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We calculate in detail the annihilation of muonium (Mu) into �e ��� and �e ���� states. ForMu ! �e ���,

we obtain the branching ratio Br ¼ 6:6� 10�12, and for Mu ! �e ���� in the limit of high-energy

photons, we obtain Br ¼ 4:3� 10�11.
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I. INTRODUCTION

In the light of new possibilities of experimental verifi-
cation of the Standard Model, one needs to reconcile the
different theoretical predictions. The discrepancy takes
place, e.g., in the case of muonium (Mu) system decay.
The dominant decay channel occurs by muon beta decay,
�þ ! eþ�e ���, but there is another possible channel:

muonium annihilation, Mu ! �e ���. The corresponding

decay rate is rather small but detectable in the planned
experiments [1] as an invisible decay of muonium. The
branching ratio of this process was first estimated in
Refs. [2,3], and then was calculated in some detail and
found to be �10�12 in Refs. [4,5] and �10�10 in Ref. [6].
To recheck these results, we provide here the full calcu-
lations and also estimate the full decay width and a photon
energy spectrum of the reaction Mu ! �e ����.

II. Mu ! �e ��� ANNIHILATION

A. �þe� ! �e ��� process

We start with a calculation of the amplitude of the
�þe� ! �e ��� process assuming both �þ and e� to be

free states. In our case, particles have small energies in
comparison with the masses of the weak bosons, so the
amplitude has the form

M0 ¼ GFffiffiffi
2

p j�1 j�2;

where

j
�
1 ¼ �vs

�ðp0ÞO�vs0
��
ðk0Þ; j�2 ¼ �ur�e

ðkÞO�u
r0
e ðpÞ:

Here u and v are the solutions to the Dirac equation with
positive and negative frequencies, respectively. p, p0, k, k0
are the 4-momenta of e, �, �e, and ��, respectively, and

O� ¼ ��ð�5 þ 1Þ. For the square of this matrix element
neglecting the neutrino masses, we have

jM0j2 ¼ 128G2
Fðk � p0Þðp � k0Þ:

Since electrons and muons are supposed to be non-
relativistic, and both neutrinos are ultrarelativistic, we
have

p ¼ ðme; ~pÞ; k ¼ ðm�=2; m�=2Þ; (1)

p0 ¼ ðm�;� ~pÞ; k0 ¼ ðm�=2;�m�=2Þ: (2)

So, the final expression for the matrix element squared is

jM0j2 � 32G2
Fðm3

�me þm2
�j ~pj cos �ðm� þ j ~pj cos �ÞÞ;

where � is the angle between the muon � and the electron
neutrino �e. Hereafter, we will use the leading part of this
expression, assuming that j ~pj � 0 and me � m�, so the

accuracy of our calculations has order me=m�.

B. Bound states

The amplitude associated with the bound state is
expressed in terms of the amplitude of the free process as

M ¼ ffiffiffiffiffiffiffi
2m

p Z d3q

ð2�Þ3 ĉ
�ð ~qÞ 1ffiffiffiffiffiffiffiffiffiffi

2m�

p 1ffiffiffiffiffiffiffiffiffi
2me

p M0;

wherem is the mass of the bound state, which in our case is

equal to m� within our accuracy, and ĉ ð ~qÞ is a Fourier

transform of the Schrödinger wave function of the bound
state which we set to be equal to the S ground state. Hence,
the full angular momentum of the system is determined
by the summary spin of �þ and e�. The multipliers

(1=
ffiffiffiffiffiffiffiffiffi
2me

p
), (1=

ffiffiffiffiffiffiffiffiffiffi
2m�

p
) provide the integral normalization

to unity, and the factor
ffiffiffiffiffiffiffi
2m

p
in front of the integral is

necessary for accordance with the cross section formula
[7]. Since M0 does not contain any dependency on ~q, this
expression simplifies, so for its square we have

jMj2 ¼ 1

2me

jM0j2 � jc ð0Þj2:

The wave function of the ground state of muonium is the
same as for hydrogen:

c ðrÞ ¼ 1ffiffiffiffiffiffiffiffiffi
�a3

p e�r=a;
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where a is the muonium Bohr radius a�1 ¼ j ~pj ¼ �mrd,
and mrd ¼ mem�=ðme þm�Þ � me with our precision.

Therefore,

jc ð0Þj2 ¼ m3
e�

3

�
: (3)

C. Decay width

The decay width of muonium is written in the usual way
(again, m � m�):

� ¼ 1

2m�

Z
jMj2d�2:

A two-particle phase volume d�2 for 2 ! 2 reactions,
which are symmetrical with respect to the collision axis,
can be reduced to the form

d�2 ¼ 1

16�
d cos�

2j ~kj
ECM

;

where ECM � m� is the energy of particles in the center-

of-mass system and j ~kj is the momentum of the outgoing

particles, j ~kj � m�=2. The fact that the dependence on the

polar angle � pertains only to jM0j2 allows us to write

� ¼ 1

4mem�

jc ð0Þj2
Z

jM0j2d�2: (4)

Integration over the phase volume and substitution of the
explicit expression for jc ð0Þj2 from Eq. (3) leads to the
expression

� ¼ G2
F�

3m3
em

2
�

�2
:

Averaging over the initial polarizations gives

G2
F�

3m3
em

2
�

4�2
¼ 48�

�
�me

m�

�
3
��!e�� ��e

;

so the branching ratio is

Br ¼ �� ¼ 6:6� 10�12: (5)

III. Mu ! �e ���� ANNIHILATION

To the leading order in �, there are three diagrams
which contribute to the Mu ! �e ���� process. They are

presented in Fig. 1.

The first of them contains two virtual W-boson propa-
gators, and hence its amplitude is suppressed significantly.
Naively, the leading-order part of the matrix element
squared of the �þe� ! �e ���� process involving the

term from this diagram is proportional to

jM0j2 � e2G2
F

m2
Wm

2
e

;

and for its contribution to the full decay width of Mu one
can obtain

�� �4G2
Fm

7
�

m2
W

�
1þO

�
me

m�

��
:

The corresponding branching ratio has an order
Br� 10�15 and turns out to be small even in comparison
with the next-order loop corrections. The second diagram
is also suppressed by a factor �me=m�, and we will not

consider it in accordance with the discussion above. The
last diagram describes the emission of a photon from the
external electron line. Its amplitude is equal to

M0� ¼ GFffiffiffi
2

p i

�2p � q ð �u
r
�e
ðkÞ��ð1þ �5Þ

� ð��ðp� � q�Þ �meÞ�	

	�ðqÞuseðpÞÞ

� ð �vs0
�ðp0Þ��ð1þ �5Þvr0

��
ðk0ÞÞ:

Here q is the photon momentum. Conjugation, production
and averaging over the initial polarizations leads to the
following expression:

jM0�j2 ¼ 8e2G2
F

ðp � qÞ2 ½2ðp � lÞðk0 � lÞðk � p0Þ

� l2ðk0 � pÞðk � p0Þ�; (6)

where l ¼ p� q. For 4-momenta of the particles, we have

p ¼ ðme; ~pÞ; p0 ¼ ðm�;� ~pÞ; k ¼ ð!1; ~k1Þ;
k0 ¼ ð!2; ~k2Þ; q ¼ ð!�; ~k�Þ:

For the differential decay width, one can write, similarly to
Eq. (4),

�� ¼ 1

2m�

Z
jM�j2d�3 ¼ jc ð0Þj2

4mem�

Z
jM0�j2d�3; (7)

where d�3 is now a differential three-particle phase
volume:

FIG. 1 (color online). The leading-order diagrams for the free �þe� ! �e ���� process.
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d�3 ¼ ð2�Þ4�ð!1 þ!2 þ!� �m�Þ
� �ð ~k1 þ ~k2 þ ~k�Þ d3 ~k1

ð2�Þ32!1

d3 ~k2
ð2�Þ32!2

d3 ~k�
ð2�Þ32!�

:

One can integrate over the 3-momenta ~k1 and ~k2 using the
equality [8]

Z
k�k

0
�

d3 ~k1
!1

d3 ~k2
!2

�4ðkþ k0 �QÞ

¼ �

6
ðQ2g�� þ 2Q�Q�Þ; (8)

where Q ¼ pþ p0 � q in our case. Noting that d3 ~k� ¼
4�!2

�d!�, one can reduce the differential decay width to

the form

d��

d!�
¼ G2

F�
4

12�3
mem

4
�FðxÞ; (9)

where FðxÞ ¼ xð3� 4xÞ is a photon spectrum function,
x ¼ !�=m�, x 	 0:5. In accordance with our assumption,

this expression is valid for !� 
 me, i.e., for x 
 5�
10�3. Integration over !� leads to the final expression:

�� ¼ 5G2
F�

4mem
4
�

288�3
: (10)

The appropriate branching ratio is Br ¼ ��� ¼
4:3� 10�11.

IV. RESULTS

The branching ratio [Eq. (5)] for the reaction
Mu ! �e ��� is in agreement with Refs. [4,5] but differs

from the one obtained in Ref. [6]. Thus, its value lies in the
detectable range of an experiment proposed in Ref. [1].
The value [Eq. (10)] of the full decay width in the
Mu ! �e ���� reaction differs slightly from the result in

Ref. [5]. The differential decay width [Eq. (9)] is valid
for the range of photon energies !� � 5–50 MeV, as we

discussed above, and can be also verified in the new
experiments.
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