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Radovan Dermı́šek* and Aditi Raval†

Physics Department, Indiana University, Bloomington, Indiana 47405, USA
(Received 31 May 2013; published 26 July 2013)

The deviation of the measured value of the muon anomalous magnetic moment from the standard

model prediction can be completely explained by the mixing of the muon with extra vectorlike leptons,

L and E, near the electroweak scale. This mixing simultaneously contributes to the muon mass. We show

that the correlation between contributions to the muon mass and muon g� 2 is controlled by the mass of

the neutrino originating from the doublet L. Positive correlation, simultaneously explaining both

measured values, requires this mass below 200 GeV. The decay rate of the Higgs boson to muon pairs

is modified and, in the region of the parameter space that can explain the muon anomalous magnetic

moment within one standard deviation, it ranges from 0.5 to 24 times the standard model prediction. In the

same scenario, h ! �� can be enhanced or lowered by �50% from the standard model prediction.

The explanation of the muon g� 2 anomaly and predictions for h ! �� are not correlated since these are

controlled by independent parameters. This scenario can be embedded in a model with three complete

vectorlike families featuring gauge coupling unification, sufficiently stable proton, and the Higgs quartic

coupling remaining positive all the way to the grand unification scale.
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I. INTRODUCTION

The measured value of the muon anomalous magnetic
moment represents one of the largest discrepancies from
predictions of the standard model (SM). There has been a
variety of new physics models attempting to explain this
deviation [1]. Most of the effort has been within the frame-
works related to the explanation of the hierarchy between
the electroweak (EW) scale and the grand unification
(GUT) scale or the Planck scale.

However, we continue to see no signs of new physics
related to solving the hierarchy problem at the LHC, and
many well motivated possible explanations of the muon
g� 2 anomaly are now excluded. This motivates us to step
back and see whether there are other simple ways to
explain the anomaly that are testable at the LHC but
not necessarily related to the naturalness problem of the
electroweak symmetry breaking.

In this paper we show that the deviation of the measured
value of the muon anomalous magnetic moment from the
standard model prediction can be completely explained by
the mixing of the muon with extra vectorlike leptons, L and
E, near the electroweak scale. This mixing simultaneously
contributes to the muon mass. We find that the correlation
between contributions to the muon mass and muon g� 2 is
controlled by the mass of the neutrino originating from the
doublet L, which is given by the vectorlike mass parameter
ML. Positive correlation, simultaneously explaining both
measured values, requires this parameter to be small,
ML & 200 GeV. We further discuss implication of this

scenario for Higgs decays, namely, h ! �þ�� and
h ! ��, and provide a UV embedding of this scenario
with many attractive features.
The possibility of explaining the muon g� 2 anomaly

by the mixing of the muon with extra heavy leptons was
previously noticed in Refs. [2,3]. The mass enhancement
originating from the loop involving a heavy lepton is
compensated by small flavor violating couplings (which
originate from the mixing, and thus they are suppressed by
the mass of the heavy lepton). Therefore, the new physics
contribution to the muon g� 2, with new fermions at or
below the TeV scale, can be of the same order as the
contributions of theW and Z bosons in the standard model.
A similar effect can be obtained with a Z0 with flavor
violating couplings of the muon to a heavier lepton; see,
for example, Ref. [4].
Indeed, in several scenarios with new leptons near the

EW scale explored recently in Ref. [3], it was found that
the size of the muon g� 2 anomaly is naturally of the same
order as the contribution generated by heavy leptons, when
their contribution to the muon mass is comparable to the
physical muon mass. However, it was found that a positive
contribution to the muon mass results in a negative
contribution to the muon g� 2 and vice versa. This was
explored in the asymptotic limit of taking masses of extra
leptons large while keeping the mixing with the muon
constant (by increasing Yukawa couplings). We will
show that this anticorrelation only happens in the asymp-
totic limit due to the dominance of the Higgs contribution.
For smaller masses, it is the W contribution, controlled by
ML, that dominates. This reverses the sign of the correla-
tion, and a simultaneous explanation of the muon mass and
muon g� 2 from the mixing can be achieved, and it is

*dermisek@indiana.edu
†adiraval@indiana.edu

PHYSICAL REVIEW D 88, 013017 (2013)

1550-7998=2013=88(1)=013017(12) 013017-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.88.013017


fairly generic for small ML.
1 In addition, an arbitrary

correlation can be achieved in between the small ML

case, dominated by the W loop, and the asymptotic case,
dominated by the Higgs loop.

The mixing of the muon with heavy leptons generically
leads to a modification of the Higgs coupling to the muon
[3,5]. Thus, the decay rate of the Higgs boson to muon
pairs is modified, and in the region of the parameter space
that can explain the muon g� 2 within 1�, it ranges from
�0:5 to�24 times the standard model prediction. A part of
the parameter space is already excluded by the ATLAS
search for h ! �þ��, which with 20:7 fb�1 collected at
8 TeV sets the limit 9.8 times the SM prediction [6].

The scenario also allows for a sizable modification of
h ! ��, since extra charged leptons can appear in loops
mediating this process. This was recently extensively
discussed in Refs. [7–10], motivated by the observed rate
for h ! �� at both the ATLAS and CMS experiments
being significantly above the SM prediction at some point.
However, with more data collected, the current ATLAS
result is 1:65� 0:35 times the SM prediction [11], while
the CMS experiment finds 0:78� 0:27 [12]. In the region
of the parameter space that can explain the muon g� 2
within 1�, limiting the size of Yukawa couplings to 0.5,
motivated by a simple UV embedding, the branching ratio
for h ! �� can be enhanced by �15% or lowered by
�25%. Allowing Yukawa couplings of order 1, the
h ! �� rate can be modified by �50%. The explanation
of the muon g� 2 anomaly and predictions for h ! ��
are, however, not correlated since these are controlled by
independent parameters.

Models with flavor violating couplings are typically
highly constrained by limits on a variety of flavor changing
precesses. However, these constraints involve products of
flavor violating couplings of two different light leptons,
while for the explanation of the muon g� 2 anomaly, only
the couplings of the muon to heavy leptons are necessary.
We can therefore take the existing limits on flavor violating
processes as constraints on other couplings in the model that
are not necessary for the explanation of the muon g� 2
anomaly.

While the extra vectorlike leptons, L and E, that mix
with the muon are sufficient for the explanation of the
muon g� 2 anomaly, this does not have to be the full
story. The model can be combined with other scenarios
involving vectorlike fermions. For example, it is possible
to embed it into a recently discussed scenario with
extra three or more complete vectorlike families [13,14]

featuring gauge coupling unification, a sufficiently stable
proton, and the Higgs quartic coupling remaining positive
all the way to the GUT scale. In this scenario, predicted
values of gauge couplings at the electroweak scale are
highly insensitive to GUT scale parameters and masses
of vectorlike fermions. They can be understood from IR
fixed point predictions and threshold effects from integrat-
ing out vectorlike families. Furthermore, a model with
extra Z0 and vectorlike quarks was recently discussed as
a possible explanation of the anomalies in Z-pole observ-
ables: the forward-backward asymmetry of the b quark and
the lepton asymmetry obtained from the measurement of
left-right asymmetry for hadronic final states [15,16].
These two scenarios could also be combined, and a simul-
taneous explanation of anomalies in Z-pole observables
and the muon g� 2 could be obtained.
This paper is organized as follows. In Sec. II, we define

the model and find expressions for couplings of Z, W, and
h to the SM and extra leptons. In Sec. III, we calculate
contributions of extra leptons to the muon anomalous
magnetic moment, qualitatively discuss expected results,
provide results from numerical scans over the parameters
space, and discuss the predictions from the regions that
explain the muon g� 2 for Higgs decays, namely,
h ! �þ�� and h ! ��. We also discuss constraints
from precision EW observables and current constraints
from the LHC and encourage further searches for extra
leptons in a variety of final states at the LHC. In Sec. IV, we
discuss a possible UV embedding of this model in the
extension of the SM with three complete vectorlike
families. We provide some concluding remarks in Sec. V.

II. MODEL

Quantum numbers of SM particles and an extra vector-
like family (VF) are summarized in Table I. The notation is
straightforward; we use lower case letters for standard
model particles and upper case letters for particles from
extra VF, e.g., ER has the same quantum numbers as eR,
and its vectorlike partner is EL. For the discussion of the
muon g� 2, only LL;R and EL;R are relevant. Extra quarks

obviously do not contribute, and we will not assume that
the standard model singlets NL;R are near the EW scale.

The most general renormalizable Lagrangian for
charged leptons is given by

L���lLiyijeRjH� �lLi�
E
i ERH� �LL�

L
j eRjH�� �LLERH

� ��Hy �ELLR�ML
�LLLR�ME

�ELERþH:c:; (1)

where the first five terms represent the usual standard
model Yukawa couplings (the sum over flavor indices is
assumed), Yukawa couplings between SM leptons and
leptons from the VF, and between leptons from the VF.
The last two terms are mass terms for vectorlike pairs of
leptons. We label the components of doublets as follows:

1This possibility was missed in the original version of Ref. [3]
as a result of a mistake in the calculation of theW contribution. It
was pointed out by one of the authors of this paper, A. R. In the
corrected version of Ref. [3], some points with a positive
correlation between contributions to the muon g� 2 and muon
mass appeared, but the focus of the paper remained on the
asymptotic case.
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lLi¼
�i

eLi

 !
; LL;R¼

L0
L;R

L�
L;R

 !
; H¼

0

vþ hffiffi
2

p

 !
; (2)

where v ¼ 174 GeV is the vacuum expectation value of
the Higgs field.

After spontaneous symmetry breaking, the 5� 5 mass
matrix for charged leptons is given by

ð �eLi; �L�
L ; �ELÞMe

eRj

L�
R

ER

0
BB@

1
CCA

¼ð �eLi; �L�
L ; �ELÞ

yijv 0 �E
i v

�L
j v ML �v

0 ��v ME

0
BB@

1
CCA

eRj

L�
R

ER

0
BB@

1
CCA; (3)

and it is convenient to define 5-component vectors: eLa �
ðeLi; L�

L ; ELÞT (and similarly for eRa with L ! R), which
combine the left- (right-)handed fields of the SM with
those from the extra vectorlike pairs. We use indices
from the beginning of the alphabet for combined vectors
and indices starting with i for only the standard model
leptons. This mass matrix can be diagonalized by a biuni-

tary transformation, Uy
LMeUR, which defines the mass

eigenstate basis. We label the mass eigenstates by ea, and
for the lightest three eigenstates we will also use their
names: e, �, and �.

Before diagonalizing the full mass matrix, it is
instructive to change the basis by a unitary transformation,
eLi ! ðVLeLÞi, eRj ! ðVReRÞj, which diagonalizes the

standard model Yukawa couplings yij. The mass matrix

becomes

ðVy
LyVRÞijv 0 ðVy

L Þik�E
k v

�L
l ðVRÞljv ML �v

0 ��v ME

0
BB@

1
CCA: (4)

Since we are interested in modifying couplings of the

muon, we assume that only ðVy
L Þ2k�E

k and �L
l ðVRÞl2 are

nonzero. This corresponds to the situation when �E
k /

ðVLÞk2 and �L
l / ðVy

RÞ2l, or in the basis where standard

model Yukawa couplings are diagonal, it corresponds to

�L;E
1 ¼ �L;E

3 ¼ 0, and �L;E
2 � �L;E is nonzero. This is the

minimal scenario that does not modify standard model
couplings of the electron and tau.
In this minimal scenario, masses of the electron and tau

fully originate from their Yukawa couplings to the Higgs
boson since they do not mix with heavy leptons. Therefore,
we can look at the 3� 3 mass matrix for the muon and the
extra heavy leptons separately:

Uy
L

y�v 0 �Ev

�Lv ML �v

0 ��v ME

0
BB@

1
CCA UR¼

m� 0 0

0 me4 0

0 0 me5

0
BB@

1
CCA; (5)

where we use the same names for diagonalization matrices
UL;R as for the matrices that diagonalize the general 5� 5
matrix. We label their components by 2, 4, and 5 so that
results are applicable to the general scenario. Similarly we
label the heavy mass eigenstates by e4 and e5.
In the limit

�Ev; �Lv; ��v; �v � ME;ML; (6)

approximate analytic formulas for diagonalization matri-
ces can be obtained, which are useful for deriving approxi-
mate formulas for couplings of Z, W, and h. In this limit,
the two heavy charged leptons have masses close to ML

and ME. In the basis (m�, me4 ’ ML, me5 ’ ME), the

diagonalization matrices are given by

UL ¼

1� v2 �2
E

2M2
E

�v2

�
�E

ML

��MEþ�ML

M2
E�M2

L

� y��L

M2
L

�
v �E

ME

v2
���EML�y��LME

M2
LME

1� v2 ð�MEþ ��MLÞ2
2ðM2

E�M2
LÞ2 v

��MLþ�ME

M2
E�M2

L

�v �E

ME
�v

��MLþ�ME

M2
E�M2

L

1� v2 �2
E

2M2
E

� v2 ð�MEþ ��MLÞ2
2ðM2

E�M2
LÞ2

0
BBBBBBB@

1
CCCCCCCA

(7)

and

TABLE I. Quantum numbers of standard model and extra vectorlike particles. The electric charge is given byQ ¼ T3 þ Y, where T3

is the weak isospin, which is þ1=2 for the first component of a doublet and �1=2 for the second component.

qL uR dR lL �R eR H QL;R UL;R DL;R LL;R NL;R EL;R

SUð3ÞC 3 3 3 1 1 1 1 3 3 3 1 1 1

SUð2ÞL 2 1 1 2 1 1 2 2 1 1 2 1 1

Uð1ÞY 1
6

2
3 � 1

3 � 1
2 0 �1 1

2
1
6

2
3 � 1

3 � 1
2 0 �1
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UR ¼

1� v2 �2
L

2M2
L

v �L

ML
v2

�
�L

ME

��MLþ�ME

M2
E�M2

L

þ y��E

M2
E

�

�v �L

ML
1� v2 �2

L

2M2
L

� v2 ð ��MEþ�MLÞ2
2ðM2

E�M2
LÞ2 v

��MEþ�ML

M2
E�M2

L

v2 �L
��ME�y��EML

MLM
2
E

�v
��MEþ�ML

M2
E�M2

L

1� v2 ð ��MEþ�MLÞ2
2ðM2

E�M2
LÞ2

0
BBBBBBB@

1
CCCCCCCA
: (8)

A. Couplings of the Z boson and photon

Couplings of the electron and � to the Z boson are not
modified from their SM values. Couplings of other charged
leptons to the Z boson are modified because the extra EL is
an SU(2) singlet, but it mixes with SU(2) doublets, and L�

R

originates from an SU(2) doublet, but it mixes with SU(2)
singlets. The couplings follow from the kinetic terms:

Lkin � �eLai 6DaeLaþ �eRai 6DaeRa

¼ �̂eLaðUy
LÞaci 6DcðULÞcbêLbþ �̂eRaðUy

RÞaci 6DcðURÞcbêRb;
(9)

where the vectors of mass eigenstates are êLa �
ð�̂L; êL4; êL5ÞT and similarly for êR. The covariant
derivative is given by

D�a ¼ @� � i
g

cos �W
ðT3

a � sin 2�WQaÞZ� � ieQaA�;

(10)

where the weak isospin T3 and the electric charge Q
for a given field can be obtained from Table I. Defining
couplings of the Z boson to fermions fa and fb by the
Lagrangian of the form

L � ð �fLa��gZfafbL fLb þ �fRa�
�gZfafbR fRbÞZ�; (11)

we find the couplings of left- and right-handed fields:

gZeaebL ¼ g

cos �W

X
c¼2;4;5

ðT3
Lc � sin 2�WQcÞðUy

LÞacðULÞcb;

(12)

gZeaebR ¼ g

cos �W

X
c¼2;4;5

ðT3
Rc � sin 2�WQcÞðUy

RÞacðURÞcb;

(13)

where Qc ¼ �1 is the same for all states; T3
Lc ¼ �1=2 for

c ¼ 2, 4, and 0 for c ¼ 5; and T3
Rc ¼ 0 for c ¼ 2, 5, and

�1=2 for c ¼ 4.
SinceQc ¼ �1 for all the fields, couplings of the photon

are not modified from their SM values by field rotations.
However, due to different weak isospins of fields that mix,
the couplings of the Z boson given in Eqs. (12) and (13) are
modified. Corrections to the usual SM value of the
left-handed charged lepton coupling,

ðgZeaebL ÞSM ¼ g

cos�W

�
� 1

2
þ sin 2�W

�
�ab; (14)

can be written as

�gZeaebL ¼ g

2 cos�W
ðUy

LÞa5ðULÞ5b: (15)

Similarly, corrections to the usual SM value of the right-
handed charged lepton coupling,

ðgZeaebR ÞSM ¼ g

cos �W
sin 2�W�

ab; (16)

can be written as

�gZeaebR ¼ � g

2 cos �W
ðUy

RÞa4ðURÞ4b: (17)

B. Couplings of the W boson

The couplings of the electron and � to the W boson are
not modified from their SM values. Couplings of other
charged leptons follow from the kinetic terms:

Lkin � gffiffiffi
2

p ð ����
��L þ �L0

L�
�L�

L þ �L0
R�

�L�
R ÞWþ

� þ H:c:

(18)

¼ gffiffiffi
2

p ð ����
�ðULÞ2bêLb þ �L0

L�
�ðULÞ4bêLb

þ �L0
R�

�ðURÞ4bêRbÞWþ
� þ H:c: (19)

Defining couplings of the W boson to neutrinos �a and
charged leptons êb by the Lagrangian of the form

L � ð ��La�
�gW�aeb

L êLb þ ��Ra�
�gW�aeb

R êRbÞWþ
� þ H:c:;

(20)

we find couplings of left- and right-handed fields:

g
W��eb
L ¼ gffiffiffi

2
p ðULÞ2b; gW�4eb

L ¼ gffiffiffi
2

p ðULÞ4b; (21)

gW�4eb
R ¼ gffiffiffi

2
p ðURÞ4b: (22)

C. Couplings of the Higgs boson

In the minimal scenario that we are focusing on, cou-
plings of the electron and tau to the Higgs boson are given
by the SM relations, �e;� ¼ me;�=v. This usual relation

between the mass of a particle and its coupling to the
Higgs boson does not apply to other charged leptons as a
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consequence of explicit mass terms for vectorlike fermi-
ons, ME and ML. The couplings of the Higgs boson for
other charged leptons follow from the Yukawa terms:

LY � � 1ffiffiffi
2

p �eLaYabeRbhþ H:c:

¼ � 1ffiffiffi
2

p �̂eLaðUy
LÞacYcdðURÞdbêRbhþ H:c:; (23)

where

Y ¼
y� 0 �E

�L 0 �

0 �� 0

0
BB@

1
CCA: (24)

Since the Y matrix is not proportional to the mass matrix
given in Eq. (5), the Higgs couplings are in general flavor
violating. Defining couplings of the Higgs boson to mass
eigenstates fermions fa and fb by the Lagrangian of the
form

L � � 1ffiffiffi
2

p �fLa�fafbfRbhþ H:c:; (25)

we find

�eaeb ¼
X

c;d¼2;4;5

ðUy
LÞacYcdðURÞdb: (26)

Noticing that Yv ¼ Me � diagð0;ML;MEÞ, the Higgs
boson couplings to mass eigenstates can be alternatively
written as

�eaebv ¼
m� 0 0

0 me4 0

0 0 me5

0
BB@

1
CCA�Uy

L

0 0 0

0 ML 0

0 0 ME

0
BB@

1
CCAUR;

(27)

where the first term comes from the usual SM relation
between fermion masses and their couplings to the Higgs
boson, and the second term represents contributions from
the ML;E terms.

In the limit (6), the approximate analytic formulas for all
the couplings of Z, W, and h can be easily obtained from
diagonalization matrices (7) and (8).

III. MUON ANOMALOUS MAGNETIC MOMENT

The discrepancy between the measured value of the
muon anomalous magnetic moment [17] and the SM
prediction,

�a
exp
� ¼ a

exp
� � aSM� ¼ 2:7� 0:80� 10�9; (28)

which we will use in our analysis, is the average of evalu-
ations of this discrepancy reported by several groups:
2:49� 0:87� 10�9 [18], 2:61� 0:80� 10�9 [19], and
2:87� 0:80� 10�9 [20]. On average, the discrepancy is
at the level of 3.4 standard deviations.
The contributions to the muon magnetic moment from

extra fermions originate from the loop diagrams with the
Higgs, Z, and W bosons shown in Fig. 1. Our calculation
of these contributions, presented below, agrees with the
results in Refs. [21,22] and also in the revised version of
Ref. [3]. For references to the original calculation of the Z,
W, and h contributions in the SM, see Ref. [1].
The contribution from the Higgs diagram is given by

�ah� ¼ � m�

32	2M2
h

X
b¼4;5

½ðj��eb j2 þ j�eb�j2Þm�FhðxhbÞ

þ Reð��eb�eb�ÞmebGhðxhbÞ�; (29)

where xhb � ðmeb=MhÞ2, the couplings are given in

Eq. (26) with index � � e2, and the loop functions are
as follows:

FhðxÞ ¼ � x3 � 6x2 þ 3xþ 6x ln ðxÞ þ 2

6ð1� xÞ4 ; (30)

GhðxÞ ¼ x2 � 4xþ 2 ln ðxÞ þ 3

ð1� xÞ3 : (31)

The contribution from the Z diagram is given by

�aZ� ¼ � m�

8	2M2
Z

X
b¼4;5

½ðjgZ�eb
L j2 þ jgZ�eb

R j2Þm�FZðxZbÞ

þ ReðgZ�eb
L g

Z�eb	
R ÞmebGZðxZbÞ�; (32)

where xZb ¼ ðmeb=MZÞ2, the couplings are given in

Eqs. (12) and (13) with index � � e2, and the loop
functions are as follows:

FIG. 1. Feynman diagrams contributing to the muon magnetic moment that involve loops of extra fermions and the Higgs, Z and W
bosons.
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FZðxÞ ¼ 5x4 � 14x3 þ 39x2 � 38x� 18x2 ln ðxÞ þ 8

12ð1� xÞ4 ;

(33)

GZðxÞ ¼ x3 þ 3x� 6x ln ðxÞ � 4

2ð1� xÞ3 : (34)

Finally, the contribution from theW diagram is given by

�aW� ¼ � m�

16	2M2
W

½ðjgW�4�
L j2 þ jgW�4�

R j2Þm�FWðxWÞ

þ ReðgW�4�
L g

W�4�	
R ÞMLGWðxWÞ�; (35)

where xW ¼ ðML=MWÞ2 since the mass of �4 is given by
ML. The couplings are given in Eqs. (21) and (22) with
index � � e2, and the loop functions are as follows:

FWðxÞ ¼ � 4x4 � 49x3 þ 78x2 � 43xþ 18x3 ln ðxÞ þ 10

6ð1� xÞ4 ;

(36)

GWðxÞ ¼ � x3 � 12x2 þ 15xþ 6x2 ln ðxÞ � 4

ð1� xÞ3 : (37)

A. Qualitative analysis

An interesting insight can be obtained by integrating out
vectorlike leptons [3]. In the limit (6), the muon mass, after
EW symmetry breaking, receives contributions from two
terms:

Leff � � ��L

�
y� þ �L ���E

MLME

HHy
�
�RHþ H:c:

! �ðmH
� þmLE

� Þ ��L�R þ H:c:; (38)

where mH
� originates from the direct Yukawa coupling of

the muon flavor eigenstate andmLE
� comes from the mixing

with vectorlike leptons. Due to the same chiral structure,
the mLE

� term also contributes to the muon magnetic

moment. This contribution can be written as

�a� ’ c
m�m

LE
�

ð4	vÞ2 ’ 0:85c
mLE

�

m�

�aexp� : (39)

In the limit ME ’ ML 
 MZ, it was found that c ¼ �1
[3]. This means that the contributions to the muon mass
and muon g� 2 are anticorrelated. Nevertheless, ignoring
the wrong sign, the size of the contribution to the muon
g� 2 is what is needed to explain the measured value
when the muon mass originates mostly from the mixing
with vectorlike leptons.

However, this conclusion holds only in the asymptotic
region ME ’ ML 
 MZ. We can obtain a simple approxi-
mate formula for �a� even in the region of small ME and

ML. It turns out, that the formula (39) is still valid with c
being a function of masses of extra fermions, which can be
written as:

c ¼ cWðxWÞ þ cZðxZÞ þ chðxhÞ ’ GWðxWÞ � 2: (40)

The second part follows from cWðxWÞ ’ GWðxWÞ and the
sum of the cZðxZÞ and chðxhÞ being approximately �2 in a
large range of masses, as a result of GZðxÞ and xGhðxÞ
changing slowly with x.
The Higgs contribution can be approximately written as

chðxhÞ ’ 3=2xhGhðxhÞ, where xh is associated with the
lighter of the two leptons.2 It varies from �1 to �3=2
for xh between 1 and 1. Asymptotically, or if at least one
of the masses of extra charged leptons is somewhat larger
than MZ, the Z contribution is given by cZðxZÞ ’ GZðxZÞ,
where the xZ is associated with the heavier of the two
leptons. Numerically, cZðxZÞ ’ �1=2, which is the asymp-
totic value ofGZðxZÞ. For both masses close toMZ, we find
cZðxZÞ ’ GZðxZÞ þ xZG

0ðxZÞ, which for xZ ¼ 1 equals
�3=4. Therefore, the Z contribution varies from �3=4 to
�1=2 for xZ between 1 and 1. Thus, the Z and Higgs
contributions add up to �� 2 for a large range of masses
of vectorlike leptons.
The W contribution, cWðxWÞ ’ GWðxWÞ, strongly

depends on the mass of the heavy neutrino, which in our
model is given by ML. While its asymptotic value is þ1
leading to total c ’ �1, for ML ’ MW it is þ3 leading to
total c ’ þ1. Therefore, the correlation between contribu-
tions to the muon mass and muon g� 2 is mostly con-
trolled by ML, and we have two solutions: the asymptotic
one, ML 
 MZ, in which case the measured value of the
muon g� 2 is obtained formLE

� =m� ’ �1, and the second

one with a light extra neutrino, ML ’ MW , in which case
the measured value of the muon g� 2 is obtain for
mLE

� =m� ’ þ1. In the first case, about twice as large a

contribution from the direct Yukawa coupling of the muon
is required to generate the correct muon mass, while in the
second case, the muon mass can fully originate from
the mixing with heavy leptons. Any other correlation be-
tween þ1 and �1 can be obtained by increasing the ML

from the EW scale to the �1 TeV scale.
This is illustrated in Fig. 2 in which we show separate

contributions to the muon g� 2 and the c coefficient from
Z,W, and h as functions ofML. In both plots, we fixME ¼
250 GeV, �� ¼ 0:5, � ¼ 0, and �L and �E are set to their
approximate maximum values allowed by precision EW
data (discussed later), which fixes mLE

� . The almost iden-

tical shape of lines in both plots in Fig. 2 further supports
the fact that Eq. (39) with c given in Eq. (40) is indeed a
good approximation. Chosen signs of couplings in the plots
correspond to generating a positive contribution to the
muon mass from mLE

� . If the product �L ���E is negative,

leading to a negative contribution to the muon mass from

2In the derivation of this formula, we used the fact that
xhGhðxhÞ varies very little with xh. A better approximation is
chðxhÞ ’ xh4Ghðxh4Þ þ 1=2xh5Ghðxh5Þ when the masses of the
two charged leptons are different, and chðxhÞ ’ xhGhðxhÞ �
1=2x2hG

0ðxhÞ when the masses are similar.
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mLE
� , the g� 2 plot would look identical with the signs on

the y axis flipped.
The contributions to the c coefficient in Fig. 2, for a

given choice of parameters, are representative for a large
range of ML and ME. The plots would be almost identical
for any larger value of ME and would only slightly change
in the smallML region forME as small as 100 GeV. All the
Yukawa couplings only rescale the contributions to the
muon g� 2; different choices do not change the results
qualitatively as far as the condition (6) is satisfied.

B. Constraints

In the numerical scans over the parameter space that
follow, we impose constraints from precision EW data
related to the muon that include the Z pole observables
(Z partial width, forward-backward asymmetry, left-right
asymmetry), the W partial width, and the muon lifetime
[23]. In the limit of small couplings (6), these constraints
approximately translate into 95% C.L. bounds on �E;L

couplings:

�Ev

ME

& 0:03;
�Lv

ML

& 0:04: (41)

These quantities squared represent modifications of the
SM couplings of the Z and W to the muon, which can be
obtained from Eqs. (15), (17), and (21) and the diagonal-
ization matrices (7) and (8). We further impose constraints
from oblique corrections, namely, from S and T parameters
[23]. Finally, we impose the large electron positron collider
limits on masses of charged leptons, which are required to
be larger than 105 GeV.

C. Scan over the parameter space: Muon g � 2
and Higgs decays

The previous qualitative discussion of expected results is
fully supported by numerical scans. In Fig. 3 on the left, we

plot the contribution to the muon g� 2 vs the contribution
to the muon mass from the mixing with heavy leptons for
randomly generated points with ML 2 ½100; 1000� GeV,
ME 2 ½100; 1000� GeV, �� < 0:5, and �L;E in allowed

ranges from precision EW data. For simplicity, � is set to
0 in these plots because it should not have a significant
effect on our results. In all the plots in this section the mLE

�

is defined more precisely as the mass that the muon would
have if the direct Yukawa coupling was zero. Different
colors (shades) correspond to different regions of ML.
This shows that it is indeedML that controls the correlation
between the contribution to the muon g� 2 and
muon mass.
There are two solutions: the asymptotic solution for

large ML, in which the measured muon g� 2 can be
obtained for mLE

� =m� ’ �1 and so the physical muon

mass is a result of a cancellation between the direct
Yukawa coupling and the contribution from the mixing,
and the light neutrino solution for ML ’ 100 GeV, in
which case the muon mass can fully originate from the
mixing, mLE

� =m� ’ þ1.3

On the right in Fig. 3, we plot the same points in the
�a� � R�� plane, where

R�� � �ðh ! �þ��Þ
�ðh ! �þ��ÞSM : (42)

This plot can be easily understood from Eq. (38). The
enhancement of �ðh ! �þ��Þ by a factor of 9 compared
to the SM in the small ML case that can explain the muon
g� 2 anomaly, for which mLE

� =m� ’ þ1, originates from

three possible ways one Higgs coupling and 2 vacuum

FIG. 2 (color online). Left: contributions to the muon g� 2 from Z,W, and h loops with heavy leptons shown in Fig. 1 as functions
of ML. The sum of all contributions is also plotted. Dark and light shaded bands correspond to 1� and 2� regions of �a� specified in

Eq. (28). Right: separate and total contributions to the c coefficient defined by assuming the equality in Eq. (39) that shows the
correlation between contributions of heavy leptons to the muon g� 2 and the muon mass. In both plots, we fix ME ¼ 250 GeV,
�� ¼ 0:5, � ¼ 0, and �L and �E are set to their approximate maximum allowed values given in Eq. (41). The signs of couplings are
chosen so that mLE

� is positive. For the opposite sign of mLE
� , the signs on the y axis in the left plot should be flipped.

3In the corrected version of Ref. [3], there are solutions
explaining the muon g� 2 with significantly smaller mLE

� com-
pared to our results. For these points, however, the new physics
contribution to the muon mass was not calculated correctly, and
there are indeed no such solutions [24].
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expectation values replace the Higgs fields in the second
term in Eq. (38). In the asymptotic case, mLE

� =m� ’ �1,

which also explains the anomaly, R�� ’ 1, which results

from the first term in Eq. (38) being twice as large as in the
SM and the same combinatoric factor of 3 with a minus
sign from the second term.

From the qualitative discussion in the previous section,
we expect that allowing nonzero � should not change the
results dramatically. This can be seen in Fig. 4, which is
obtained under the same conditions as Fig. 3 with addi-
tional randomly generated � < 0:5. An additional � cou-
pling has, however, important consequences for h ! ��.
If both � and �� are nonzero, the h ! �� can be signifi-
cantly modified. In Fig. 5, we plot the points from Fig. 4 in
the �a� � R�� plane, where

R�� ¼ �ðh ! ��Þ
�ðh ! ��ÞSM : (43)

In the plot on the left, the color notation is the same as in
Fig. 4, namely, it represents different regions of ML, while

in the plot on the right, different colors (shades) represent
the mass of the lightest mass eigenstate, which is more
meaningful for h ! ��.
In the smallML case, which can explain the muon g� 2

within one standard deviation, the R�� can be decreased by

about 25% or increased by about 15%. In the asymptotic
case, R�� is negligibly modified in the region that explains

the muon g� 2 within one standard deviation.
Some of the results presented so far depend on our upper

limit on possible Yukawa couplings, which we took to be
0.5. This upper limit is motivated by a simple UV embed-
ding with nice features concerning the stability of the EW
minimum of the Higgs potential, which we will discuss in
the next section. This, however, is just one possibility, and
in principle larger values of Yukawa couplings should be
considered on phenomenological grounds. Thus, we also
plot similar results assuming the upper limit for all Yukawa
couplings to be 1.
The randomly generated points extended to �� < 1

with � ¼ 0 are plotted in Fig. 6 in the �a� �mLE
� =m�

plane on the left and in the �a� � R�� plane on the right.

FIG. 4 (color online). The same as in Fig. 3 with additional randomly generated � < 0:5.

FIG. 3 (color online). Left: randomly generated points with ML 2 ½100; 1000� GeV, ME 2 ½100; 1000� GeV, �� < 0:5, � ¼ 0, and
�L;E in the allowed ranges from precision EW data, plotted in the �a� �mLE

� =m� plane. Both signs of couplings are allowed.

The lightest mass eigenstate is required to satisfy the large electron positron limit. Different colors (shades) correspond to different
regions ofML in the order from top to bottom on the right side of the plot:ML < 150 GeV,<250 GeV,<500 GeV, and<1000 GeV
(the order is reversed on the left side of the plot). The horizontal line and dark (light) shaded bands correspond to the central
experimental value of �a� and 1� (2�) regions, respectively, specified in Eq. (28). Right: the same points as on the left plotted in the

�a� � R�� plane.
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Comparing Figs. 3 and 6 clearly demonstrates the effect
of varying �� coupling; increasing �� extends the plots to
larger values of both �a� and mLE

� =m�, while the corre-

lation of these contributions is unchanged. The Higgs
coupling to the muon is modified more dramatically, and
part of the parameters space is already ruled out by the
ATLAS search for h ! �þ�� [6] (lightly shaded regions
in both plots). The R�� ranges between 6 and 9.8

(the current limit) in the small ML case that can explain

the muon g� 2 anomaly and between 1 and 9 in the
asymptotic case.
The addition of � < 1 somewhat expands the ranges of

�a�, m
LE
� =m�, and R�� for all regions of ML, which can

be seen in Fig. 7. Nevertheless, as expected, the plots in
Figs. 6 and 7 look qualitatively very similar.
Increasing �� and � up to 1 significantly extends ranges

of predictions for R��, given in Fig. 8, especially for the

asymptotic case. In the small ML case that can explain the

FIG. 5 (color online). Left: the same as in Fig. 4 plotted in the �a� � R�� plane. Right: the same as on the left, but different colors
(shades) represent the mass of the lighter extra charged lepton mass eigenstate, me4 , in ranges <150 GeV, <250 GeV, <500 GeV,

and <1000 GeV when going from outside toward the center.

FIG. 7 (color online). The same as in Fig. 6 with additional randomly generated � < 1.

FIG. 6 (color online). The same as in Fig. 3 with the region of �� extended to �� < 1. The lightly shaded points are excluded by the
ATLAS search for h ! �þ��. The plot on the right would extend to larger values of R�� ’ 24.

EXPLANATION OF THE MUON g� 2 ANOMALY WITH . . . PHYSICAL REVIEW D 88, 013017 (2013)

013017-9



muon g� 2 anomaly within 1�, the R�� ranges between

0.6 and 1.15; while in the asymptotic case, the R�� ranges

between 0.9 and 1.5. In addition, the range of possible
masses of the lightest extra charged lepton significantly
expands; see Fig. 8 on the right. With ��, � < 1 for the small
ML case that can explain the muon g� 2 anomaly within
1�, the mass of the lightest extra charged lepton, me4 , has

to be at most �250 GeV, while with ��, � < 0:5, the
maximum mass is only �150 GeV.

D. Light charged leptons at the LHC

This scenario, especially the small ML case that can
explain the muon g� 2 anomaly, could be searched for
at the LHC. The LHC phenomenology of extra leptons was
discussed, for example, in Refs. [3,5,25,26]. The pair
production cross section of extra leptons with masses of
order 100 GeV is about 1 pb at the LHC at 8 TeV (and it is
steeply falling with increasing the mass). Extra leptons
decay into Z, W, or h and a light lepton. The decay
branching ratios are typically comparable, and so the sig-
natures of this scenario are spread over a variety of final
states. Especially for small masses of charged leptons, the
branching ratios highly depend on the Yukawa couplings.

So far, limited searches have been done. A search moti-
vated by heavy leptons specific to type III seesaw models
limits �ðpp ! L0L�Þ � BðL� ! Zl�Þ � BðL0 ! WlÞ,
where l is either e or �, to about 200 fb for heavy leptons
with the mass 100 GeV [27]. There is also a similar search at
CMS for both heavy leptons decaying through W [28].
In addition to these specific searches, there are also general
searches for the anomalous production of multilepton events
[29] that constrain specific decay modes of heavy leptons.

However, in addition to the dependance of the branching
ratios on Yukawa couplings within the scenario we dis-
cussed, these in principle also depend on couplings that
are not necessary for the explanation of the muon g� 2.
For example, heavy leptons can dominantly decay into �
leptons, reducing the number of light leptons in final states.

Due to limited existing constraints, all the scenarios we
discuss are or easily can be made viable. This could
dramatically change with further searches for heavy lep-
tons covering all the decay modes in near future. In addi-
tion, improving the limits on h ! �þ��, which already
constrain parts of the parameter space, is highly motivated
even if the sensitivity to the SM prediction for this process
cannot be reached soon.
Finally, the charged leptons relevant to the asymptotic

solution are far beyond the current reach of the LHC.
However, this solution can still be highly constrained by
improving the limits on h ! �þ��.

IV. POSSIBLE UV COMPLETION

The model with extra vectorlike leptons can be
embedded into recently discussed scenario with extra three
or more complete vectorlike families [13,14]. This sce-
nario features gauge coupling unification, a sufficiently
stable proton, and the Higgs quartic coupling remaining
positive all the way to the GUT scale. Predicted values of
gauge couplings at the electroweak scale are highly insen-
sitive to GUT scale parameters and masses of vectorlike
fermions. They can be understood from IR fixed point
predictions and threshold effects from integrating out
vectorlike families.
These features are preserved even when one generation

of L and E has masses close to the EW scale and the extra
Yukawa couplings are of the size required to obtain the
measured value of the muon magnetic moment. A specific
example assuming extra three complete vectorlike familes
is given in Fig. 9. We fix ML1

and ME1
to 150 GeV (even

sizable variations of these masses would have a negligible
impact on the results presented in this section) and �� to 0.5.
This value of �� and the masses of vectorlike leptons can
generate muon g� 2 close to the central value and simul-
taneously generate the muon mass completely from the
mixing between light and heavy families. The masses of
the other two generations of vectorlike leptons and all three

FIG. 8 (color online). Left: the same as in Fig. 4 plotted in the �a� � R�� plane. Right: the same as on the left, but different colors
(shades) represent the mass of the lighter extra charged lepton mass eigenstate, me4 , in ranges <150 GeV, <250 GeV, <500 GeV,

and <1000 GeV when going from the outside toward the center. The lightly shaded points are excluded by the ATLAS search for
h ! �þ��.
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generations of quarks are varied to obtain the measured
values of gauge couplings at the EW scale starting from

G ¼ 0:3 at MG ¼ 2� 1016 GeV. We set all other
Yukawa couplings to zero, except for the top quark
Yukawa. The contributions from �L and �E to the renor-
malization group (RG) evolution of gauge, top Yukawa,
and Higgs quartic couplings can also be neglected when
the constraints from precision EW data are satisfied. The
analysis closely follows Refs. [13,14] with the only
exception that we use 1-loop RG equations for Yukawa
and Higgs quartic couplings. We use 2-loop RG equations
for gauge couplings as in Refs. [13,14].

The evolution of gauge couplings is almost identical to
examples given in Refs. [13,14]. With zero Yukawa cou-
plings of vectorlike fermions, the evolution of gauge cou-
plings only depends on the geometric means of masses of
vectorlike fermions with the same quantum numbers.
Fixing two masses, ML1

and ME1
, to 150 GeV is compen-

sated by making masses of the other two vectrolike fam-
ilies correspondingly heavier. The addition of �� ¼ 0:5
does not change the evolution of gauge couplings much
since Yukawa couplings contribute only at the 2-loop level.

The evolution of Higgs quartic coupling depends sig-
nificantly on Yukawa couplings present in the model. In the
standard model, the top Yukawa coupling already drives
Higgs quartic coupling to negative values at a high
scale. Additional sizable Yukawa couplings accelerate this
behavior, and thus the stability of the EW minimum sets a
limit on the size of extra Yukawa couplings.

In the case of the SM extended by three vectorlike
families, the RG evolution of Higgs quartic coupling is
significantly different. The Higgs quartic coupling can
remain positive all the way to the GUT scale even with
additional Yukawa couplings. The difference comes from
larger values of all gauge couplings compared to the SM
above the scale of vectorlike fermions. Larger gauge cou-
plings slow down the running of Higgs quartic coupling,
see Fig. 9, and eventually turn the beta function of Higgs
quartic coupling positive. This effect is further amplified

by the fact that the top Yukawa is driven fast to much
smaller values compared to the SM (again due to larger
gauge couplings), and its contribution to the running of
Higgs quartic coupling becomes small.
This is the minimal scenario (in this framework) with

gauge coupling unification, sufficiently stable proton, and
the Higgs quartic coupling remaining positive all the way
to the GUT scale that simultaneously explains the deviation
in the muon magnetic moment and generates the correct
muon mass. Adding another lepton Yukawa coupling of the
same size, for example � to also modify h ! ��, would
make the Higgs quartic coupling briefly go negative. The
EW minimum would still be sufficiently long lived even
with somewhat larger values of lepton Yukawa couplings.
Alternatively, a stable EW minimum can be obtained (the
Higgs quartic coupling is positive all the way to the GUT
scale) by lowering both extra lepton Yukawas to�0:4.

V. CONCLUSIONS

We showed that the deviation of the measured value of
the muon anomalous magnetic moment from the standard
model prediction can be completely explained by mixing
of the muon with extra vectorlike leptons, L and E, near the
electroweak scale. This mixing simultaneously contributes
to the muon mass (we label this contribution by mLE

� ), and

the correlation between contributions to the muon mass
and muon g� 2 is controlled by the mass of the neutrino
originating from the doublet L, which is given by the
vectorlike mass parameter ML.
We have found two generic solutions: the asymptotic

one, ML 
 MZ, in which case the Higgs loop dominates
and the measured value of the muon g� 2 is obtained for
mLE

� =m� ’ �1, and the second one with a light extra

neutrino, ML ’ MW , in which case the W loop dominates
and the measured value of the muon g� 2 is obtain for
mLE

� =m� ’ þ1. In the first case, about twice as large a

contribution from the direct Yukawa coupling of the muon
is required to generate the correct muon mass, while in the
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FIG. 9 (color online). Left: the RG evolution of gauge couplings, 
3 (top), 
2 (middle), and 
1 (bottom), in the SM extended by
three vectorlike families for 
G ¼ 0:3 at MG ¼ 2� 1016 GeV. Right: the RG evolution of the Higgs quartic coupling for
mh ¼ 126 GeV, the top Yukawa coupling, and the �� with the EW scale value of 0.5. The masses of vectorlike fermions areML1

¼ ME1
¼

150 GeV, ML2;3
¼ 2:0� 106 GeV, ME2;3

¼ 2:4� 107 GeV, MQ ¼ 520 GeV, MU ¼ 1:4� 105 GeV, and MD ¼ 2:5� 105 GeV.
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second case, the muon mass can fully originate from the
mixing with heavy leptons.

The sizes of possible contributions to the muon g� 2,
muon mass, and other observables depend on the upper
limit on Yukawa couplings that we allow in the model.
We considered two cases, the upper limit being 0.5 and 1.
The 0.5 upper limit is motivated by a simple UV embed-
ding of this scenario with three complete vectorlike fami-
lies featuring gauge coupling unification, a sufficiently
stable proton, and the Higgs quartic coupling remaining
positive all the way to the GUT scale.

With the upper limit on Yukawa couplings being 0.5,
the muon g� 2 can be explained within one standard devia-
tion either with ML & 130 GeV (the mass of the lightest
extra charged lepton is me4 & 150 GeV) or with ML *

1 TeV. The small ML case predicts the h ! �þ�� in the
range 5–9 times the standardmodel prediction. Depending on
additional Yukawa coupling, the branching ratio for h ! ��
can be enhanced by �15% or lowered by �25% from its
SM prediction. The asymptotic case predicts only very
small modifications of h ! �þ�� and h ! �� compared
to the SM.

Allowing Yukawa couplings of order 1, the range of
parameters that can explain the muon g� 2 within one
standard deviation and the range of predictions for Higgs
branching ratios significantly expand. The small ML case
now requires ML & 200 GeV (the mass of the lightest

extra charged lepton is me4 & 250 GeV). The predicted

h ! �þ�� ranges from 0.5 to 24 times the standard
model prediction. A part of the parameter space is thus
already excluded by the ATLAS search for this decay mode
of the Higgs (the upper limit is 9.8 times the SM predic-
tion). Depending on additional Yukawa coupling, the
h ! �� rate can be modified by �50%.
New vectorlike leptons generically predict a variety of

flavor violating processes. The existing limits set strong
constraints on other possible couplings in the model
besides those needed for the explanation of the muon
g� 2 anomaly. In addition, extra charged leptons provide
a variety of signatures at the LHC. They can be pair
produced or can modify Higgs decays. Some searches are
already excluding parts of the parameter space, and others
are getting close. Covering all possible decay modes of
extra leptons should allow us to fully explore the smallML

case at the LHC with already available data.
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