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We investigate the effects of realistic quark masses and local color neutrality on quark pairing in the

three-flavor Polyakov–Nambu–Jona-Lasinio model. While prior studies have indicated the presence of

light flavor quark (2SC) or symmetric color-flavor-locked (CFL) pairing at low temperatures, we find that

in the absence of a local color neutrality constraint the inclusion of the Polyakov loop gives rise to phases

in which all quark colors and flavors pair, but with unequal magnitudes. We study this asymmetric color-

flavor-locked (ACFL) phase, which can exist even for equal mass quarks, identifying its location in the

phase diagram, the order of the associated phase transitions, and its symmetry breaking pattern, which

proves to be the intersection of the symmetry groups of the 2SC and CFL phases. We also investigate the

effects of the strange quark mass on this new phase and the QCD phase diagram generally. Finally, we

analyze the effect of a local color neutrality constraint on these phases of asymmetric pairing. We observe

that for massless quarks the neutrality constraint renders the 2SC phase energetically unfavorable,

eliminating it at low temperatures, and giving rise to the previously proposed low temperature critical

point, with associated continuity between the hadronic and ACFL phases. For realistic strange quark

masses, however, the neutrality constraint shrinks the 2SC region of the phase diagram, but does not

eliminate it, at T ¼ 0.
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I. INTRODUCTION

The phase structure of strongly interacting matter has
seen an explosion of activity in recent years as the bounda-
ries of our experimental probes have continued to expand
[1–5]. As facilities such as the Large Hadron Collider
(LHC) and the Relativistic Heavy Ion Collider probe mat-
ter of ever higher densities and temperatures, we are able to
continually test and refine our theoretical models and
understand matter under the extreme conditions encoun-
tered in the moments after the big bang and in the cores of
neutron stars.

While the fermion sign problem largely restricts the
techniques of lattice QCD to zero density, one method
for describing strongly interacting matter throughout the
phase diagram is the use of effective field theories which
are built upon the symmetries of QCD. One model which
has proven useful in this context is the Polyakov–
Nambu–Jona-Lasinio (PNJL) model, which was developed
to describe dynamical chiral symmetry breaking and has
been extended to include quark pairing, confinement, and
the QCD axial anomaly [6–21].

An aspect of the QCD phase diagram of particular
interest is the nature of quark pairing at intermediate
chemical potential, �. While it is known that for three
quark flavors a color-flavor-locked (CFL) phase, in which
all quark flavors and colors pair, is energetically favorable
for asymptotically large�, the preferred pairings for� not
asymptotically large are not determined. Calculations
indicate phases in which only two colors and flavors pair
(2SC) [22], in which one flavor pairs with all others

(uSC, dSC) [23], and a phase which has properties of
both free quarks and hadrons (quarkyonic) [5,24,25].
In this paper we build on prior studies of the effects of

confinement on quark pairing in the three-flavor PNJL
model by considering a wider range of pairing schemes
than the CFL and 2SC phases previously considered [1,22].
In particular, by permitting distinct ud, us, and ds pairing
amplitudes, we allow for the possibility that the confining
mechanism of QCD may not treat quark flavors, even for
equal masses, on an equal footing. Further, by considering
a range of strange quark masses we investigate the com-
bined effects of this potential asymmetry and the decou-
pling of the strange quark sector with increasing strange
quark mass.
We also investigate the implications of a local color

neutrality constraint on the phase structure of dense quark
matter. While QCD has the capacity to dynamically
achieve local color neutrality by means of a gluon field
condensate hA0

ai, the PNJL model lacks the necessary
gluonic degrees of freedom to achieve such neutrality in
a phase of asymmetric quark pairing (e.g., 2SC, uSC).
Thus, one must impose such neutrality ‘‘by hand’’ in order
to avoid the large color-electric forces which would result
from color accumulation [26–30]. Prior studies of the axial
anomaly’s influence on the phase structure of dense quark
matter in the (P)NJL model have either focused on pairing
structures which are trivially color neutral [1,17] or have
allowed for locally colored phases [22]. By introducing an
effectively color-dependent chemical potential we impose
local color neutrality and study its effects on the low
temperature portion of the QCD phase diagram, most

PHYSICAL REVIEW D 88, 014012 (2013)

1550-7998=2013=88(1)=014012(11) 014012-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.88.014012


notably its suppression of phases of asymmetric quark
pairing and the subsequent realization of quark-hadron
continuity.

The outline of the paper is as follows. We begin in Sec. II
by recalling the three-flavor PNJL model with axial anom-
aly. In Sec. III we construct the phase diagram for massless
QCD and identify a new homogeneous asymmetric color-
flavor-locking (ACFL) phase characterized by breached
pairing in which all quarks pair, but with unequal magni-
tudes. In Sec. IV we construct the phase diagram for
massive QCD with various strange quark masses in order
to study the effects of the strange quark mass on both the
ACFL phase and the phase diagram generally. In Sec. V we
consider the ACFL phase more carefully by studying the
associated phase transitions and symmetry breaking pat-
terns. Finally, in Sec. VI we impose a local color neutrality
constraint and investigate the resulting suppression of the
2SC phase at low temperatures.

II. THREE-FLAVOR PNJL MODEL

A. Lagrangian

The Lagrangian for the three-flavor Nambu–Jona-
Lasinio model with a Polyakov loop at temperature T
is [1,22]

L ¼ �qði 6D� m̂þ��0ÞqþLð4Þ þLð6Þ �Uð�; ��; TÞ;
(1)

where the covariant derivative D� ¼ @� � i�0
�A0 couples

a static homogeneous gauge field A0 to the quark field q

and m̂ is the bare quark mass matrix in flavor space. Lð4Þ

and Lð6Þ are effective four- and six-quark interactions,

respectively, and Uð�; ��; TÞ is the Polyakov loop poten-
tial, which governs the deconfinement transition in the
pure-gauge sector.

The four-quark interaction is invariant under the
SUð3ÞL � SUð3ÞR � Uð1ÞB � Uð1ÞA symmetry group of
classical QCD, while allowing for spontaneous breaking
of chiral symmetry and diquark pairing:

L ð4Þ ¼ 8GTrð�y�Þ þ 2H TrðdyRdR þ dyLdLÞ; (2)

where �ij ¼ ðqRÞjaðqLÞia is the chiral operator and ðdRÞia ¼
�abc�ijkðqRÞjbCðqRÞkc and ðdLÞia ¼ �abc�ijkðqLÞjbCðqLÞkc
are diquark operators of right and left chirality, respec-
tively, with C the charge-conjugation operator. The labels
a, b, c and i, j, k index color and flavor, respectively.
We take G, H > 0, which corresponds to attractive four-
quark interactions.

The six-quark interaction reflects the QCD axial
anomaly by explicitly breaking Uð1ÞA while retaining in-
variance under the remaining (physical) QCD symmetry
group:

L ð6Þ ¼ �8K det�þ K0 Tr½ðdyRdLÞ�� þ H:c: (3)

The final ingredient in our model is the Polyakov loop,
which serves as an order parameter for confinement in the
pure-gauge sector [10,15],

�ðxÞ ¼ 1

3
TrP exp

�
i
Z �

0
d�A0ð�;xÞ

�
; (4)

where P is the path-ordering operator and � ¼ 1=T.
Writing A� ¼ Aa

��a=2, where the �a are the Gell-Mann

matrices, and working in the Polyakov gauge, in which A0

is diagonal, yields A0 ¼ �3�3 þ�8�8.
As discussed at length in [1,13], in order to ensure a real

thermodynamic potential we restrict our attention to the
case �8 ¼ 0. Making the standard finite-temperature re-
placements t ! �i� and A0 ! iA0, evaluating Eq. (4)
explicitly for a homogeneous gauge field yields the relation

� ¼ 1þ 2 cos ð��3Þ
3

: (5)

Following Fukushima we describe the pure-gauge decon-
finement transition via the potential [5,15]

U
T4

¼ � 1

2
aðTÞ ���þ bðTÞ ln ½1� 6 ���

þ 4ð�3 þ ��3Þ � 3ð ���Þ2�; (6)

where the temperature-dependent coefficients are

aðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2
; bðTÞ ¼ b3

�
T0

T

�
3
;

and the ai and b3 are chosen to correctly reproduce lattice
QCD results (see Table I). In addition, while T0 ¼
270 MeV is the critical temperature for the deconfinement
transition in the pure-gauge sector [11,12], when quarks
are included in the PNJL model, the transition temperature
deviates from T0. Therefore, in what follows we consider
T0 as a parameter of our model, which we will set by
matching the deconfinement transition at � ¼ 0, defined
as a maximum in d�=dT (as discussed in [31,32]), to the

lattice QCD value of TQGP
c ¼ 176 MeV.

B. Thermodynamic potential

Working in the mean field, we consider the homogene-
ous scalar chiral and diquark condensates

h �qiaqjai ¼ 	i�ij; hqTC�5tiljqi ¼ di�ij: (7)

Note that there is no sum over i; rather, the right sides of
Eq. (7) are diagonal matrices in flavor space with three
distinct elements. As shown in [1,22] the mean field
Lagrangian becomes

TABLE I. Coefficients of the Polyakov-loop potential [13].

a0 a1 a2 b3

3.51 �2:47 15.2 �1:75
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LMF ¼ X3
j¼1

�qjði6@�Mj þ ð�þ i�3�3Þ�0Þqj

� 1

2

X3
j¼1

½��
j ðqTC�5tjljqÞ þ H:c:� �V �U; (8)

where the tj and lj are the antisymmetric Gell-Mann

matrices in flavor and color space, respectively, V is
given explicitly below, the effective mass of the jth quark
flavor is

Mj ¼ mj � 4G	j þ Kj�jklj	k	l þ K0

4
jdjj2; (9)

and the jth pairing gap is

�j ¼ �2

�
H� K0

4
	j

�
dj: (10)

We choose ðu; d; sÞ and ðr; g; bÞ as flavor and color bases
and use the Gell-Mann matrices �7;5;2 as a representation of

t1;2;3 and l1;2;3, so that �1 represents the dgsb and dbsg
pairing gap, while�2 and�3 represent the gaps of ursb and
ubsr and urdg and ugdr pairs, respectively.

Introducing the Nambu-Gor’kov spinor � ¼
ðqC �qTÞT= ffiffiffi

2
p

, we may recast our model as a free theory

with L ¼ ��S�1�� V �U, where the inverse propaga-
tor in Nambu-Gor’kov and momentum space is

S�1ðkÞ ¼ 6k� M̂þ�0�0 �j�5tjlj

���
j�5tjlj 6k� M̂��0�0

0
@

1
A; (11)

with�0 ¼ �þ i�3�3 and where the sum over j in the off-
diagonal elements is implied. The condensates directly
contribute a potential

V ¼ 2G
X3
j¼1

	2
j � 4K	1	2	3 þ

X3
j¼1

�
H � K0

2
	j

�
jdjj2:

(12)

Integrating over the Nambu-Gor’kov fields and perform-
ing the resulting Matsubara sum yields the thermodynamic
potential

� ¼ �T

2

X72
n¼1

Z � d3k

ð2
Þ3
�
ln ð1þ e��EnÞ þ 1

2
��En

�

þV þU; (13)

where the En are the 72 poles of the inverse propagator in
Eq. (11), �En ¼ En � Efree

n is the difference between the
eigenvalue and its noninteracting value (without the abso-
lute value), and the factor of 1=2 accounts for the double
counting of degrees of freedom in the Nambu-Gor’kov
formalism.

Note that in Eq. (13) we have introduced a high-
momentum cutoff � to regulate the integral. The value of

�, along with the coupling constants G and K, is initially
fit to empirical mesonic properties and is given in Table II
(parameter set I). Following Abuki et al., as we adjust the
strange quark mass and coupling K0 (parameter sets II-IX),
rather than recalculating G by again fitting the mesonic
quantities, we instead, for the sake of simplicity, choose G
to yield a fixed value for ðMu þMdÞ=2 ¼ 367:5 MeV [17].
The quantitative effects of this choice are negligible for the
present purposes.
Finally, we consider two values of K0: (1) K0 ¼ K,

which is suggested by applying a Fierz transformation to
the instanton vertex [17], and (2) K0 ¼ 4:2K, which allows
the realization of a low T critical point and provides for
easy comparison to the current literature [17,22]. The
remaining couplings are H�2 ¼ 1:74 and K�5 ¼ 12:36
[11,13,17].
In the next two sections we construct the phase diagram of

three-flavor QCD, first in the limit of massless quarks, and
then with realistic quark masses. In order to facilitate a
comparison with the current literature, which largely ignores
the complication of a local color neutrality constraint, we
begin by constructing the phase diagrams without enforcing
color neutrality, deferring a discussion of the effects of color
neutrality to Sec. VI. We also note that while a variety of
spatially inhomogeneous phases (e.g., crystalline color
superconductors, Fulde-Ferrell-Larkin-Ovchinnikov phases)
maybe energetically preferred in certain high density regions
of the phase diagram [34,35], in this paper we consider only
homogeneous phases.

III. MASSLESS QCD PHASE DIAGRAM

A. Without confinement

In this section we discuss the phase structure of massless
QCD before moving on to consider the case of three differ-
ent mass quarks. This will allow us to investigate both the

TABLE II. Parameter sets for the three-flavor PNJL model: the
strange quark bare mass ms, coupling constants G and K0, and
Polyakov-loop parameter T0, with a spatial momentum cutoff
� ¼ 602:3 MeV [9]. Also shown is the constituent strange quark
mass at � ¼ T ¼ 0.

ms (MeV) G�2 K0�5 T0 (MeV) Ms (MeV)

Ia 0 1.926 12.36 210 355.1

II 5 1.928 12.36 208 369.4

III 5 1.928 51.91 208 369.4

IV 20 1.915 12.36 207 392.2

V 20 1.915 51.91 207 392.2

VI 40 1.899 12.36 206 417.5

VII 40 1.899 51.91 206 417.5

VIII 80 1.877 12.36 204 476.6

IX 80 1.877 51.91 204 476.6

aIn parameter set I all bare quark masses are set to zero. In all
other sets we take mu ¼ 2:5 MeV and md ¼ 5:0 MeV [33].
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general effects of quark mass on the phase diagram and its
particular influence on a possible ACFL phase. Note we do
not impose color neutrality in either this section or the
following, so that we may consider the effects of this
additional constraint in Sec. VI.

When we turn off confinement by setting �3 ¼ 0 and
dropping the potential Uð�3; TÞ, the thermodynamic
potential reduces to that considered by Basler and
Buballa [22]. The only significant difference between the
massless NJL model considered here and the massive case
is that for massless quarks the chiral phase transition is first
order for all �, rather than a smooth crossover at low �
(Fig. 1). Basler and Buballa have shown that forK0 * 3:5K
a 2SCBEC phase appears, which we define as a 2SC phase
(d1 ¼ d2 ¼ 0, d3 � 0) of diquark pairs in the strongly
bound Bose-Einstein condensate (BEC) regime, in which
Mu;d > �. This phase is similarly visible in Fig 1, sepa-

rated from the chirally broken Nambu-Goldstone (NG)
phase by a second-order phase transition, and from
a 2SCBCS phase of weakly bound Bardeen-Cooper-
Schrieffer (BCS) quark pairs (in which Mu;d < �) by a

first-order transition.
Anticipating the ACFL phase discussed in Secs. IV and

V, in Fig. 2 we show the single diquark condensate of the
CFL phase as a function of temperature for� ¼ 500 MeV.
We note that it is roughly constant for T & 30 MeV, and
then falls as d� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tc � T
p

for 30 MeV & T < 71 MeV,
before finally vanishing as d� ðTc � TÞ, due to the
effective 	jdj2 coupling induced by the axial anomaly
[1,36,37].

B. With confinement

In order to construct the phase diagram in the presence
of the Polyakov loop we first fix T0 by matching the
model’s deconfinement transition at � ¼ 0 to the lattice

value of TQGP
c ¼ 176 MeV. The resulting value of T0

varies slightly with ms, and is given for the various
parameter sets used in Table II. Minimizing� with respect
to the condensates and Polyakov loop, we obtain the
phase diagram shown in Fig. 3. As has been widely
reported, the inclusion of the Polyakov loop pulls the chiral
transition to higher temperatures (from 151 MeV to
193 MeV), significantly enlarging the region of symmetry
breaking [11,13,38].

One important consequence of the increase of TQGP
c is

that the Polyakov loop gives rise to a much larger region of
2SCBCS, which we define as a 2SC phase (d1 ¼ d2 ¼ 0,
d3 � 0) in which Mu;d < �. In particular, this phase now

persists to much higher � than in the NJL model, where it
is constrained to roughly 270 MeV & � & 350 MeV.
Figure 4 shows the two distinct diquark condensates

d1 ¼ d2 and d3 for � ¼ 500 MeV. We find that for
T & 20 MeV, the results are not significantly altered
from the NJL model. However, for T * 20 MeV we find
that d1 ¼ d2 falls with increasing T, while d3 increases
until the system undergoes a second-order phase transition
to the 2SCBCS phase at 70 MeV, slightly below the location
of the transition to the quark-gluon plasma (QGP) in the
absence of confinement. Thus, the ground state of the
system at intermediate � is no longer a symmetric CFL
phase, but rather an asymmetric CFL phase characterized
by 0< d1 ¼ d2 < d3.

IV. REALISTIC MASS QCD PHASE DIAGRAM

Having observed the emergence of an ACFL phase in
massless QCD, we now consider the effects of realistic
bare quark masses on both this phase and the phase
diagram generally. To do so, we construct phase diagrams
for ms ¼ 0, 20, 40, and 80 MeV. In all cases we take
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K = 4.2K
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2SCBCS
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QGP

FIG. 1 (color online). Phase diagram for the NJL model (no
confinement) with three massless quark flavors. Thick (red) lines
denote first-order transitions while thin (green) lines denote
second-order transitions. The first-order 2SCBEC-2SCBCS transi-
tion is defined by Mu;dð�; TÞ ¼ �.

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0 10 20 30 40 50 60 70 80
T (MeV)

d̃1 = d̃2 = d̃3

FIG. 2 (color online). Dimensionless diquark condensate ~di ¼
di=�

3 in the nonconfining massless NJL model for � ¼
500 MeV. As indicated in Fig. 1, the system undergoes a
second-order phase transition from the CFL phase to the QGP
at 73 MeV. The linear approach to zero for 71 MeV< T <
73 MeV is due to an effective 	jdj2 coupling [1,36,37].
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mu ¼ 2:5 MeV and md ¼ 5:0 MeV, while the coupling G
is adjusted in order to maintain ðMu þMdÞ=2 ¼
367:5 MeV at � ¼ T ¼ 0.

As shown in Figs. 5 and 6, as the strange quark mass
increases, the region of ACFL moves to higher �, effec-
tively decoupling the strange quark from the up and down
sector. This is due to the fact that in the limit ms ! 1,
there is insufficient energy to generate strange quarks and
we are left with an effectively two-flavor system. We also
note that while for smallms the deconfinement transition at
large � essentially coincides with the breaking of up and
down quark Cooper pairs (the 2SC-QGP transition), as ms

increases the deconfinement temperature moves down
somewhat.

Also noteworthy is the fact that except for small ms and
K0, a critical point appears on the ACFL-2SC phase
boundary, separating a first-order transition at lower �
from a second-order transition at higher �. One can
summarize the situation by noting that the ACFL-2SC
transition is first order when Tc & 50 MeV and second
order when Tc * 50 MeV. Thus, for example, for ms ¼
5, 20 MeV and K0 ¼ K, the phase boundary never drops
below T � 50 MeV and the transition is always second
order. We note, however, that while the phase boundary
has a negative slope for large �, the transition does not
again become first order when the boundary drops below
T � 50 MeV.

As shown by Abuki et al. for the nonconfining NJL
model and by the present authors for the massless PNJL
model, we find that for K0 � 4:2K, a low T critical point
emerges [1,17]. Also, as shown by Basler and Buballa,
when one allows for 2SC pairing this critical point acts as
the termination of a line of first-order BEC-BCS transi-
tions, above which a smooth crossover develops [22].
Interestingly, as shown in Fig. 6, when the 2SCBEC phase
exists, we find that for ms ¼ 5, 20, and 40 MeV the BEC-
BCS transition is first order at zero temperature, while for

ms ¼ 80 MeV the critical point drops below the T axis and
one obtains a smooth BEC-BCS crossover.
While not visible in Figs. 5 and 6, for unequal mass

quarks much of the ACFL-2SC phase boundary is actually
two distinct, but very closely spaced, phase boundaries.
The first boundary, at slightly lower temperatures, sepa-
rates the ACFL phase from a sliver of a uSC phase in which
up/down and up/strange quarks pair, but down/strange
quarks do not. Thus, crossing this phase boundary corre-
sponds to breaking the down/strange quark Cooper pairs.
The second boundary separates the uSC phase from the
2SC and corresponds to the breaking of the up/strange
quark pairs. Figure 7 shows these two distinct transitions
for exaggerated up and down quark masses (mu ¼ 0,md ¼
40 MeV, ms ¼ 80 MeV), in order to make the distinct
phase boundaries visible.
We note that while the precise value of K0 is unknown,

on the basis of the Fierz transformation mentioned in
Sec. II it is expected that K0 � K, and it is unclear if any
mechanism might increase K0 above the 4:2K threshold
required to realize the low temperature critical point and
BEC-BCS crossover. It seems more likely that Fig. 5(d) is
closest to the true QCD phase diagram.
Finally, a word is required regarding quark pairing in the

ACFL phase for realistic quark masses. While the splitting
of up and down quark masses is quite small relative to the
chemical potential at which the ACFL phase is obtained
(�� 400 MeV), the mass splitting between the strange
quark and the two light flavors is indeed large (Ms �
Mu;d * 100 MeV). This mass difference results in signifi-

cantly mismatched Fermi surfaces, which act as a barrier to
quark pairing in the conventional BCS picture of super-
conductivity. However, with the assumption of spatially
uniform pairing, the different dispersion relations of the
ultrarelativistic light quarks on the one hand, and the much
slower strange quarks on the other, can lead to a situation in
which quarks on the strange quark Fermi surface pair with
quarks on the interior of the light flavors’ Fermi spheres, as
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FIG. 4 (color online). Dimensionless diquark condensates in
the massless PNJL model for � ¼ 500 MeV.
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FIG. 3 (color online). Phase diagram for the PNJL model with
three massless quark flavors. Line types have the same meaning
as in Fig. 1, with the additional dotted (blue) line representing
the deconfinement crossover.
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shown in [39]. This breached pairing corresponds to a
situation in which the T ¼ 0 state of the system consists
of both superfluid and normal Fermi liquid components
with both gapped and ungapped quasiparticle excitations
[40]. Thus, as shown in [41], it is indeed possible to
form a stable homogeneous superfluid phase out of the
mismatched Fermi spheres, as we observe.

V. ACFL PHASE

A. Quark pairing amplitudes

The evolution of color superconducting quark matter
with increasing temperature can be inferred from Fig. 8.
At low temperatures, the ACFL phase is essentially iden-
tical to the CFL phase, with d1 ¼ d2 � d3, and has a
thermodynamic potential well below the QGP. At high
temperatures, the ACFL phase morphs continuously into
the 2SCBCS phase, with d1 ¼ d2 ¼ 0, via a second-order
phase transition. In between these two limiting cases, for
20 MeV< T < 70 MeV, the ACFL phase is distinct from
both the 2SC and QGP phases and has a thermodynamic
potential below both.

We also note that while not clearly visible in Fig. 4, our
calculations indicate that for T > 6 MeV it is always en-
ergetically favorable to adopt unequal pairing amplitudes.

Thus, while we cannot exclude the possibility of a low
temperature CFL-ACFL phase transition, it seems very
likely that the unequal pairing amplitudes persist to arbi-
trarily low temperatures, and that a symmetric CFL phase
at intermediate � is restricted to T ¼ 0.
We can understand the asymmetric behavior of the

quark pairing by noting that in our chosen gauge (and
with �8 ¼ 0) the quark-Polyakov loop coupling is of the
form

�qA0�
0q ¼ �3ð �r�0r� �g�0gÞ; (14)

where we have written the color indices explicitly, so that
the Polyakov loop couples only to red and green quarks.
Thus, the condensates d1 (which involves green and blue
quarks) and d2 (red and blue) are only singly coupled to the
Polyakov loop, while d3 (green and red) is doubly coupled.
One may inquire whether this phase of unequal quark

pairing is simply an artifact of our choice of �8 ¼ 0, or
whether such a phase might actually be realized in QCD.
Unfortunately, in the present model, allowing �8 � 0 ren-
ders the thermodynamic potential complex so that its mini-
mization is no longer a well-posed problem. Nevertheless,
our results do demonstrate the possibility of obtaining a
phase characterized by nonequal quark pairing, and they

0

50

100

150

200

250

300

T
(M

eV
)

µ (MeV)

ms = 5 MeV

K = K

NG 2SCBCS

ACFL

QGPchiral crossover

deconfinement

(a)
0

50

100

150

200

250

300

T
(M

eV
)

µ (MeV)

ms = 20 MeV

K = K

NG 2SCBCS

ACFL

QGPchiral crossover

deconfinement

(b)

0

50

100

150

200

250

300

T
(M

eV
)

µ (MeV)

ms = 40 MeV

K = K

NG 2SCBCS

ACFL

QGPchiral crossover

deconfinement

(c)
0

50

100

150

200

250

300

0 100 200 300 400 500 600 0 100 200 300 400 500 600

0 100 200 300 400 500 600 0 100 200 300 400 500 600

T
(M

eV
)

µ (MeV)

ms = 80 MeV

K = K

NG 2SCBCS

ACFL

QGPchiral crossover

deconfinement

(d)

FIG. 5 (color online). Phase diagrams for the PNJL model with realistic up and down quark masses and various strange quark
masses, where the axial anomaly couplings are taken to be equal (K0 ¼ K). Line types have the same meaning as in Fig. 3.
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present a challenge to other models of dense quark matter
to address the question of its realization.

In addition to local color charge, asymmetric quark
pairing in both the ACFL and 2SC phases can give rise
to a net local electric charge. In quark matter in neutron
stars such a charge is neutralized by a net electron (and
possibly muon) density, and indeed in deriving an equation
of state for neutron stars, we must include charge neutral-
ity. On the other hand, matter encountered in heavy ion
collisions is electrically charged, and the collisions occur
on sufficiently short time scales so that while the matter
reaches equilibrium with respect to the strong nuclear
force, it does not reach charge equilibrium. While we
discuss color neutrality in Sec. VI, we do not further
consider electrical neutrality in this paper.

B. Symmetry breaking pattern

Having identified the region of the phase diagram occu-
pied by the ACFL phase as well as the order of the
associated phase transitions, we next study the symmetry
breaking pattern of this phase. We begin by noting that the
symmetry groups of the 2SC and CFL states are [16,42]

2SC: SUð2Þrg � SUð2ÞL � SUð2ÞR � Uð1Þ �B � Uð1ÞS;
CFL: SUð3ÞcþLþR � Z2;

where SUð2Þrg denotes a rotation in the color subspace of

red and green quarks, Uð1Þ �B is a rotated baryon conserving
symmetry with conserved quantity

�B ¼ �Qþ I3 with �Q ¼ Q� 1

2
ffiffiffi
3

p �8 (15)

[where I3 is the isospin operator, Q and �Q are the standard
and rotated (conserved) electromagnetic charge operators
in the 2SC phase], and Uð1ÞS corresponds to multiplying
the strange quark by an arbitrary phase.
Since both the CFL and 2SC phases are special cases of

the ACFL phase, the symmetry group of the ACFL phase
must be a subset of the symmetry groups of these respec-
tive phases. Thus, the color-flavor-locking aspect of the
CFL phase requires that there be no unbroken independent
color or chiral rotations in the ACFL phase, while the
SUð2Þrg symmetry of the 2SC phase requires that there

be no unbroken symmetry which mixes blue quarks with
red or green quarks. A direct calculation demonstrates that
none of the remaining symmetries is broken, and we are
left with the symmetry group

ACFL : SUð2ÞrgþLþR � Z2:

In fact, the symmetry group of the ACFL phase is simply
the intersection of the symmetry groups of the 2SC and
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FIG. 6 (color online). Phase diagrams for the PNJL model with realistic up and down quark masses and various strange quark
masses, where K0 ¼ 4:2K. Line types have the same meaning as in Fig. 3.
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CFL phases. Moreover, this symmetry group is identical to
that of the CFL phase with unequal strange quark mass
[43]. Finally, we note that we expect 14 Goldstone bosons
in the ACFL phase, which follows from the 8R þ 8L þ
1B ¼ 17 generators of the Lagrangian and the three
generators of the ACFL symmetry group.

VI. COLOR NEUTRALITY

In the prior sections we have constructed the phase dia-
gram of the PNJL model for both massless and massive
quarks and have observed the emergence of a new ACFL
phase at large �. If our model is to accurately reflect the
behavior of dense QCD, however, for the homogeneous
phases which we consider here we must also investigate
the effects of the requirement of local color neutrality. In
fact, both the 2SC phase previously reported by Basler and
Buballa [22] and the new ACFL phase possess nonzero
color densities which would, if left unchecked, induce large
color-electric forces in the superconducting quark matter.

The origin of the net color density, in both the 2SC and
ACFL phases, is the modification of the quark dispersion
relations which results from unequal pairing amplitudes
for red and green quarks compared with blue quarks. In
the 2SC phase, for example, at fixed particle number the
pairing of red and green quarks results in a decrease in the
Fermi energy of these colors. In a system at fixed quark
chemical potential �, this results in an increase in the
density of red and green quarks compared to the unpaired
blue quarks, and a corresponding net antiblue color den-
sity. In QCD, this quark color density is exactly canceled
by the development of a nonzero expectation value of the
gluon field (i.e., tadpole diagrams), and so the homoge-
neous 2SC phase remains color neutral [26,27]. However,
having replaced the local SU(3) color symmetry of QCD
with the global symmetry of the PNJL model, we now
lack the means for dynamically realizing a neutral ground
state.

The standard method for imposing color neutrality in
the NJL model is to introduce a set of color chemical
potentials �a, which are chosen to ensure vanishing color
densities [28–30]:

na ¼ hqyTaqi ¼ � @�

@�a

¼ 0; (16)

where Ta ¼ �a=2. In light of our prior discussion, we see
that the equilibrium value of �a (i.e., the value required to
achieve color neutrality) is proportional to hA0

ai in QCD. In
both the 2SC and ACFL phases red and green quarks pair
symmetrically, so we need only include �8, in order to
ensure that n8 ¼ nr þ ng � 2nb ¼ 2ðnr � nbÞ ¼ 0. Thus,

we modify the Lagrangian from Eq. (1) to

L ¼ �qði 6D� m̂þ��0 þ�8�8�
0ÞqþLð4Þ þLð6Þ

�Uð�; ��; TÞ: (17)

In order to obtain the locally color neutral phase diagram
we now minimize the thermodynamic potential with
respect to the condensates 	i and di, and the Polyakov
loop variable �3 as before, while imposing the additional
neutrality constraint

n8 ¼ � @�

@�8

¼ 0; (18)

as well as the stability condition

@n8
@�8

¼ �@2�

@�2
8

> 0: (19)

Thus, our solution is a saddle point of �, minimized
with respect to the condensates, and maximized with
respect to �8.
Due to the computational intensity of the saddle point

problem for our eight-variable thermodynamic potential,
we defer a complete assessment of the effects of color
neutrality, together with the strange quark mass and
confinement, to a future publication. However, we report
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three important results from the massless quark limit at
T ¼ 0, which give insight into the structure of the full color
neutral QCD phase diagram. Note that, as shown in Fig. 4,
at T ¼ 0 the quark pairing asymmetry vanishes so that a
true CFL phase is obtained.

First, in the massless quark limit the color neutrality
constraint eliminates the 2SC phase from a large portion
of the phase diagram, in favor of the ACFL phase. We
can understand this effect by considering Fig. 9. At
� ¼ 275 MeV the thermodynamic potentials of the color
neutral NG and CFL phases (�8 ¼ 0) are nearly equal,
indicating the location of a phase transition between the
NG phase, which exists at low �, and the CFL phase,
which exists at high �. As the system moves to higher
densities the energy of the NG phase is essentially con-
stant, while both the 2SC and CFL phases decrease in
energy, becoming more favorable.

The crucial effect of the color neutrality constraint is
visible in the thermodynamic potentials at � ¼ 285 MeV.
In the absence of a color neutrality constraint (�8 ¼ 0), we
find that the 2SC phase is indeed the lowest energy, and
therefore the preferred, phase of the system. However,
in imposing color neutrality, we require the 2SC phase to
take on a nonzero �8 � �40 MeV, which results in a
(physical) 2SC state which is formally higher in energy
than the colored state. This ‘‘additional’’ energy is suffi-
cient to raise �2SC above both �NG and �CFL, with the
lower energy CFL phase being the color neutral ground
state. As the system moves to yet higher �, both the 2SC
and CFL phases continue to move to lower energies, with
the latter always maintaining a slight energetic advantage.
Thus, at T ¼ 0 color neutrality eliminates the 2SC phase
altogether. We do note, however, that the 2SC phase is not
eliminated altogether, and that its color neutral form (with
�8 � 0) remains the preferred phase in some portions of
the phase diagram for T > 0.

A second effect of the local color neutrality constraint is
the elimination of the ACFL phase at high �, in favor of a

symmetric CFL phase. This is somewhat encouraging,
given our expectation of a CFL phase at asymptotically
high �, due to general considerations [44,45]. Thus, we
find that the color neutrality constraint disfavors both the
asymmetric 2SC and ACFL phases.
A third important effect of color neutrality, which is a

corollary of the suppression of the 2SC and ACFL phases,
is the ‘‘reemergence’’ of a low temperature critical point
[1,36]. As shown in [22], when one allows for 2SC quark
pairing (rather than simply a CFL structure) in the absence
of a local color neutrality constraint, this critical point is
eliminated in favor of a second-order NG-2SC phase tran-
sition at intermediate�. However, with the 2SC and ACFL
phases eliminated by the color neutrality constraint, the
system once again realizes quark-hadron continuity via a
smooth crossover between the NG and CFL phases at low
temperatures.
In the case of realistic quark masses, the 2SC phase

remains intact after imposing local color neutrality, but
the location of the low temperature NG-2SC transition is
moved to the right by �� � 30 MeV. This shift in the
phase boundary is not surprising in light of the additional
energy required to maintain a nonzero�8. Indeed, the 2SC
phase still becomes more favorable (i.e., �2SC decreases)
as the system moves to higher �, but the nonzero value
of �8 results in an overall shift of �2SC to larger values.
As a result, the NG-2SC phase boundary defined by
�2SC ¼ �NG is shifted to larger �.

VII. SUMMARY

We have investigated the effects of confinement and
realistic mass quarks on the QCD phase diagram, particu-
larly the preferred quark pairing structures at intermediate
chemical potentials. While many prior studies have not
enforced local color neutrality in spatially homogeneous
phases of asymmetric quark pairing (e.g., 2SC), they have
nonetheless assumed a CFL pairing structure at large �.
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Rather, we have shown that in the absence of a local color
neutrality constraint, the Polyakov loop can give rise to an
ACFL phase in which all quark flavors pair, but with
unequal magnitudes. This ACFL phase, which can exist
even for three equal mass quarks, provides a mechanism
for moving continuously from a true CFL phase to a 2SC
phase, as two of the pairing amplitudes (namely, those
involving strange quarks) vanish via second-order phase
transitions with increasing temperature.

When local color neutrality is enforced, we have shown
that the 2SC phase is partially suppressed due to the energy
cost of forming the gluon condensate (or �8 ¼ ghA0

8i)
required to achieve color neutrality. However, the ACFL
phase remains intact and does not require a gluon conden-
sate (i.e., �8 ¼ 0), as the combined effects of the unequal
masses and pairing amplitudes dynamically achieve color
neutrality. The mechanism for achieving spatially uniform
pairing between quark flavors with imbalanced Fermi seas
is the breached pairing described in [39–41].

While an exhaustive analysis of the effects of color
neutrality and realistic quark masses is beyond the scope
of the present paper, based on the results obtained here we
can propose an educated hypothesis for the QCD phase
diagram under the assumptions adopted here, namely, the
restriction to spatially homogeneous phases. Figure 10
shows our proposed phase diagram, which should be com-
pared to Fig. 5(d), in which color neutrality was not
enforced. We expect the essential effect of the color neu-
trality constraint to be the reduction in size of the 2SC
phase, due to the additional energy required to generate
the neutralizing gluon condensate. In particular, the lines
of first-order NG-2SC and ACFL-2SC transitions will
encroach upon the 2SC region due to the upward shift of
�2SC, as indicated by the arrows in Fig. 10. Second-order
transition lines, however, will remain largely unaffected as
�8 ! 0 on these boundaries.

A number of outstanding questions exist regarding the
PNJL model and the QCD phase diagram which we will
address in a future publication [46]. Foremost among them
is a complete construction of the QCD phase diagram
which incorporates local color neutrality along with real-
istic quark masses. Also, the effects of charge neutrality
and � equilibrium, which are important in the study of
stable quark matter at low temperatures in neutron stars,
remain to be completely elucidated in the context of the
PNJL model.
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[13] S. Rößner, C. Ratti, and W. Weise, Phys. Rev. D 75,

034007 (2007).
[14] H. Abuki, Prog. Theor. Phys. Suppl. 174, 66 (2008).
[15] K. Fukushima, Phys. Lett. B 591, 277 (2004).
[16] M. Alford, Annu. Rev. Nucl. Part. Sci. 51, 131 (2001).
[17] H. Abuki, G. Baym, T. Hatsuda, and N. Yamamoto, Phys.

Rev. D 81, 125010 (2010).
[18] E. Megias, E. R. Arriola, and L. L. Salcedo, Phys. Rev. D

74, 065005 (2006).

0

50

100

150

200

250

300

0 100 200 300 400 500 600

T
(M

eV
)

µ (MeV)

ms = 80 MeV

K = K

NG 2SCBCS

ACFL

QGPchiral crossover

deconfinement

FIG. 10 (color online). Proposed phase diagram for three-flavor
QCD with spatially homogeneous color neutral phases. The
arrows indicate the movement of the phase boundaries due to
the enforcement of local color neutrality [compare to Fig. 5(d)].

PHILIP D. POWELL AND GORDON BAYM PHYSICAL REVIEW D 88, 014012 (2013)

014012-10

http://dx.doi.org/10.1103/PhysRevD.85.074003
http://dx.doi.org/10.1103/PhysRevD.85.074003
http://dx.doi.org/10.1016/0370-2693(78)90029-1
http://dx.doi.org/10.1016/0370-2693(78)90029-1
http://dx.doi.org/10.1016/0370-2693(80)90403-7
http://dx.doi.org/10.1016/0370-2693(80)90403-7
http://dx.doi.org/10.1103/PhysRevD.29.338
http://dx.doi.org/10.1103/PhysRevD.29.338
http://dx.doi.org/10.1088/0034-4885/74/1/014001
http://dx.doi.org/10.1088/0034-4885/74/1/014001
http://dx.doi.org/10.1103/PhysRev.122.345
http://dx.doi.org/10.1103/PhysRev.122.345
http://dx.doi.org/10.1103/PhysRev.124.246
http://dx.doi.org/10.1103/PhysRev.124.246
http://dx.doi.org/10.1016/0370-1573(94)90022-1
http://dx.doi.org/10.1016/j.physrep.2004.11.004
http://dx.doi.org/10.1016/0370-2693(78)90737-2
http://dx.doi.org/10.1103/PhysRevD.73.014019
http://dx.doi.org/10.1103/PhysRevD.73.014019
http://dx.doi.org/10.1103/PhysRevD.75.074013
http://dx.doi.org/10.1103/PhysRevD.75.074013
http://dx.doi.org/10.1103/PhysRevD.75.034007
http://dx.doi.org/10.1103/PhysRevD.75.034007
http://dx.doi.org/10.1143/PTPS.174.66
http://dx.doi.org/10.1016/j.physletb.2004.04.027
http://dx.doi.org/10.1146/annurev.nucl.51.101701.132449
http://dx.doi.org/10.1103/PhysRevD.81.125010
http://dx.doi.org/10.1103/PhysRevD.81.125010
http://dx.doi.org/10.1103/PhysRevD.74.065005
http://dx.doi.org/10.1103/PhysRevD.74.065005


[19] E. Megias, E. R. Arriola, and L. L. Salcedo, AIP Conf.
Proc. 892, 444 (2007).

[20] G. ’t Hooft, Phys. Rev. Lett. 37, 8 (1976); Phys. Rev. D 14,
3432 (1976).

[21] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 44,
1422 (1970).

[22] H. Basler and M. Buballa, Phys. Rev. D 82, 094004
(2010).

[23] H. Abuki and T. Kunihiro, Nucl. Phys. A768, 118
(2006).

[24] L. McLerran and R.D. Pisarski, Nucl. Phys. A796, 83
(2007).

[25] Y. Hidaka, L. D. McLerran, and R.D. Pisarski, Nucl. Phys.
A808, 117 (2008).

[26] A. Gerhold and A. Rebhan, Phys. Rev. D 68, 011502
(2003).

[27] D. D. Dietrich and D.H. Rischke, Prog. Part. Nucl. Phys.
53, 305 (2004).

[28] K. Iida and G. Baym, Phys. Rev. D 63, 074018 (2001).
[29] A.W. Steiner, S. Reddy, and M. Prakash, Phys. Rev. D 66,

094007 (2002).
[30] M. Buballa and I. A. Shovkovy, Phys. Rev. D 72, 097501

(2005).
[31] Y. Aoki, Z. Fodor, S. D. Katz, and K.K. Szabó, Phys. Lett.
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