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Definitions of orbital angular momentum based on Wigner distributions are used as a framework to

discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe

and Manohar. We find that the difference between these two definitions can be interpreted as the change in

the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism

responsible for that change is similar to the mechanism that causes transverse single-spin asymmetries

in semi-inclusive deep-inelastic scattering.
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I. INTRODUCTION

Generalized parton distributions (GPDs) have been
identified as a powerful tool to analyze the angular mo-
mentum decomposition of the nucleon [1]. Furthermore
GPDs can also be used to create truly three-dimensional
images of the nucleon in the form of impact parameter
dependent parton distributions [2]. These images in a space
where one dimension describes the light-cone momentum
fraction and the other two dimensions describe the trans-
verse position of the parton (relative to the transverse
center of momentum) are complemented by transverse
momentum dependent parton distributions (TMDs) [3].
Wigner distributions provide a framework that allows a
simultaneous description of GPDs and TMDs [4].

Orbital angular momentum (OAM) correlates the
position and momentum of partons. One can thus utilize
Wigner distributions, which simultaneously embody the
distribution of position and momentum, to define OAM
[5,6]. However, in the definition of these distributions, care
must be applied to ensure manifest gauge invariance. In
general, this can be accomplished by connecting any non-
local correlation function with a Wilson-line gauge link.
Specifying a Wilson-line gauge link requires selecting a
path along which the vector potential is evaluated. The
choice of path raises the immediate issue of how the
quantities defined using Wigner distributions (TMDs,
OAM, . . .) depend on that choice. The importance of this
issue had become evident in the context of Single-Spin
Asymmetries (SSAs) [7]. Indeed, while a straight-line
gauge link definition of TMDs yields a vanishing Sivers
effect [8,9], the correct gauge link relevant for TMDs in
Semi-Inclusive Deep-Inelastic Scattering (SIDIS) involves
a detour to light-cone infinity [10] in order to properly
include final-state interactions. In light-cone gauge, this
subtlety had first been overlooked since in that gauge the
Sivers effect solely arises from the contribution from the
gauge-link piece at light-cone infinity [10].

With Wigner distributions and OAM defined through
them these issues arise all over again [6,11,12]. The main
goal of this note is to address that dependence of OAM

defined through Wigner distributions on the choice of path
for the gauge link and to interpret the resulting difference
between common definitions of OAM.

II. ANGULAR MOMENTUM DECOMPOSITIONS

Since the famous EMC experiments revealed that only a
small fraction of the nucleon spin is due to quark spins
[13], there has been a great interest in ‘solving the spin
puzzle’, i.e. in decomposing the nucleon spin into contri-
butions from quark/gluon spin and orbital degrees of free-
dom. In this effort, the Ji decomposition [1]
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in a nucleon state polarized in the þẑ direction. Here ~D ¼
~@� ig ~A is the gauge-covariant derivative. The main ad-
vantages of this decomposition are that each term can be
expressed as the expectation value of a manifestly gauge
invariant local operator and that the quark total angular
momentum Jq ¼ 1

2 �qþ Lq can be related to GPDs [1]

and is thus accessible in deeply virtual Compton scattering
and deeply virtual meson production and can also be
calculated in lattice gauge theory. Recent lattice calcula-
tions of GPDs [14] yielded the surprising result that the
light quark orbital angular momentum (OAM) is consistent
with Lu � �Ld, i.e. Lu þ Ld � 0. Unless there is a large
contribution from disconnected quark loops, that had been
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so far omitteed, this would imply that Jg � 1
2 � 0:7 repre-

sents the largest piece in the nucleon spin decomposition.
Jaffe and Manohar have proposed an alternative decom-

position of the nucleon spin, which does have a partonic
interpretation [15], and in which also two terms, 12 �q and

�G, are experimentally accessible
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The individual terms in (3) can be defined as matrix
elements of the corresponding terms in the þ12 compo-
nent of the angular momentum tensor
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for a nucleon polarized in the þẑ direction. The first
and third term in (3) and (4) are the ‘intrinsic’ contributions
(no factor of ~r� ) to the nucleon’s angular momentum
Jz ¼ þ 1

2 and have a physical interpretation as quark and

gluon spin respectively, while the second and fourth term
can be identified with the quark/gluon OAM. Here
qþ � 1

2�
��þq is the dynamical component of the quark

field operators, and light-cone gauge Aþ � A0 þ Az ¼ 0 is
implied. The residual gauge invariance can be fixed by

imposing anti-periodic boundary conditions ~A?ðx?;1Þ ¼
� ~A?ðx?;�1Þ on the transverse components of the vector
potential. L also naturally arises in a light-cone wave
function description of hadron states, where 1

2 ¼ 1
2

P
q�qþ

�GþL, in the sense of an eigenvalue equation, is man-
ifestly satisfied for each Fock component individually [16].

A variation of (1) has been suggested in Ref. [17],
where part of Lz

q is attributed to the glue as ‘potential

angular momentum’. As we will discuss in the following,
the potential angular momentum also has a more
physical interpretation as the effect from final state inter-
actions. Other decompositions, in which only one term is
experimentally accessible, will not be discussed in this
brief note.

III. TMDS ANDORBITAL ANGULARMOMENTUM
FROM WIGNER DISTRIBUTIONS

Wigner distributions can be defined as defined as off
forward matrix elements of nonlocal correlation functions
[4,6,18]

WUðkþ ¼ xPþ; ~b?; ~k?Þ

�
Z d2 ~q?

ð2�Þ2
Z d2�?d��

ð2�Þ3 e�i ~q?� ~b?eiðxPþ��� ~k?� ~�?Þ

� hP0S0j �qð0Þ�U0�qð�ÞjPSi (5)

with Pþ ¼ Pþ0, P? ¼ �P0
? ¼ q?

2 . Throughout this paper,

we will chose ~S ¼ ~S0 ¼ ~̂z. Furthermore, we will focus on
the ‘good’ component by selecting � ¼ �þ. In order to
ensure manifest gauge invariance, a Wilson line gauge link
U0� connecting the quark field operators at position 0 and

� must be included. The issue of choice of path for the
Wilson line will be addressed below.
In terms of Wigner distributions, quark transverse mo-

mentum and OAM can be defined respectively as [5]

h ~k?iU ¼
Z

dxd2 ~b?d2 ~k? ~k?WUðx; ~b?; ~k?Þ

LU ¼
Z

dxd2 ~b?d2 ~k?ð ~b? � ~k?ÞzWUðx; ~b?; ~k?Þ:
(6)

No issues with the Heisenberg uncertainty principle arise

here since only perpendicular combinations of position ~b?
and momentum ~k? are needed simultaneously in order to
evaluate the integral for LU.
A straight line connecting 0 and � for the Wilson line in

U0� is often the most natural choice, resulting in

h ~kq?istraight �
Z

dxd2 ~b?d2 ~k? ~k?Wstraightðx; ~b?; ~k?Þ

¼
R
d3 ~rhPSjqyð~rÞ 1i ~Dqð ~rÞjPSi

hPSjPSi ; (7)

which vanishes by time-reversal invariance [9].
However, depending on the context, other choices for

the path in the Wilson link U should be made. Indeed, in
the context of TMDs probed in SIDIS the path should be
taken to be a straight line to x� ¼ 1 along (or, for regu-
larization purposes, very close to) the light-cone. This
particular choice ensures proper inclusion of the Final
State Interactions (FSI) experienced by the struck quark
as it leaves the nucleon along a nearly lightlike trajectory in
the Bjorken limit. However, a Wilson line to �� ¼ 1, for

fixed ~�? is not yet sufficient to render Wigner distributions
manifestly gauge invariant, but a link at �� ¼ 1 must be
included to ensure manifest gauge invariance. While the
latter may be unimportant in some gauges, it is crucial in
light-cone gauge for the description of TMDs relevant for
SIDIS [10].
Let UþLC

0� be the Wilson path ordered exponential

obtained by first taking a Wilson line from ð0�; ~0?Þ to

ð1; ~0?Þ, then to ð1; ~�?Þ, and then to ð��; ~�?Þ, with each
segment being a straight line (Fig. 1) [11]. The shape of the
segment at 1 is irrelevant as the gauge field is pure gauge

FIG. 1. Illustration of the path for the Wilson line gauge link
used to define the Wigner distribution WþLC (5).
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there, but it is still necessary to include a connection at 1
and for simplicity we pick a straight line. Likewise, with a
similar ‘‘staple’’ to�1 we define the Wilson path ordered
exponential U�LC

0� , and using those lightlike gauge links

we define

W�LCðkþ ¼ xPþ; ~b?; ~k?Þ

�
Z d2 ~q?

ð2�Þ2
Z d2�?d��

ð2�Þ3 e�i ~q?� ~b?eiðxPþ��� ~k?� ~�?Þ

� hP0S0j �qð0Þ�U�LC
0� qð�ÞjPSi: (8)

This definition for WþLC the same as that in [11] and
similar to that of WLC in Ref. [6], except that the link
segment at x� ¼ 1 was not included in the definition of
WLC [6]. The Wilson like gauge link used to guarantee
manifest gauge invariance is defined using a lightlike
staple, i.e., it is constructed using three straight line gauge
links [19] UþLC

0� ¼ W0�0?;10?W10?;1�?W1�?;���? and

similarly for U�LC
0� .

If boundary conditions are chosen such that
~A?ðþ1; ~r?Þ ¼ 0, but ~A?ð�1; ~r?Þ � 0 then WLC from
Ref. [6] becomes equal toWþLC. It turns out that the piece
at x� ¼ 1 is crucial for TMDs, but does not contribute to
the OAM [11].

In light-cone gauge Aþ ¼ 0 the Wilson lines to x� ¼
�1 become trivial and only the piece at x� ¼ 1 remains.

Although the gauge field at light-cone infinity ~A?ð�1; ~r?Þ
cannot be neglected or set equal to zero in light-cone
gauge, it can be chosen to satisfy antisymmetric boundary
conditions

~�?ð~r?Þ � ~A?ðþ1; ~r?Þ ¼ � ~A?ð�1; ~r?Þ: (9)

This choice maintains manifest PT (sometimes called
‘‘light-cone parity’’) invariance.

Using these Wigner distributions, one can now proceed
to introduce the average transverse momentum as

h ~kq?i��
Z
dxd2 ~b?d2 ~k? ~k?W�LCðx; ~b?; ~k?Þ

¼
R
d3 ~rhPSj �qð ~rÞ�þð1i ~@�g ~�?ð ~r?ÞÞqð ~rÞjPSi

hPSjPSi : (10)

Equation (10) differs from (7) by the matrix element of
(in Aþ ¼ 0 gauge)

�qð ~rÞ�þ½gAi
?ð ~r?Þ � g�i

?ð ~rÞ�qð~rÞ
¼ � �qð ~rÞ�þ Z 1

r�
dz�g@�Ai

?ðz�; ~r?Þqð ~rÞ

¼ � �qð ~rÞ�þ Z 1

r�
dz�gGþiðz�; ~r?Þqð~rÞ; (11)

where Gþ? ¼ @�A? is the gluon field strength tensor in
Aþ ¼ 0 gauge. We note that for example

� ffiffiffi
2

p
gGþy � �gG0y � gGzy ¼ gðEy � BxÞ

¼ gð ~Eþ ~v� ~BÞy (12)

yields the ŷ component of the color Lorentz force acting on
a particle that moves with the velocity of light in the �ẑ
direction ( ~v ¼ ð0; 0;�1Þ)—which is the direction of the
momentum transfer in DIS. Furthermore, the integration of
the matrix element of (11) along the lightlike trajectory of
the ejected quark yields the average change in momentum—

h ~kq?istraight ¼ 0—while h ~k?q iþLC is the ? momentum rele-

vant for SIDIS experiments. These observation motivate the
semi-classical interpretation of the matrix element of (11) as
the average transverse momentum of the ejected quark as
arising from the average color-Lorentz force from the spec-
tators as it leaves the target [21,22].
In a general gauge, there is an additional contribution

from the transverse derivative acting on the gauge links to/
from x� ¼ 1 and for example in an Abelian theory
~�?ð ~r?Þ in (10) gets replaced by

�i
?ð~r?Þ ! �i

?ð~r?Þ �
Z 1

r�
dz�@iAþðz�; ~r?Þ

¼ Ai
?ðr�; ~r?Þ �

Z 1

r�
dz�Gþiðz�; ~r?Þ; (13)

where Gþiðz�; ~r?Þ ¼ @�Ai � @iAþ. In the non-Abelian
case an additional commutator as well additional gauge
links connecting the quark and the gluon operators arise
(see Sec. V). Equation (13) illustrates that the interpreta-
tion of the difference between the transverse momentum
using light-cone staples and that using straight-line gauge
links as the average color Lorentz force is gauge invariant.
The same Wigner distributions that we used to define

average transverse momentum can also be used to define
OAM, yielding [6]

Lq
straight �

Z
dxd2 ~b?d2 ~k?ð ~b? � ~k?ÞzWstraightðx; ~b?; ~k?Þ

¼
R
d3 ~rhPSjqyð ~rÞð~r� 1

i
~DÞqð~rÞzjPSi

hPSjPSi ¼ Lq
Ji; (14)

This is identical to the angular momentum that appears
in the Ji-decomposition of the angular momentum for a
nucleon (1).
Likewise, Wigner distributions employing lightlike

staples yield (in Aþ ¼ 0 gauge)

Lq
� �

Z
dxd2 ~b?d2 ~k?ð ~b? � ~k?ÞzW�LCðx; ~b?; ~k?Þ

¼
R
d3 ~rhPSj �qð ~rÞ�þ½ ~r� ð1i ~@� g ~�?ð ~r?Þ�zqð~rÞjPSi

hPSjPSi ;

(15)

and similar for the glue. Eq. (15) differs from
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L q ¼
R
d3 ~rhPSj �qð ~rÞ�þð ~r� 1

i
~@Þzqð ~rÞjPSi

hPSjPSi (16)

(denoted ~Lq in Ref. [6]) by the contribution from the gauge
field � ~�? at �1. Lq is also identical to the quark OAM
appearing in the Jaffe-Manohar decomposition of the nu-
cleon spin (3) as we will discuss below.

IV. CONNECTIONS BETWEEN DIFFERENT
DEFINITIONS FOR OAM

First of all from PT invariance one finds that Lq
þ ¼ Lq�

[11]. As a corollary, since the piece at �1 cancels in the

average both must thus be identical to the OAM appearing
in the Jaffe-Manohar decomposition

L q ¼ 1

2
ðLq

þ þLq�Þ ¼ Lq
þ ¼ Lq�: (17)

Therefore, even though the gauge link at x� ¼ �1 is
essential for the description of TMDs [10], it does not
contribute to the OAM provided antiperiodic boundary
conditions (9) in light-cone gauge are implied [12].
To establish the connection with the orbital angular

momentum entering the Ji-decomposition, we consider
(for simplicity in light-cone gauge)

Lq � Lq ¼ Lq
þ � Lq ¼

R
d3 ~rhPSj �qð ~rÞ�þ½ ~r? � ðg ~A?ð~rÞ � g ~�?ð~r?ÞÞ�zqð~rÞjPSi

hPSjPSi : (18)

As discussed in Ref. [23], we replaced �0 ! �þ for a nucleon at rest in the definition for Lq.
Using (11) and (13) and the semi-classical interpretation of�gGþiðr�; ~r?Þ as the transverse Force acting on the active

quark along its trajectory we thus conclude that

Tzðr�; ~r?Þ � �gðxGþyðr�; ~r?Þ � yGþxðr�; ~r?ÞÞ (19)

represents the ẑ component of the torque that acts on a particle moving with (nearly) the velocity of light in the �ẑ
direction—the direction in which the ejected quark moves. Thus the difference between the (forward) light-cone definition
LþLC ¼ LJM and the local definition Lstraight ¼ LJi of the orbital angular momentum is the change in orbital angular
momentum as the quark moves through the color field created by the spectators

Lq � Lq ¼
R
d3 ~rhPSj �qð ~rÞ�þ R1

r� dz
�Tzðz�; ~r?Þqð ~rÞjPSi

hPSjPSi : (20)

Therefore, while Lq represents the local and manifestly
gauge invariant OAM of the quark before it has been struck
by the �	, Lq represents the gauge invariant OAM after it
has left the nucleon and moved to r� ¼ 1. This physical
interpretation of the difference between the TMD based
(i.e. Jaffe-Manohar) definition of quark OAM with a light-
cone staple and the local definition represents the main
result of this paper.

It is easy to see that a torque as appearing in (20) may
exist by considering the example of a quark moving
through a (color-) magnetic dipole field caused by the
spectators. Because of the overall color-neutrality, this is
similar to a positively charged particle moving through the
magnetic field caused by negative spectators in QED. For
spectator spins/OAMs that are oriented in the þẑ axis one
would thus expect a dipole field as shown in Fig. 2. All
quarks ejected in the �ẑ direction pass through the region
of outward pointing radial magnetic field component, but
only those originating in the bottom portion also move
through regions of inward pointing radial component, i.e.
for quarks ejected in the �ẑ direction the regions of out-
ward pointing radial component dominate. One would thus
expect more torque in the �ẑ direction than in þẑ direc-
tion. This example not only illustrates that the net change
in OAM as the quark leaves the nucleon is nonzero, but

also suggests what the sign of Lq � Lq might be: for d
quarks the spins of the spectators are positively correlated
with the nucleon spin, corresponding to a situation similar
to the one depicted in Fig. 2, and Lq � Lq should thus be

FIG. 2 (color online). Illustration of the torque acting on the
struck quark in the�ẑ direction through a color-magnetic dipole
field caused by the spectators. (a) side view; (b) top view. In this
example the ẑ component of the torque is negative as the quark
leaves the nucleon.
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negative. For u quarks the situation is less obvious
since there should be a partial cancellation between the d
quark spectator and the u quark spectator. For an positron
(electron) moving through its own dipole field in QED the
magnetic dipole field is reversed. This illustrates why
Le � Le is positive for an electron [23].

V. GAUGE INVARIANCE

Although we started our investigation using manifestly
gauge invariant Wigner functions (8), we picked light-cone
gauge in order to arrive at simpler expressions for the OAM
that allowed for a more direct physical interpretation.

However, for a complete discussion we provide manifestly

gauge invariant expressions for the quantities discussed in

previous sections.
When one evaluates LþLC�R

d2k?
R
dx

R
d2�?WþLC�

ðx; ~k?; ~�?Þð ~�?� ~k?Þz, the factor ~k? can be translated into a

? derivative �i @
@�i

� �i@i acting on the operator

�qð0Þ�U�LC
0� qð�Þ, whose matrix element is subsequently

evaluated for ~�? ¼ ~0?. The term where �i @
@�i

acts on

qð�Þ yields the canonical OAM. More interesting is the

term where �i @
@ri

acts on the staple-shaped gauge link

UþLC
0� ¼ W0�0?;10?W10?;1�?W1�?;���? ,

�i
@

@�i U
þLC
0�

���������¼0
¼ W0�0?;10?Aið1; 0?ÞW10?;0�0? þ

Z 1

0�
dz�W0�0?;z�0?@iA

þðz�0?ÞWz�0?;0�0? ; (21)

where the first term arises from the derivative acting on the link at �� ¼ 1, and the second when it acts on the link from ��
to 1. Here we used that these path-ordered exponentials satisfy

�i
@

@�i W1�?;���?

���������¼0
¼

Z 1

0�
dz�W10?;z�0?@iA

þðz�0?ÞWz�0?;0�0? (22)

and W0�0?;10?W10?;z�0? ¼ W0�0?;z�0? . Using integration by parts

Z 1

0�
dz�W10?;z�0?@�A

iðz� ~0?ÞWz�0?;0�0?

¼ W10?;z�0?A
ið1; ~0?ÞWz�0?;0�0? � Aið0�; ~0?Þ �

Z 1

0�
dz�W10?;z�0?½A�ðz� ~0?Þ; Aiðz� ~0?Þ�Wz�0?;0�0? : (23)

Thus

�i
@

@�i U
þLC
0�

���������¼0
þgAið0; ~0?Þ ¼ �g

Z 1

0�
dz�W10?;z�0?G

þiðz�; ~0?ÞWz�0?;0�0? ; (24)

where

Gþi ¼ @�Ai � @iAþ þ ig½Aþ; Ai�: (25)

Inserting this result into our definition of Wigner functions, one thus finds for the transverse momentum and the angular
momentum, respectively,

h ~kq?iþ ¼
R
d3 ~rhPSj �qð ~rÞ�þð1i @? � gAið0; ~0?Þ �

R1
0� dz

�W10?;z�0?G
þiðz�; ~0?ÞWz�0?;0�0?Þqð ~rÞjPSi

hPSjPSi : (26)

Lq
þLC ¼

R
d3 ~rhPSj �qð~rÞ�þ½xð1i @y � gAyð0; ~0?Þ �

R1
r� dz

�Wr�r?;z�r?gG
þiðz�; ~r?ÞWz�r?;r�r?Þ �0 x $ y0�qð~rÞjPSi

hPSjPSi :

(27)

The difference [24],

h ~kq?iþ � h ~kq?istraight ¼ �
R
d3 ~rhPSj �qð ~rÞ�þ R1

r� dz
�Wr�r?;z�r?gG

þiðz�; ~r?ÞWz�r?;r�r?qð ~rÞjPSi
hPSjPSi ; (28)

is the well-known Qiu-Sterman matrix element [21] that has the physical interpretation as the change in transverse
momentum for the struck quark as it leaves the target after being struck by the virtual photon in a DIS experiment.
Semiclassically, that change in momentum is due to the color Lorentz force as the quark leaves the target.
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For the OAM one finds for the difference

Lq
þLC �Lq

straight ¼ �
R
d3 ~rhPSj �qð~rÞ�þ½xR1

r� dz
�Wr�r?;z�r?gG

þyðz�; ~r?ÞWz�r?;r�r? �0 x $ y0�qð ~rÞjPSi
hPSjPSi : (29)

Since in light-cone gauge the lightlike Wilson lines become
trivial and (25) reduces to @�Ai , matrix elements involving
the above the above correlation functions thus provide a
manifestly gauge invariant extension of our key observation
regarding the difference between the Jaffe-Manohar defini-
tion for quark orbital angular momentum and that of Ji.

The fact that the only difference between h ~kq?iþ and

Lq
þLC is multiplication by a transverse position also

illustrates that any renormalization issues for Lq
þLC are

similar to that of h ~kq?iþ [20]. For example, as with h ~kq?iþ,
issues with light-cone singularities can be controlled by
going slightly off the light-cone in the case of Lq

þLC as

well. Furthermore, the same evolution equations that gov-

ern scale dependencies for h ~kq?iþ should also describe that

ofLq
þLC (multiplied by the appropriate transverse position

factor).

VI. SUMMARY

The angular momenta appearing in the Jaffe-Manohar
formalism are identical toWigner function based definitions
of OAMutilizing light-cone staples.We have used this result
to uderstand the difference between the Jaffe-Manohar defi-
nition of OAM and Ji’s local manifestly gauge invariant
definition of OAM can be related to the torque that acts on
a quark in longitudinally polarized DIS. In other words.,

while one definition (Ji) yields the net OAM quarks before
absorbing the virtual photon, the (light-cone staple) Wigner
distribution based definition (JM) yields the net OAM after
the quark has escaped to infinity. We thus now understand
the physics through which these two definitions are related
to one another.
This is very similar to the situation in the context of

TMDs where the difference between the average quark
transverse momentum after it has left the target (from
Sivers function) and before it has left the target (where it
is zero), can be related to the difference of TMDs defined
with a light-cone staple shaped Wilson line gauge link
versus one defined with a straight-line gauge link.
Unfortunately, no experiment has been identified to

measure the OAM of quarks after they have been ejected
in DIS. Nevertheless, we believe that the above interpre-
tation will help to develop a more complete picture of the
nucleon spin.
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