by forming the ratio of the second and third
moments and fitting the ground-state meson mass. For
bottom mesons the power moments of sum rules work
well at q20 ¼ 0, with both NNLO and d 	 4 corrections

sufficiently small. To fulfill the same criteria for charmed
mesons, it is necessary to take q20 < 0. The results for the

decay constants obtained from the power moments are
collected in Table III.

TABLE III. Decay constants calculated from different sum rules at central input. In the power
moments q20 ¼ 0 (q20 ¼ �4:0 GeV2) is taken for bottom (charmed) mesons.

Decay constant [MeV]

Method fB� fB�
s

fB fBs
fD� fD�

s
fD fDs

Power moments 196 252 198 231 228 307 203 238

Borel SR with 1=s weight � � � � � � 211 248 � � � � � � 220 260

Borel SR with s weight 208 261 201 233 232 289 175 207

Borel SR w/o radial excit. 208 267 208 242 243 315 204 239

Standard Borel SR 210 267 207 242 242 314 201 238
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B. Modified Borel sum rule

Let us consider a combination of invariant amplitudes:

�Tð5Þðq2Þ �
�Tð5Þðq2Þ ��Tð5Þð0Þ

q2
: (29)

Note that this expression is finite at q2 ¼ 0. Approximating
the lhs by OPE, the rhs by the dispersion relations and
performing the Borel transformation, we obtain

�ðOPEÞ
T ðM2Þ ¼ f2H�e

�m2
H�=M2 þ

Z 1

ðmHþmPÞ2
ds

�hðsÞ
s

e�s=M2
;

(30)

and a similar relation for the pseudoscalar-meson channel.
An additional 1=s factor appears in the weight function
multiplying the spectral density. Applying the quark-
hadron duality approximation (14), we calculate the decay
constants fHð�Þ from these sum rules. Dividing (30) by the
conventional Borel sum rule we obtain a relation for the
inverse mass squared of the ground-state meson, allowing

us to adjust the threshold sH
ð�Þ

0 .

It is even simpler to obtain another modified Borel sum
rule with an extra power of s in the integral. One needs to

multiply both parts of (15) and (16) by em
2
H�=M2

and em
2
H=M

2
,

respectively, and after that differentiate them over�1=M2.
In this case the effective threshold is estimated by dividing
the modified sum rule by the standard Borel sum rule and

adjusting the result to the mass squared of Hð�Þ.
The numerical results for the decay constants obtained

from the modified Borel sum rules with 1=s and s weights
are given in Table III. Here we compare the results of
different sum rules obtained at one and the same central
input (as specified in Tables I and II). However, it turns out
that for the vector-meson decay constants calculated from
1=s sum rules, the central values of Borel parameter speci-
fied in Table II are not suitable; hence the corresponding
results are missing.

C. Excluding the first radial excitation

Radial (i.e., same spin-parity) excitations of heavy-light
mesons form the resonance part of the hadronic spectrum
above the ground states in the spectral densities (6) and (7).
Including these resonances in the hadronic spectral density
explicitly, one improves the accuracy of the quark-hadron
duality approximation. Following this strategy, we separate

the first radial excitation H�0 from the rest of the hadronic
spectrum in the vector-meson channel, transforming the
duality ansatz (14) to the following form:

�h
TðsÞ
ðs� ðmH þmPÞ2Þ ¼ m2

H�0f
2

H�0	ðs�m2

H�0 Þ
þ �ðpertÞ

T ðsÞ
ðs� sH
�0

0 Þ; (31)

where the total width of H�0 is neglected for simplicity (it
can be easily restored employing a Breit-Wigner ansatz)

and sH
�0

0 generally differs from the effective threshold in

(14). In the same way, the spectral density in the pseudo-
scalar channel is modified introducing the excited stateH0.
Currently, only limited experimental data on the radially

excited charmed mesons are available. The resonances
Dð2550Þ and Dð2600Þ, observed in [35] (see also [27]),
represent realistic candidates for the first radially excited

D0 and D�0 states, respectively. The mass differences be-
tween these resonances and ground states D and D� are in
the same ballpark as for the light unflavored mesons, cf. the
mass difference between the first radial excitation �0 ¼
�ð1450Þ and the ground-state � meson. Here we assume
that the mass differences between the first excited and
ground states for all heavy-light mesons are approximately
the same:

mB0 �mB ’ mD0 �mD ’ mD0
s
�mDs

;

m
B�0 �mB� ’ m

D�0 �mD� ’ m
D�0

s
�mD�

s
:

(32)

Without introducing extra parameters, such as the decay
constants of the radially excited mesons, we suggest a
modified QCD sum rule in which the spectral density is
multiplied by an additional factor (m2

Hð�Þ0 � s) vanishing at

the position of the first radially excited state Hð�Þ0 . To
derive this sum rule, one simply multiplies the initial,
q2-dependent dispersion relation for �5ðTÞðq2Þ by an over-

all factor (m2

Hð�Þ0 � q2). After Borel transformation the

following expression, e.g., for the decay constant of the
vector heavy-light meson is obtained:

f2H� ¼ em
2
H�=M2

m2
H� ðm2

H�0 �m2
H� Þ



�Z sH

�0
0

ðmQþmqÞ2
dsðm2

H�0 �sÞe�s=M2
�
ðpertÞ
T ðsÞ

þ
�
m2

H�0 �
d

dð�1=M2Þ
�
½�h �qqi

T ðM2Þþ�ðd456Þ
T ðM2Þ�

�
:

(33)

It is straightforward to derive the analogous sum rule
for fH.
We take as an inputmD0 ¼ 2:55 GeV,m

D�0 ¼ 2:60 GeV

and estimate the masses of other radially excited states
from (32). In fact, in the above sum rule we do not
necessarily need a precise value of the mass m

Hð�Þ0 .

Important is that, due to a partial cancellation between
the two intervals, below and above s ¼ m2

Hð�Þ0 , the region

above the ground state and adjacent to the first radial
excitation is suppressed in the integral over the weighted
spectral density. As a result, the rhs of (33) becomes less
sensitive to the duality approximation, allowing us to
simplify the choice of the effective threshold. Here we

simply adopt sH
ð�Þ0

0 ¼m2

Hð�Þ0 , without adjusting the threshold

parameter. Interestingly, as our numerical analysis shows,
this choice reproduces the masses of the ground states from
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differentiated sum rules (33) within 1% accuracy. The
decay constants obtained from (33) and from the analogous
sum rule for vector mesons are surprisingly close to the
decay constants obtained from standard Borel sum rules
with fitted effective thresholds (see Table III).

Assessing the mutual deviations between the decay con-
stants calculated from various sum rules considered in this
section, we have to include the variations of all entries in
Table III due to the input parameters. After that, we find
that the predicted intervals of all decay constants calcu-
lated from different sum rules overlap. The same is valid
for the ratios of decay constants.

V. HEAVY-QUARK LIMIT OF THE SUM RULES

The heavy-quark mass expansion in QCD sum rules for
decay constants was pioneered in [15]. Later, the sum rule

technique was applied [16–18] in the framework of the
HQET, considering, instead of the quark currents with a
finite mQ, their HQET counterparts, with a possibility to

systematically resum the logarithms ln ðmQ=�Þ emerging

in the OPE. The ‘‘static’’ value of fHð�Þ calculated from the
HQET sum rule in themQ ! 1 limit receives large inverse

heavy-mass corrections which have to be estimated sepa-
rately [17,19,25].
To obtain the heavy-quark limit of the sum rules (15) and

(16), one has to rescale the mQ-dependent parameters:

mH ¼mQ þ ��; sH0 ¼m2
Q þ 2mQ!0; M2 ¼ 2mQ�:

(34)

After this replacement, the sum rule for the heavy-light
vector meson decay constant transforms to

f2H�mH�

�
mH�

mQ

�
e
� ��

��
��2

2mQ� ¼ �3

�2

Z !0
�

0
dze�z

�
z2

1þ 2z�
mQ

��
2þ 1

1þ 2z�
mQ

��
1þ 2�s

�

�
ln

�
mQ

2�

�
þ 3

2
þ 2�2

9
� ln ðzÞ þ 2

3
KT

�
2z�

mQ

���

� hq �qi
�
1þ 2�s

3�

�
3þ

�
2�

mQ

�Z 1

0
dz

e�z

ð1þ 2z�
mQ
Þ2
��

� hGGi
12mQ

þm2
0hq �qi
16�2

þ ��srvachq �qi2
162�3

�
1� 16�

mQ

� 32�2

m2
Q

�
; (35)

where

KTðxÞ ¼ 2Li2ð�xÞ þ ln ðxÞ ln ð1þ xÞ þ x

ð3þ 2xÞ ln ðxÞ

þ ð1þ 2xÞð2þ xÞð1þ xÞ
ð3þ 2xÞx2 ln ð1þ xÞ

þ 6x2 þ 3x� 8

4ð3þ 2xÞx � 9

4
; (36)

so that

lim
x!0

KTðxÞ ¼ 4

3
x ln ðxÞ � 29

18
xþOðx2Þ: (37)

Note that deriving (35) we use the pole-mass scheme for
mQ, as it is more convenient for the matching with HQET.
The expression for the Oð�sÞ correction was accordingly
modified.
The rescaled sum rule in the pseudoscalar channel

[16] is

f2HmH

�
mH

mQ

�
3
e
� ��

��
��2

2mQ� ¼ 3�3

�2

Z !0
�

0
dze�z

�
z2

1þ 2z�
mQ

��
1þ 2�s

�

�
ln

�
mQ

2�

�
þ 13

6
þ 2�2

9
� ln ðzÞ þ 2

3
K5

�
2z�

mQ

���

� hq �qi
�
1� 2�s

3�

�
�1þ 3

2�

mQ

Z 1

0
dz

e�z

1þ 2z�
mQ

��
þ hGGi

12mQ

þm2
0hq �qi
16�2

�
1� 4�

mQ

�

þ ��srvachq �qi2
162�3

�
1þ 6�

mQ

� 48�2

m2
Q

�
; (38)

where

K5ðxÞ ¼ 2Li2ð�xÞ þ ln ðxÞ ln ð1þ xÞ � x

1þ x
ln ðxÞ

þ 1þ x

x
ln ð1þ xÞ � 1; (39)

and

lim
x!0

K5ðxÞ ¼ � 3

2
xþOðx2Þ: (40)

It is now possible to take the limit mQ ! 1 in (35) and

(38), whereas the logarithms have to be treated separately.
Neglecting the gluon radiative corrections, one reproduces
the well-known heavy-quark limit of decay constants:
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fH ¼ fH� ¼ f̂ffiffiffiffiffiffiffi
mH

p ; (41)

where

f̂ ¼ e
��
2�

�
3�3

�2

Z !0
�

0
dzz2e�z � hq �qi

þm2
0hq �qi
16�2

þ ��srvachq �qi2
162�3

�
1=2

: (42)

Thus, the rescaled decay constant f̂ receives contributions
from the perturbative loop, quark condensate and the d ¼
5, 6 condensates. The d ¼ 4 gluon condensate term enters
the sum rules at the 1=mQ level, together with other inverse

mass corrections.
The radiative correction to the ratio of decay constants

obtained from (35) and (38) in the heavy-quark limit,

fH�

fH
¼ 1� 2�s

3�
; (43)

is in accordance with the well-known Oð�sÞ correction to
the heavy-quark spin symmetry relation which follows
from the matching of HQET and full QCD heavy-light
currents.

It is interesting to compare our predictions for the
ratios of decay constants (23) and (24), obtained from
QCD sum rules with finite quark masses, with the HQET
relation [19]:

fH�

fH
¼

�
1� 2�sðmQÞ

3�

�
½1þ 	=mQ�; (44)

where we introduce a short-hand notation for the combi-
nation of HQET parameters determining the inverse mass

correction. For the values of pole masses we use mpole
b ¼

4:6 GeV and m
pole
c ¼ 1:5 GeV which correspond [with

Oð�sÞ accuracy] to the MS quark masses in Table I. For
bottom mesons the interval for the lhs of (44) taken from
(23) corresponds to 	 ¼ 180� 650 MeV. Assuming the
same value of this parameter for charmed mesons and
neglecting Oð1=m2

QÞ corrections, we obtain from (44) the

ratio fD�=fD ¼ 1:03� 1:33, which agrees with our pre-
dicted interval in (24). Note that the HQET parameters
contributing to 	 were estimated from sum rules in HQET
[19] yielding fB�=fB ¼ 1:07� 0:02 and fD�=fD ¼
1:35� 0:05 which is in a satisfactory agreement with our
results from full QCD sum rules. Numerically, the heavy-
quark spin symmetry for decay constants is violated by an
inverse mass correction of about 12%–14% (20%–40%)
for bottom (charmed) mesons. Let us finally estimate the
heavy-quark flavor symmetry violation. For example, the
leading-order ratio in HQET including radiative correc-
tions [19],

fB
fD

¼
ffiffiffiffiffiffiffi
mD

mB

s �
�sðmcÞ
�sðmbÞ

�
6=25

�
1þ 0:894

�sðmcÞ � �sðmbÞ
�

�

’ 0:69; (45)

has to be compared with the interval fB=fD ’ 0:93� 1:19
allowed by the intervals of sum rule predictions presented
in (19) and (21), assuming no correlation between
uncertainties.

VI. DISCUSSION

In this paper we calculated the decay constants of
heavy-light vector and pseudoscalar mesons employing
the well-established method of QCD sum rules. The sum
rules for B�

ðsÞ andD
�
ðsÞ mesons have acquired the same level

of accuracy as the sum rules for BðsÞ and DðsÞ mesons:

Oð�2
sÞ in the perturbative part and Oð�sÞ in the quark

condensate term. We correspondingly updated the numeri-
cal values of all decay constants, together with their upper
bounds and ratios. The uncertainties for fB and fD caused
by the input variation became somewhat smaller than in the
earlier sum rule determinations where fB¼210�19MeV,
fBs

¼ 244� 21 MeV [24] and fB¼206�20MeV, fD ¼
195� 20 MeV [25] were obtained, with a typical error of
about �20 MeV. This improvement is mainly due to

smaller uncertainties of quark MS masses achieved in
recent years. In this paper we investigated different ver-
sions of sum rules: power moments and Borel sum rules
with a modified weight of the spectral density. Within
uncertainties, their predictions agree with the ones ob-
tained from the standard Borel sum rules.
Reducing the uncertainties of quark masses and conden-

sate densities is one of the few remaining possibilities to
further improve the accuracy of QCD sum rules for decay
constants. It is also desirable to obtain a fully analytic form
of the Oð�2

sÞ corrections, in order to achieve a better
control over the renormalization scale dependence.
Calculating the Oð�sÞ correction to the quark-gluon con-
densate term can also be useful, at least for the ratio of sum
rules for vector and pseudoscalar mesons where this con-
tribution is enhanced.
Turning to the comparison with recent sum rule deter-

minations of pseudoscalar meson decay constants, let us
note that, contrary to the analysis presented in [36], we do
not attempt to fit the heavy-quark mass simultaneously
with the decay constants. We also cannot confirm the total
uncertainties and upper bounds quoted in [36], which are
both systematically smaller than what is obtained here. In
[37], while determining the pseudoscalar heavy-light me-
son decay constants withOð�2

sÞ accuracy, an explicit poly-
nomial dependence of the effective threshold on the Borel
parameter is introduced. The claim that this dependence
improves the sum rules and allows one to estimate a related
systematic error remains obscure to us. A determination of
fBðsÞ and fDðsÞ from finite-energy sum rules [38], which is a

different method based on the same correlation function
and OPE, yields somewhat smaller decay constants than
the ones obtained here.
In Table IV we compare our predictions for decay con-

stants and their ratios with the most recent lattice QCD
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determinations, revealing a good agreement within the
uncertainties.

We can also compare the predictions for fD and fDs
with

the averages [1] over various experiments measuring

DðsÞ !‘�‘ decay widths: f
ðexp :av:Þ
D ¼206:7�8:5�

2:5MeV and fðexp :av:ÞDs
¼ 260:0� 5:4 MeV. We notice

some tension of our prediction (and also of the lattice
result [5]) for fDs

with the above interval. Furthermore,

the most recent measurement of B ! ��� [2] yields

f
ðexp Þ
B ¼ ð211� 22� 14Þ MeV=ðjVubj=0:0035Þ taking for

jVubj a typical value obtained [27,39] from exclusive semi-
leptonic B decays. A future reduction of the experimental
uncertainty in this measurement opens up a possibility to
use fB calculated in QCD for an independent jVubj deter-
mination. On the other hand, the jVubj independent ratio of
B ! �‘�e and B ! ��� widths can be used [39] to check
QCD calculations of form factors and decay constants.

We conclude our discussion mentioning the role of
radial excitations of heavy-light mesons in the sum rules.
As we found, excluding the first radial excitation from the
hadronic spectrum makes the sum rule less sensitive to
the value of the effective threshold. One can turn this
argument around, anticipating that the sum rules consid-
ered in this paper are also capable of yielding estimates
of the decay constants for the first radial excitations of
heavy-light mesons. We plan a separate study in this
direction.
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APPENDIX A: OPE EXPRESSIONS

1. Perturbative spectral density

Here we collect the expressions for NLO, Oð�sÞ con-
tributions to the spectral density �ðpertÞ

Tð5Þ ðsÞ in theMS scheme

for the heavy-quark mass mQ. For the vector heavy-light

quark currents, according to our convention for the invari-
ant amplitude �Tðq2Þ, we extract the coefficient at �g��.

The corresponding spectral density reads

�ðpert;NLOÞ
T ðsÞ¼ 3CF

16�2
s

�
1�5

2
zþ2

3
z2þ5

6
z3

þ1

3
zð�5�4zþ5z2Þ lnðzÞ

�1

3
ð1�zÞ2ð4þ5zÞ lnð1�zÞ

þ2

3
ð1�zÞ2ð2þzÞð2Li2ðzÞþ lnðzÞlnð1�zÞÞ

�zð1�z2Þ
�
3ln

�
�2

m2
Q

�
þ4

��
; (A1)

where z ¼ m2
Q=s and Li2ðzÞ ¼ �R

z
0
ln ð1�tÞ

t dt. For the

pseudoscalar heavy-light quark currents, one has

�ðpert;NLOÞ
5 ðsÞ¼ 3CF

16�2
ðmQþmqÞ2sð1�zÞ

�
9

2
ð1�zÞ

þð3�zÞð1�2zÞlnðzÞ
�ð1�zÞð5�2zÞlnð1�zÞþ2ð1�zÞð2Li2ðzÞ

þlnðzÞlnð1�zÞÞþð1�3zÞ
�
3ln

�
�2

m2
Q

�
þ4

��
:

(A2)

For NNLO corrections we are using the results from [23]
calculated in the pole mass scheme. Hence, to properly

apply the MS scheme for mQ to �2
s accuracy, we have to

add to the NNLO part the corrections which arise from
expanding the pole mass in the LO and NLO in terms

of MS mass. For the vector-current correlation function
they are

�1�
ðpert;NNLOÞ
T ðsÞ ¼ � 3

8�2
s½ð3� 7z2Þrð1Þ2m � 2ð1� z2Þrð2Þm �;

(A3)

�2�
ðpert;NNLOÞ
T ðsÞ ¼ � 1

16�2
CFr

ð1Þ
m s½�zð1� z2Þð24Li2ðzÞ

þ 12 ln ðzÞ ln ð1� zÞÞ
� 2zð9þ 6z� 17z2Þ ln ðzÞ
þ 2ð1� zÞð4þ 9zþ 17z2Þ ln ð1� zÞ
� zð1� zÞð17þ 15zÞ�; (A4)

respectively, and for the pseudoscalar-current correlation
function,

TABLE IV. Decay constants of heavy-light mesons, compari-
son with lattice QCD results.

Decay constant Lattice QCD [Reference] This work

fB [MeV] 196:9� 9:1 [4]
207þ17�9186� 4 [6]

fBs
[MeV] 242:0� 10:0 [4]

242þ17�12224� 5 [6]

fBs
=fB 1:229� 0:026 [4]

1:17þ0:04
�0:031:205� 0:007 [6]

fD [MeV] 218:9� 11:3 [4]
201þ12

�13213� 4 [5]

fDs
[MeV] 260:1� 10:8 [4]

238þ13
�23248:0� 2:5 [5]

fDs
=fD 1:188� 0:025 [4]

1:15þ0:04
�0:051:164� 0:018 [5]

fD� [MeV] 278� 13� 10 [9] 242þ20
�12

fD�
s
[MeV] 311� 9 [9] 314þ19

�14

fD�
s
=fD� 1:16� 0:02� 0:06 [9] 1:30þ0:08

�0:05
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�1�
ðpert;NNLOÞ
5;LO ðsÞ ¼ 3ðmQ þmqÞ2

8�2
s½ð3� 20zþ 21z2Þrð1Þ2m

� 2ð1� zÞð1� 3zÞrð2Þm �; (A5)

�2�
ðpert;NLOÞ
5 ðsÞ

¼ �3ðmQ þmqÞ2
8�2

CFr
ð1Þ
m s

�
ð1� zÞð1� 3zÞð4Li2ðzÞ

þ 2 ln ðzÞ ln ð1� zÞÞ þ ð3� 22zþ 29z2 � 8z3Þ ln ðzÞ
� ð1� zÞð7� 21zþ 8z2Þ ln ð1� zÞ
þ 1

2
ð1� zÞð15� 31zÞ

�
; (A6)

where rð1;2Þm are the well-known coefficients in the pertur-

bative relation between the pole and MS quark masses
[given, e.g., in Eqs. (B5–B9)] in [24].

The corrections due to the nonzero light-quark mass,
after expanding the complete answer in powers of mq read

	�
ðpert;LO;mqÞ
T ðsÞ ¼ 3mq

8�2
½2mQð1� zÞ �mqð1þ z2Þ�; (A7)

	�
ðpert;NLO;mqÞ
T ðsÞ
¼mqmQ

8�2
CF

�
�24ð1� zÞð2Li2ðzÞ þ ln ðzÞ ln ð1� zÞÞ

þ 12ð3� 4z� z2Þ ln ðzÞ � 12ð1� zÞð5þ zÞ ln ð1� zÞ

þ 6ð17� 26zþ z2Þ þ 6ð6� 12zÞ ln
�
�2

m2
Q

��
: (A8)

The analogous corrections to the perturbative part of the
pseudoscalar-current correlation function are

	�
ðpert;LO;mqÞ
5 ðsÞ ¼ 3ðmQ þmqÞ2

8�2
½2ð1� zÞmQmq � 2m2

q�;
(A9)

	�
ðpert;NLO;mqÞ
5 ðsÞ¼3ðmQþmqÞ2

8�2
CFmQmq

�
ð1�zÞð4Li2ðzÞ

þ2lnðzÞlnð1�zÞ�2ð4�zÞlnð1�zÞÞ
þ2ð3�5zþz2ÞlnðzÞþ2ð7�9zÞ

þ3ð2�3zÞln
�
�2

m2
Q

��
: (A10)

We include the above corrections only for the s quark and
up to the second (first) power in ms in LO (NLO). We
checked that the higher-power corrections in ms are van-
ishingly small.

2. Condensate contributions

We present the condensate contributions in two forms:
with an explicit q2 dependence (needed, e.g., for the power
moments) and after Borel transformation.

In the correlation function of vector currents, the total
contribution of the quark condensate is

�h �qqi
�� ðq2Þ¼ h �qqi mQ

m2
Q�q2

�
g��

�
1� mqmQ

2ðm2
Q�q2Þ

þ�sCF

2�
fV;1ðzÞ

�
�q�q�

q2
�sCF

�
fV;2ðzÞ

�
; (B1)

with the NLO terms given by

fV;1ðzÞ¼2�zþzð1�zÞLz� z

z�1

�
3ln

�2

m2
þ4

�
; (B2)

fV;2ðzÞ ¼ 1� 2zþ 2zð1� zÞLz; (B3)

where the short-hand notations z ¼ m2
Q

q2
and Lz ¼ ln ðz�1

z Þ
are used. In the case q ¼ s the first-orderOðmqÞ correction
included in (B1) provides a sufficient accuracy. For our

purpose, only the coefficient �h �qqi
T ðq2Þ of the structure

�g�� is needed. The Borel-transformed expression of

this amplitude is

�h �qqi
T ðM2Þ ¼ �mQh �qqie�

m2
Q

M2

�
1�mqmQ

2M2

þ �sCF

2�

�
1� 3

m2
Q

M2
ln

�2

m2
Q

� 4
m2

Q

M2

þm2
Q

M2
e
m2
Q

M2�

�
�1;

m2
Q

M2

���
; (B4)

with the incomplete gamma function �ða; zÞ ¼R1
z ta�1e�tdt. The NLO part in (B1) originating from

one-loop diagrams has an imaginary part at q2 ! s 	
m2

Q. The latter, in addition to the terms proportional to

	ðs�m2
QÞ and its derivatives, contains also a part which

does not vanish at s > m2
Q, that is proportional to 
ðs�

m2
QÞ. Since we include the latter in the OPE spectral density

involved in the quark-hadron duality approximation, we
present here also the spectral density of the condensate
contribution:

�h �qqi
T ðsÞ¼�mQh �qqi

�
	ðm2

Q�sÞ�1

2
mqmQ	

0ðs�m2
QÞ

þ�sCF

2�

�
	ðm2

Q�sÞ�m2
Q

�
3ln

�2

m2
Q

þ4

�
	0ðm2

Q�sÞ

þm2
Q

s2

ðs�m2

QÞ
��

: (B5)

In the pseudoscalar-meson channel, the quark condensate
contribution to the correlation function in the same ap-
proximation reads
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�h �qqi
5 ðq2Þ ¼ �h �qqi ðmQ þmqÞ2mQ

m2
Q � q2

�
1� mq

2mQ

� mqmQ

2ðm2
Q � q2Þ �

�sCF

2�
f5ðzÞ

�
; (B6)

with the coefficient (see also [24])

f5ðzÞ ¼ 3
z

z� 1
ðLzð2� zÞ � 1Þ

þ 1

z� 1

�
3 ln

�2

m2
þ 7� 3Lz

�
: (B7)

The Borel-transform of (B6) yields

�h �qqi
5 ðM2Þ¼�ðmQþmqÞ2mQh �qqie�

m2
Q

M2

�
1� mq

2mQ

�mqmQ

2M2

��sCF

2�

��
3ln

�2

m2
Q

þ4

�m2
Q

M2
�7�3ln

�2

m2
Q

þ3�

�
0;
m2

Q

M2

�
e
m2
Q

M2

��
: (B8)

The spectral density derived from (B6) reads

�h �qqi
5 ðsÞ¼�ðmQþmqÞ2mQh �qqi

�
	ðm2

Q�sÞ

þ�sCF

2�

��
7þ3ln

�2

m2
Q

�
	ðm2

Q�sÞ

�m2
Q

�
4þ3ln

�2

m2
Q

�
	0ðm2

Q�sÞ�3

s

ðs�m2

QÞ
��

:

(B9)

The expressions for d 	 4 condensate contributions for
the vector-current correlation function read

�hGGi
�� ðq2Þ ¼ hGGi

12ðm2
Q � q2Þ g��;

�h �qGqi
�� ðq2Þ ¼ � m2

0h �qqim3
Q

2ðm2
Q � q2Þ3 g��;

(B10)

�h �qq �qqi
�� ðq2Þ¼8��srvach �qqi2

81ðm2
Q�q2Þ4 ½ð9m4

Q�16m2
Qq

2þ4q4Þg��

þð10m2
Q�4q2Þq�q��: (B11)

The Borel-transformed form is

�hGGi
T ðM2Þ ¼ � hGGi

12
e
�

m2
Q

M2 ;

�h �qGqi
T ðM2Þ ¼ m2

0h �qqim3
Q

4M4
e
�

m2
Q

M2 ;

(B12)

�h �qq �qqi
T ðM2Þ ¼ � 32��srvach �qqi2

81M2

�
1þm2

Q

M2
� m4

Q

8M4

�
e
�

m2
Q

M2 :

(B13)

The corresponding condensate contributions to the corre-
lation function with pseudoscalar currents are

�hGGi
5 ðq2Þ ¼ hGGim2

Q

12ðm2
Q � q2Þ ;

�h �qGqi
5 ðq2Þ ¼ � m2

0h �qqim3
Q

2ðm2
Q � q2Þ2

�
1� m2

Q

m2
Q � q2

�
;

(B14)

�h �qq �qqi
5 ðq2Þ¼�8��srvach �qqi2m2

Qq
2

27ðm2
Q�q2Þ4 ð2q2�3m2

QÞ; (B15)

yielding after Borel transformation

�hGGi
5 ðM2Þ ¼ hGGim2

Q

12
e
�

m2
Q

M2 ;

�h �qGqi
5 ðM2Þ ¼ �m2

0h �qqim3
Q

2M2

�
1� m2

Q

2M2

�
e
�

m2
Q

M2 ;

(B16)

�h �qq �qqi
5 ðM2Þ ¼ � 16��srvach �qqi2m2

Q

27M2



�
1� m2

Q

4M2
� m4

Q

12M4

�
e
�

m2
Q

M2 : (B17)
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