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We study the transverse single spin asymmetry in �c;b production in polarized hadron collisions,

employing the collinear twist-3 approach in combination with the color singlet model. Our main focus lies

on the contribution from the twist-3 Efremov-Teryaev-Qiu-Sterman function. By extrapolating the derived

spin-dependent cross section to the small transverse momentum region, consistency between the collinear

twist-3 approach and the transverse-momentum-dependent factorization approach is confirmed. As a

byproduct of this work, we identify a term contributing to the scale evolution of trigluon correlations in

the flavor-singlet case which was originally missed, see also V.M. Braun, A.N. Manashov, and B. Pirnay

[Phys. Rev. D 80, 114002 (2009); 86, 119902(E) (2012)].
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I. INTRODUCTION

Attempts to understand the large transverse single spin
asymmetries (SSAs) observed in the various high-energy
scattering processes presently form an active field of re-
search. The experimental observations are a great theoreti-
cal challenge as the collinear leading twist contribution to
the asymmetries is proven to be proportional to the quark
mass [1,2] and thus very small. However, during the past
few decades, remarkable theoretical progress was achieved
by following mainly two approaches—one approach based
on transverse-momentum- dependent(TMD) factorization
[3–8] and the other on collinear twist-3 factorization
[9–17]. In TMD factorization, a naive time reversal odd
TMD distribution, known as the Sivers function [3], de-
scribing the correlation between the parton intrinsic trans-
verse momentum and hadron transverse spin vector, is
responsible for the asymmetries. In the collinear twist-3
approach the SSAs arise from twist-3 quark gluon corre-
lators, so-called Efremov-Teryaev-Qiu-Sterman functions
(ETQS) TFðx; xÞ [9,10]. These two frameworks have their
own kinematic regions of validity and were shown to
produce the same results in the overlap of these kinematic
regions [14–16,18].

The fundamental property of bothmechanisms is that the
imaginary part necessary for nonvanishing SSAs is dy-
namically generated through initial/finial state interactions.
In the case of TMD factorization, the effect of these initial/
finial state interactions is encoded in the process-dependent
gauge link appearing in the matrix element defining the
TMD distributions. Due to different structures of these
gauge links in different processes, naive time reversal
odd TMD distributions like the Sivers function possess a
very unique, modified universality property, namely, that
the Sivers functions in deep inelastic scattering (DIS) and
the Drell-Yan process differ by a minus sign [6,7].

While SSAs in DIS have been measured by HERMES
[19] and COMPASS [20], a polarized Drell-Yan measure-
ment is not yet available, such that this prediction could not

yet be tested. Alternatively, one can simply fit the ETQS
function related to the kT moment of the Sivers function
[21] using input from HERMES and COMPASS [22] and
compare it with a direct extraction of TF from the SSA
obserevd for pion production in polarized pp collisions
[13,23–25]. Promising early results along these lines have,
unfortunately, been caused by a sign error, such that the
observed discrepancies are now referred to as ‘‘sign mis-
match’’ of these two processes [26]. Our recent work [27]
also indicated that this procedure gives the wrong sign for
SSA in inclusive DIS off a neutron target (for a complete
theoretical treatment of this asymmetry, see Ref. [28]) if
the quark gluon correlation TF fitted to data for the process
p " p ! �X were used as the input for the twist-3 quark
photon correlation. This suggests that the SSAs observed in
processes like p " p ! �X are not mainly caused by the
Sivers mechanism as described in the twist-3 collinear
approach [11,13]. A possible explanation is suggested by
the observation [29] that the Collins effect [5,30], describ-
ing SSA as caused by parton fragmentation, can contribute
significantly. This observation has been confirmed by a
more recent analysis [31].
In order to better understand the Sivers mechanism in

hadronic collisions, it is desirable to investigate SSA for
cases of particle production in polarized pp collisions for
which the Collins effect is absent. Possible options are the
SSA in direct photon or jet production p " p ! �ðJetÞX
[10,32–34]. Another option which was initially proposed
in Ref. [35] is the SSA in heavy quarkonium production.
The author of the paper [35] analyzed SSA in heavy
quarkonium production following the general arguments
of nonrelativistic QCD(NRQCD) [36,37]. In the frame-
work of NRQCD, the heavy quarkonium can be produced
at short distance not only in the color singlet but also the
color octet configuration. The transition from heavy quark
and antiquark pair to a quarkonium state is treated as a
nonperturbative process and encoded in the long-distance
universal matrix elements which are characterized accord-
ing to the velocity expansion of NRQCD. As demonstrated
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in Ref. [35], the SSA in heavy quarkonium production
offers a unique way to investigate its production mecha-
nisms since the SSA crucially depends on the final state
interactions which differ significantly for heavy quark-
onium production in the color singlet and the color octet
channel. Recently, a SSA in p " p ! J=cX has been
measured at PHENIX and found to be sizeable [38].
According to the analysis of Ref. [35], this hints at a
dominance of a color singlet mechanism at low transverse
momentum and at a nonzero gluon Sivers effect. Also, in
Ref. [39], the color evaporation model in combination with
TMD factorization was used to study the SSA for J=c
production in ep " collisions.

Following this research line, we apply the collinear
twist-3 approach to compute the SSA for heavy quarkonium
production in polarized pp collisions. In the present work,
the earlier pioneering analysis [35] is extended and refined in
the sense that we compute the transverse-momentum-
dependent behavior of the spin asymmetry, and also take
into account the hard gluon pole contribution.We only focus
on �c;b production in this paper, though our formalism can

be easily extended to SSAs for the production of other
C-even quarkonia, such as �c0, �b0, �c2 and �b2. In leading
order, a C-even quarkonium can be produced through two-
gluon fusion, whichmakes it a promisingway to access both
unpolarized and linearly polarized gluon TMD distributions
[40–44]. The application of TMD factorization in these
processes has been justified by a recent NLO calculation
[45]. Experiments measuring such �c;b asymmetries could

be performed at RHIC and a proposed fixed target experi-
ment at LHC(AFTER) [40–42]. LHC would allow us to
study the gluon polarization effect in a deep saturation
regime [46] due to the very high energy of LHC and relative
low mass of C-even charmonium. In Refs. [47,48], the
promising channels to detect �b were discussed.

The analysis [36] based on NRQCD suggested that for
C-even quarkonium production, the color octet contribu-
tion is suppressed, while the color singlet contribution
dominates, especially at low transverse momentum [49],
though complications may arise at large transverse mo-
mentum [50,51]. Moreover, C-even bottomonium produc-
tion in the color octet configuration can certainly be
neglected [40,41,47], since it is strongly suppressed in
the velocity expansion. On the other hand, the SSA in
C-even heavy quarkonium production receives a contribu-
tion not only from ETQS function but also from the tri-
gluon correlation [52]. Nevertheless, we restrict ourselves
to color singlet production, i.e. the TF contribution, and
leave the color octet part and trigluon correlation for a
future study, as we are primarily aiming at establishing a
formalism that combines collinear twist-3 techniques and
NRQCD factorization to describe SSA in heavy quark-
onium production in the present paper.

Our calculation is carriedout in the covariant gauge closely
following the techniques outlined in Refs. [10,11,13] in

which the SSAs for pion and direct photon production in
hadronic collisions were computed. Recently, in analogy to
the SSAs, the double spin asymmetry ALT in the same
processeswas also studiedwithin the collinear twist-3 frame-
work [53]. Unlike the SSA in pion or photon production,
TMDfactorization could be applied in the kinematical region
where the transverse momentum of the heavy quarkonium is
much smaller than its mass. We extrapolate the complete
collinear twist-3 result to the small transverse momentum
region and find that it is consistent with the result obtained
from TMD factorization. The key step in establishing this
connection is to derive the large transverse momentum gluon
Sivers function and relate it to the ETQS function. Doing so,
we find that the hard gluon pole contribution to the gluon
Sivers function was overlooked in [35]. We will also com-
ment on the scale evolution of trigluon correlations for the
flavor singlet case in the following section.
The paper is organized as follows: in Sec. II, we first

briefly review �c;b production in unpolarized hadron colli-

sions. Next we derive the spin-dependent differential cross
section for �c;b production in hadronic collisions, present-

ing the result in the limits of high and low transverse
momentum. In particular, we discuss the matching be-
tween TMD factorization and the collinear twist-3 ap-
proach at small transverse momentum. The paper is
summarized in Sec. III.

II. CALCULATION OF THE UNPOLARIZED AND
POLARIZED CROSS SECTIONS

We start by introducing the relevant kinematical varia-
bles. For the process under consideration,

AðP; ~S?Þ þ BðP0Þ ! �c;bðlÞ þ X; (1)

we define the 4-momenta and polarization vector of the
incoming nucleons A, B and outgoing heavy quarkonium
�c;b as indicated. The Mandelstam variables are S ¼ ðPþ
P0Þ2, T ¼ ðP0 � lÞ2 and U ¼ ðP� lÞ2. The corresponding
Mandelstam variables on the partonic level are given by
ŝ ¼ ðxPþ x0P0Þ2, t̂ ¼ ðx0P0 � lÞ2 and û ¼ ðxP� lÞ2,
where x, x0 are the longitudinal momentum fractions car-
ried by the partons from nucleon A and B, respectively.
The squared invariant mass of the heavy quarkonium is
M2 ¼ l2 andM ¼ 2MQ up to small relativistic corrections,

where MQ is the heavy quark mass. In the unpolarized

case, to lowest order Oð�2
sÞ, one only has the gluon fusion

process shown in Fig. 1(a). This production mechanism
dominates at small transverse momentum, where the mean
produced quarkonium transverse momentum is of order
�QCD. At order Oð�3

sÞ, there are many more contributions

from the two-by-two scattering processes illustrated in
Figs. 1(b) and 1(c). In these processes, the large heavy
quarkonium transverse momentum is generated by recoil-
ing against an outgoing gluon or quark. Note that heavy
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quarkonium production at Oð�3
sÞ from gluon-gluon scat-

tering is not shown in the Fig. 1.
Within the so-called color singlet model [54–56], the

amplitude for the processes discussed has the general form,

M ¼
Z d4q

ð2�Þ4 Tr½Oðl; qÞ�ðl; qÞ�; (2)

where 2q is the relative momentum of the heavy quarks.
Here, �ðl; qÞ is the Bethe-Salpeter wave function of the
produced bound state.Oðl; qÞ is the perturbative part of the
diagrams shown in Fig. 1 with the heavy quark legs cut off.
Due to the nonrelativistic nature of heavy quarkonium, the
relative momentum is assumed to be small with respect to
the quark mass M=2. For the production of S-wave states,
one can simply neglect the dependence of Oðl; qÞ on the
relative momentum. This leads to

M ¼ 1ffiffiffiffiffiffiffi
4�

p R0ð0Þ½Oðl; 0ÞP SSzð0Þ�: (3)

Here, R0ð0Þ is the value of the radial S-wave function at
the origin, and P SSzð0Þ is the spin projection operator.

According to the color singlet model, the heavy quark
pair produced in the partonic scattering can evolve into a
quarkonium nonperturbatively only if they have the same
quantum numbers as the corresponding quarkonium. This
implies that the spin projector operator associated with�c;b

production has the form

P SSzð0Þ ¼
1

4M3=2
ð6 lþMÞ�5ð6 lþMÞ: (4)

With these calculational recipes, one derives the un-
polarized differential cross section for the gluon fusion
channel [56],

d�

dyd2l?
¼ �0G1ðzÞG1ðz0Þ; (5)

where y is the rapidity of the produced bound state. G1ðzÞ,
G1ðz0Þ are the unpolarized collinear gluon distribution
functions of two incoming hadrons. The longitudinal mo-
mentum fractions are constrained by kinematics, z ¼ Mffiffi

s
p ey,

z0 ¼ Mffiffi
s

p e�y. In Eq. (5), �0 is given by

�0 ¼ �2R2
0�

2
s

3M3S
: (6)

For the quark gluon scattering channel, we have [56]

d�

dyd2l?
¼ �0CF

�s

2�2
M2

X
a

Z dx

x

dx0

x0
fa1 ðxÞG1ðx0Þ

� ðt̂�M2Þ2 � 2ŝ û

ð�t̂Þðt̂�M2Þ2 �ðŝþ t̂þ û�M2Þ; (7)

where fa1 ðxÞ is the unpolarized collinear quark distribution.
The index a runs over all quark flavors. For the q �q channel,
the unpolarized differential cross section reads [56]

d�

dyd2l?
¼ �0CF

�8

3

�s

2�2
M2

X
a

Z dx

x

dx0

x0
fa1 ðxÞ �fa1ðx0Þ

� ðŝ�M2Þ2 � 2t̂ û

�ŝðŝ�M2Þ2 �ðŝþ t̂þ û�M2Þ: (8)

One notices that apart from the color factor, the hard
coefficient appearing in the q �q channel can be obtained
from those of the quark gluon channel by crossing t̂ $ ŝ.
The result for the gluon-gluon scattering channel can also
be found in Ref. [56]. Next-to-leading order corrections to
C-even hadronic quarkonium production have been calcu-
lated in Refs. [57,58]. Now let’s proceed to derive the
polarized cross section. To generate the spin asymmetry,
one additional gluon must be exchanged between the active
partons and the remanent part of the nucleon target as
shown in Figs. 2 and 3. The hard part, if an additional
gluon is attached, can be calculated perturbatively, while
the nonperturbative part describes the relevant three parton
correlations. As stated in the Introduction, we only focus
on the contribution in which the quark-gluon correlation in
the transversely polarized nucleon enters. This is precisely
the ETQS function that is defined as

Z d	�

2�

d
�

2�
eix1P

þ	�
eiðx�x1ÞPþ
�hP; S?j �c �ð0ÞgFþ�

? ð
�Þ

� c �ð	�ÞjP; S?i ¼ MN

2
TFðx; x1Þ
��

? S?� 6n��; (9)

where we have suppressed Wilson lines and have indicated
the nucleon mass byMN . We also introduced the light-cone

(a) (b) (c)

FIG. 1. Diagrams contributing to the unpolarized cross section at order Oð�2
s Þ and Oð�3

sÞ. Gluon-gluon scattering at order Oð�3
sÞ is

not shown. Diagrams with permutations of the gluon lines are also not shown.

TRANSVERSE SINGLE SPIN ASYMMETRY IN HADRONIC . . . PHYSICAL REVIEW D 88, 014008 (2013)

014008-3



vector n ¼ ð1þ; 0�; ~0?Þ, whose conjugate vector is �n ¼
ð0þ; 1�; ~0?Þ. Note that our definition of the ETQS function
differs by a factor 2�MN from the conventions used in
Refs. [14,15]. This ETQS function plays an important role
for SSA phenomenology. Its scale evolution has been
derived in Refs. [59–66].

Similar to the SSA in the Drell-Yan process, the strong
interaction phase factor necessary for having a nonvanishing
spin asymmetry arises from the interference between an
imaginary part of the partonic scattering amplitude with an
extra gluon, as shown in Fig. 2 for the quark-gluon scattering
channel, and the real scattering amplitude without a gluon
attachment. The imaginary part is due to the pole of the
parton propagator associated with the integration over the
gluon momentum fraction xg. This effectively implies that

one of the internal parton lines goes on shell. To isolate the
imaginary part of such poles, the distribution identity: 1

x�i
 ¼
PV 1

x � i��ðxÞ was used. Depending on which propagator’s
pole contributes, the amplitude may get contributions from
xg ¼ 0 (‘‘soft pole’’) and xg � 0 (‘‘hard pole’’) [14,15].

Both types of gluon poles show up in our calculation.
As the reader can find the relevant technical details for

our calculation in the literature [10–15], we sketch here
only some key steps of such twist-3 calculations.

As mentioned before, we carry out the calculation in the
covariant gauge, in which the leading contribution of the
exchanged gluon is the ‘‘plus’’ component Aþ. The gluon’s
momentum is dominated by the xgPþ kg?, where xg is the
longitudinal momentum fraction with respect to the
polarized proton. In order to calculate consistently with
twist-3 accuracy, one has to expand the hard parts in the
gluon transverse momentum and keep the terms linear in
kg?. Then the kg? factor can be combined with Aþ to

yield @?Aþ, which is an element of the field strength tensor
F@þ. After adding the term proportional to @þA? of the
same tensor [12,67], the soft part can be rewritten in the
form of the ETQS function. Making use of the ingredients
described above, the calculation is straightforward.
However, the derived complete results for the spin-
dependent cross sections is rather lengthy. To highlight
some interesting features of our results, in the following
we will only present the expression in the limit of
large transverse momentum (l? � M) and small trans-
verse momentum (�QCD � l? � M) instead of the

full expression. At large transverse momentum, after drop-
ping all terms suppressed by powers ofM=l?, one ends up
with the polarized differential cross section for the qg
channel,

d�

dyd2l?
� �0


��S?�l?�

�s

�
M2MN

X
a

Z dx

x

dx0

x0
1

�t̂
G1ðx0Þ�ðŝþ t̂þ ûÞ

��
2Ta

Fðx; xÞ � x

�
d

dx
Ta
Fðx; xÞ

��
Nc

2

ŝ2 þ û2

�t̂3

� Ta
Fðx; xÞ

�
Nc

2

2ŝ2 þ t̂ ŝ

t̂3
� 1

Nc

ŝ

2û t̂

�
� Ta

F

�
x; x

ŝ

ŝ� t̂

�
Nc

2

2ŝ3 þ ŝ2 t̂� t̂3

û ŝ t̂2

�
(10)

and for the q �q channel,

(a) (b) (c)

FIG. 3. Sample diagrams giving rise to the SSA in hadronic �c;b production from the quark-antiquark channel.

(a) (b) (c)

FIG. 2. Sample diagrams giving rise to the SSA in hadronic �c;b production from quark gluon channel.
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d�

dyd2l?
� �0

��8

3

�

��S?�l?�

�s

�
M2MN

X
a

Z dx

x

dx0

x0
1

�t̂
�fa1ðx0Þ�ðŝþ t̂þ ûÞ

��
2Ta

Fðx; xÞ � x

�
d

dx
Ta
Fðx; xÞ

�� �1

2Nc

t̂2 þ û2

�ŝ3

� Ta
Fðx; xÞ

�
Nc

2

2t̂2 þ t̂ ŝ

ŝ3
� 1

Nc

t̂

2û ŝ

�
� Ta

F

�
x; x

�t̂

ŝ� t̂

�
Nc

2

2t̂3 þ t̂2ŝ� ŝ3

�û t̂ ŝ2

�
: (11)

A few remarks on these analytical results are in order. First,
as usual, the SSA is suppressed by the factor MN=l? at
large transverse momentum. Second, one notices that
the derivative term and nonderivative term from the soft
gluon pole contribution cannot be combined into a
compact form as it can be done for the polarized cross
section for pion production in hadron collisions [13]. Also,
let us note that the hard gluon pole contribution survives
even though the heavy quarkonium mass is neglected, in
contrast to the cases of pion and direct photon production
for which the hard gluon pole contribution is absent.
Finally, it is observed that except for the different color

factors, the soft gluon contribution in the quark gluon

channel can be obtained from the quark-antiquark channel

by crossing ŝ $ t̂, while the hard coefficients associated

with the hard gluon pole contributions for the qg and q �q
channels differ by a minus sign after crossing ŝ $ t̂.

Now let us discuss our results in the low transverse

moment limit. In this limit, we neglect all terms suppressed

by the power of l2?=M
2, while keeping those enhanced by

the factor 1=l3?. In order to extrapolate our results to the

small transverse momentum region, one has first to expand

the delta function in l?,

�ðŝþ t̂þ û�M2Þ ¼ �ðŝð1� 	Þð1� 	0Þ � l2?Þ ¼
1

ŝ

�
�ð1� 	Þ
ð1� 	0Þþ þ �ð1� 	0Þ

ð1� 	Þþ þ �ð1� 	0Þ�ð1� 	Þ lnM
2

l2?

�
; (12)

where 	 ¼ z=x and 	0 ¼ z0=x0. The ‘‘plus’’ prescription is defined in the standard way. With this expansion, the spin-
dependent cross section in the kinematical region �QCD � l? � M is given by

d�

dyd2l?
� �0

Nc

2

�s

�

MN

l4?

��S?�l?�G1ðz0Þ

Z dx

x

��
x
@

@x
TFðx; xÞ

�
	� 1

	
½1þ ð1� 	Þ2� � TFðx; xÞ2ð1� 	Þ2

� TFðx; x� zÞ 2� 	

	

�

¼ �0

Nc

2

�s

�

MN

l4?

��S?�l?�G1ðz0Þ

Z dx

x

�
TFðx; xÞ 1þ ð1� 	Þ2

	
� TFðx; x� zÞ 2� 	

	

�
: (13)

In the second step of the derivation of the above formula,
we carried out the integration over x by parts. It is interest-
ing to note that the hard coefficient associated with the soft
gluon matrix element is the well-known splitting kernel
P gq. Here, it is worthwhile to point out that no leading
power contribution at small l? comes from the quark-
antiquark channel.

On the other hand, when l? � M, transverse-
momentum-dependent factorization can be applied. In the
TMD factorization approach, the SSA in �c;b production is

generated by the gluon Sivers function G?
1T;DY through the

gluon-gluon fusion channel,

d�

dyd2l?
¼ �0


��S?�l?�

MN

Z
d2k?d2k0?

k? 	 l?
l2?

� �2ðl? � k? � k0?ÞG1ðz0; k0?ÞG?
1T;DYðz; k?Þ;

(14)

whereG?
1T;DYðz; k?Þ denotes the gluon Sivers function. The

subscript ‘‘DY’’ indicates that the gluon Sivers function

contains a past-pointing gauge link built up through
initial state interactions, similar to that in the Drell-Yan
process.
When k? is of the order of �QCD, the gluon Sivers

function is an entirely nonperturbative object. However,
in the kinematic region �QCD � k? � M, TMD factori-

zation still holds and at the same time the function
G?

1T;DYðz; k?Þ can be calculated in terms of the twist-3

parton correlation function within perturbative QCD. It
can receive contributions from both the ETQS function
and trigluon correlations. In the current case, we are
interested only in the former one. Our perturbative
calculation follows a similar procedure as in [14,15],
resulting in

G?
1T;DYðz; l?Þ ¼

Nc

2

�s

�

M2
N

l4?

Z dx

x

�
TFðx; xÞ 1þ ð1� 	Þ2

	

� TFðx; x� zÞ 2� 	

	

�
; (15)
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where the soft gluon pole contribution is generated by
the diagram shown in the Fig. 4(a), and the hard gluon
pole contribution arises from Fig. 4(b). This result was first
derived in Ref. [35], though the second term was missed
there. At this point, we would like to mention that
the hard gluon pole term also contributes to the scale
evolution of the trigluon correlation for the flavor singlet
case, which was originally overlooked in [59] (see also the
erratum to [62]). In addition, due to the existence of
diagram Fig. 4(b), the chiral partner of the ETQS function,
~TFðx; x1Þ (notation used in Ref. [16]) also contributes to the
scale evolution of trigluon correlations [68].

By inserting Eq. (15) into Eq. (14) and making the ap-
proximation �2ðl? � k? � k0?Þ � �2ðl? � k?Þ, we repro-
duce the result obtained in the collinear twist-3 approach.
Therefore, for the observable under consideration, we have
obtained a unified picture in the kinematical region, where
TMD factorization and the collinear twist-3 approach both
apply, as was found in many other cases [14–16].

To end, let us briefly discuss a possible future numerical
study. In order to estimate the size of SSAs for �c;b

production, we must determine the input for the ETQS
functions including the diagonal and off-diagonal contri-
butions, as the polarized cross section depends on both soft
and hard gluon pole contributions. Unfortunately, the
off-diagonal contributions to TF needed for this SSA ob-
servable are not as well determined as the diagonal pieces
that can be related to moments of the quark Sivers function.
In Ref. [59], a Gaussian form was assumed for TFðx; x1Þ
with a maximum at x ¼ x1. This study was done in the
context of the evolution of TFðx; xÞ. In Ref. [69], an analy-
sis of higher-twist functions was conducted using light-
cone wave functions that include qqqg Fock states. In
contrast to [59], this study found that TFðx; x1Þ reaches
its maximum when x � x1 and some of its lowest values
when x ¼ x1. These completely different behaviors clearly
demonstrate our lack of knowledge for TFðx; x1Þ.
Nevertheless, it would be useful to determine the potential
impact of TFðx; x1Þ on the size of SSAs in �c;b hadronic

production.

III. SUMMARY

In summary, we have calculated the transverse single
spin asymmetry in hadronic �c;b production by employing

the collinear twist-3 approach in combination with the
color singlet model. We discussed the behavior of
the spin asymmetry at high and low transverse momentum.
In particular, at low transverse momentum, a match be-
tween the TMD factorization approach and the collinear
twist-3 formalism has been found after reexamining
the derivation of the gluon Sivers function at large trans-
verse momentum. As a byproduct of this work, we identi-
fied an additional term, which contributes also to the scale
evolution of the trigluon correlation for the flavor singlet
case. In addition, we have briefly outlined a plan for future
numerical studies. Let us mention that it would be feasible
to measure this asymmetry at RHIC and a proposed fixed
target experiment at LHC(AFTER) [40–42].
We emphasize that the transverse spin physics and the

heavy quarkonium production physics could mutually
benefit from studying this observable as explained in the
following. First of all, due to the sign mismatch issue [26],
a doubt concerning the validity of the collinear twist-3
approach in hadron collisions has arisen. SSA in heavy
quarkonium production provides a clean way to test this
approach, as compared to that in pion production where the
Collins mechanism could dominate the asymmetry [29].
Furthermore, one notices that the spin asymmetry is inde-
pendent of the radial wave function at the origin R0 and
only sensitive to the heavy quarkonium production mecha-
nism. Therefore, measuring this observable would provide
us a unique chance to pin down the ratio between the values
of the color singlet long-distance matrix element and the
color octet matrix element.
There are a number of directions in which our work

could be extended. First, the color octet contribution to
SSA should be taken into account as it plays a role at large
transverse momentum. Second, it is natural and straight-
forward to study the SSAs for other C-even heavy quark-
onium production in the framework outlined in this paper.
It is also possible to study SSAs for hadronic J=c , �
production. To do so, we have to compute the SSAs
generated from the trigluon correlation since it is the
only contribution that appears at the nontrivial leading
order in J=c , � production. Finally, one can calculate
the SSAs for photonic/electronic J=c ,� production, using
the collinear twist-3 approach in combination with the
NRQCD framework. These would be the relevant observ-
ables at the future EIC [70,71].
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FIG. 4. Diagrams contributing to the gluon Sivers function at
large transversemomentum in theflavor singlet case. (a) Soft gluon
pole contribution; (b) hard gluon pole contribution.
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and J. Zhou, Phys. Lett. B 712, 235 (2012); A. Metz, D.
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