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We present a comprehensive analysis of �Z interference corrections to the weak charge of the proton

measured in parity-violating electron scattering, including a survey of existing models and a critical

analysis of their uncertainties. Constraints from parton distributions in the deep-inelastic region, together

with new data on parity-violating electron scattering in the resonance region, result in significantly smaller

uncertainties on the corrections compared to previous estimates. At the kinematics of the Qweak

experiment, we determine the �Z box correction to be <ehV
�Z ¼ ð5:57� 0:36Þ � 10�3. The new

constraints also allow precise predictions to be made for parity-violating deep-inelastic asymmetries on

the deuteron.
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I. INTRODUCTION

Modern low-energy experiments at the precision frontier
provide important alternatives to high-energy tests of the
Standard Model currently being performed at the Large
Hadron Collider (for recent reviews, see Refs. [1–3]). One
such experiment is the parity-violating (PV) elastic
electron-proton scattering measurement that was recently
carried out by the Qweak collaboration at Jefferson Lab [4],
which aims to determine the proton’s weak charge Qp

W to
within 4%. At tree level, the weak charge is related to the
weak mixing angle, sin 2�W , by Qp

W ¼ 1� 4sin 2�W .
By scattering low-energy polarized electrons from an
unpolarized hydrogen target,Qweak measured the asymme-
try between the cross sections for right- and left-handed
electrons,

APV ¼ �þ � ��
�þ þ ��

; (1)

where �� is the cross section for a right-hand (helicity
� ¼ þ1) or left-hand (helicity � ¼ �1) electron. At small
four-momentum transfer squared t, the asymmetry is
related to Qp

W by [5]

APV ¼ GF

4��
ffiffiffi
2

p tQp
W; (2)

where GF is the Fermi constant and � is the fine structure
constant. Including radiative corrections, the proton’s weak
charge can be written as [6]

Qp
W ¼ ð1þ ��þ �eÞð1� 4sin 2�Wð0Þ þ�0

eÞ
þhWW þhZZ þh�Zð0Þ; (3)

where sin 2�Wð0Þ is the weak mixing angle at zero momen-
tum, and the correction terms ��, �e and �0

e are well
understood and have been computed to sufficient levels
of precision [6]. Similarly, the work of Refs. [7–9] has

established that the electroweak box diagrams hWW and
hZZ are known within Qweak uncertainty limits.
Until recently it was also believed that the interference

�Z contribution, illustrated in Fig. 1, was known to suffi-
cient accuracy for the Qweak experiment. This correction is
defined in terms of the electroweak amplitudes as [10]

h�Zð0Þ ¼ Qp
W

<eðM�
�M

ðPVÞ
�Z Þ

<eðM�
�M

ðPVÞ
Z Þ ; (4)

where M� is the electromagnetic Born amplitude, MðPVÞ
Z

is the parity-violating part of the Born Z exchange ampli-

tude, and MðPVÞ
�Z is the parity-violating part of the �Z

interference amplitude (including the contributions with
the � and Z interchanged). A groundbreaking contribution
was made by Gorchtein and Horowitz [11], who showed,
using a dispersion relations approach, that the h�Z term

was strongly energy dependent and was much larger at
Qweak energies (�1 GeV) than previous estimates had
assumed [6]. More importantly, the uncertainty on this
correction was such that it could significantly affect the
precision aims of the Qweak measurement.
Subsequent analyses by Sibirtsev et al. [12] and Rislow

and Carlson [13] generally agreed with the overall scale of
the correction found in Ref. [11], but disputed the magni-
tude of the uncertainties. In a follow-up study, Gorchtein
et al. [14] performed a more detailed analysis of the model
dependence of the h�Z contribution, correcting several

errors from the original analysis [11], but still quoted
uncertainties twice as large as those in Refs. [12,13].
Since the interpretation of the Qweak results depends on

having a sound understanding of the h�Z correction, the

lack of consensus about the magnitude of its uncertainty is
obviously problematic. To move beyond this impasse, in
this paper we revisit this problem with the aim of resolving
the disagreements.
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We begin our discussion by outlining in Sec. II the
dispersion relation formalism used to compute the �Z
corrections in terms of �Z interference structure functions.
The latter are the main input into the calculations and are
reviewed in detail in Sec. III. In particular, we discuss the
uncertainties in determining the �Z structure functions
from electromagnetic data for both the resonance and
nonresonant background contributions. Constraints from
parton distribution functions in the deep-inelastic scatter-
ing (DIS) region and new data from the parity-violating
electron-deuteron scattering experiment E08-011 at
Jefferson Lab [15] in the resonance region are used in
Sec. IV to limit the uncertainty range in models for the
�Z structure functions, and to provide more reliable bounds
on the box corrections. The resulting hV

�Z correction is

presented in Sec. V, where we contrast the revised uncer-
tainties with those estimated in previous unconstrained
analyses. Predictions are also made for parity-violating
deuteron asymmetries in the deep-inelastic region, as well
as for the recently completed inelastic measurement by the
Qweak Collaboration [16]. Finally, we draw some general
conclusions from this analysis in Sec. VI and explore
possibilities to further reduce the uncertainties on the �Z
corrections in the future.

II. DISPERSIVE ANALYSIS OF PARITY-
VIOLATING ELECTRON-HADRON SCATTERING

The �Z interference correctionh�Z can be decomposed

into two parts, arising from the electron vector with had-
ronic axial-vector coupling to the Z boson (hA

�Z) and from

the electron axial-vector with vector hadronic coupling to
the Z (hA

�Z):

h�ZðEÞ ¼ hA
�ZðEÞ þhV

�ZðEÞ: (5)

At very low energies, such as those relevant for atomic
parity violation experiments [17,18], the hA

�Z term domi-

nates, while the contribution from thehV
�Z is negligible. At

the energy of the Qweak experiment, however, both terms
provide significant contributions. The hA

�Z corrections

were first computed some time ago by Marciano and
Sirlin [7,8] and were updated recently within a dispersion
relation framework by Blunden et al. [19,20], with reduced
errors. The vector hadron correction,hV

�Z, which is subject

to significantly larger uncertainty, will be the focus of the
rest of this analysis. We will consider only the inelastic
contribution toh�Z; the elastic contribution has previously

been considered in Refs. [7,8,21,22] and is strongly sup-
pressed by an additional factor Qp

W .
For forward scattering, the dispersion relation for the

real part of hV
�Z is given by

<ehV
�ZðEÞ ¼

2E

�
P
Z 1

0
dE0 1

E02 � E2
=mhV

�ZðE0Þ; (6)

where P denotes the principal value integral, and we have
used the fact that hV

�Z is odd under the interchange E0 $
�E0. From the optical theorem, the imaginary part of the
PV �Z exchange amplitude can be written as [10–12]

2=mMðPVÞ
�Z ¼ �4

ffiffiffi
2

p
�MGF

Z d3k0

ð2�Þ32Ek0

�
4��

Q2

�

� 1

1þQ2=M2
Z

L�Z
�	W

�	
�Z ; (7)

where Q2 ¼ �q2 represents the virtuality of the ex-
changed boson, and the integration variable k0 ¼ k� q.
The �Z lepton tensor is given by

L�Z
�	 ¼ �uðk; �ÞðgeV�� � geA���5Þ6k0�	uðk; �Þ; (8)

where the vector and axial-vector couplings of the electron
to the weak current are geV ¼ �ð1� 4sin 2�WÞ=2 and
geA ¼ �1=2, respectively, and � is the lepton helicity.
The hadronic tensor for a nucleon initial state is defined as

W�	ðp;qÞ¼ 1

2M

X
X

hNðpÞjJ�ð0ÞjXðpXÞi

�hXðpXÞjJ	ð0ÞjNðpÞið2�Þ3
ð4Þðqþp�pXÞ;
(9)

where J
�
� and J

�
Z are the electromagnetic and weak neutral

currents, respectively, and pX is the four-momentum of the
hadronic intermediate state X. Using isospin symmetry, the
matrix elements of the vector component of the Z current
for a proton target can be related to the proton and neutron
matrix elements of the electromagnetic current by

hXjJ�Z jpi ¼ ð1� 4sin 2�WÞhXjJ�� jpi � hXjJ�� jni; (10)

k k

p p

q

pp

q

k k

FIG. 1. Interference �Z box (left) and crossed box (right) diagrams. The wavy and dashed lines represent the exchanged � and Z
bosons, with the electron, hadron and virtual photon momenta labeled by k, p, and q, respectively.
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neglecting the small contribution from strange quarks.
In general, the hadronic tensor can be decomposed in terms

of the �Z interference structure functions F�Z
i as

MW
�	
�Z ¼ �g�	F�Z

1 þ p�p	

p � q F�Z
2 � i��	��

p�q�
2p � qF

�Z
3 ;

(11)

where p is the four-momentum of the target hadron. Note

that the structure functions F�Z
1 and F�Z

2 contribute to the

vector hadron contribution, while the F�Z
3 structure func-

tion appears only in the axial-vector hadron correction.
Combining Eqs. (8) and (11), the imaginary part of the
hV

�Z correction becomes [10–12]

=mhV
�ZðEÞ¼

1

ðs�M2Þ2
Z s

W2
�

dW2
Z Q2

max

0
dQ2 �ðQ2Þ

1þQ2=M2
Z

�
�
F�Z
1 þ sðQ2

max �Q2Þ
Q2ðW2�M2þQ2ÞF

�Z
2

�
; (12)

where s ¼ M2 þ 2ME is the total center of mass energy
squared, W2

� ¼ ðMþm�Þ2 is the mass at the pion thresh-
old, and Q2

max ¼ 2MEð1�W2=sÞ. Following Ref. [19],
we include in Eq. (12) theQ2 dependence in �ðQ2Þ arising
from vacuum polarization contributions.

The most important inputs into Eq. (12) are the �Z

interference structure functions F�Z
i , which are functions

of two variables, usually taken to be Q2 and the Bjorken
scaling variable x ¼ Q2=2p � q, or alternatively Q2 and
W2. Unfortunately, these functions are not well determined

experimentally. Although there are some data on F�Z
1 and

F�Z
2 at highW and Q2, in the low-W and Q2 region, which

is crucial to the dispersion integrals, there is little or no
information. Unlike the electromagnetic structure func-
tions, which can be fit to the ample data available, the

F�Z
i must be expressed through models. Given that it can

be difficult to resolve the accuracy of the models, the
controversy in the literature over the <ehV

�Z contribution

is not surprising.
For later reference, we note here that the F1 and F2

structure functions, for either �Z or electromagnetic
(��) scattering, can be related to the transverse (�T)
and longitudinal (�L) electroweak boson production cross
sections as

F1ðW2; Q2Þ ¼
�
W2 �M2

8�2�

�
�TðW2; Q2Þ; (13a)

F2ðW2; Q2Þ ¼
�
W2 �M2

8�2�

�
	

Mð1þ 	2=Q2Þ
� ½�TðW2; Q2Þ þ �LðW2; Q2Þ�; (13b)

where 	 ¼ E� E0 is the energy transfer. For convenience
one often defines the longitudinal structure function as the
combination of F1 and F2 structure functions given by

FL ¼
�
1þQ2

	2

�
F2 � 2xF1; (14)

where the prefactor can also be written as
(1þ 4x2M2=Q2).

III. �Z INTERFERENCE STRUCTURE FUNCTIONS

Most of the uncertainty in the calculation of the h�Z

correction arises from the incomplete knowledge of the �Z

structure functions. There have been extractions ofF�Z
2 and

xF�Z
3 from neutral current DIS by the H1 Collaboration at

DESY [23] at very high Q2 (60<Q2 < 50; 000 GeV2)
and small x (0:0008< x < 0:65) using longitudinally po-
larized lepton beams at HERA. However, these data have
little overlap with the region of most relevance for the
dispersion integral, which receives contributions primarily
from high x and low Q2, where there are no direct mea-
surements. Consequently, one must appeal to models of the
interference structure functions to estimate h�Z.

In this section we review the models used in the litera-
ture for the �Z structure functions, before presenting our
constrained model, which we refer to as the Adelaide–
Jefferson Lab–Manitoba (AJM) model. The construction
of the models involves first choosing appropriate electro-
magnetic structure functions F��

i , and then transforming
these to the �Z case. In describing the structure functions,
or equivalently the virtual boson-proton cross sections�T;L

in Eqs. (13), it is convenient to separate the full range of
kinematics into a resonance part and a smooth nonresonant
background,

�T;L ¼ �ðresÞ
T;L þ �ðbgdÞ

T;L : (15)

The �ðresÞ
T;L term includes a sum over the prominent

low-lying resonances, while �ðbgdÞ
T;L is determined phenom-

enologically by fitting the inclusive scattering data [24,25].
Although such a separation is inherently model dependent,
as only the total cross section is physical, it nevertheless
provides a useful way to parametrize the somewhat differ-
ent behaviors of the cross sections in the low- and high-W
regions.
For completeness, the following list summarizes the

models for the �Z structure functions that have been
discussed in the literature:
(i) color-dipole model [26,27], referred to as ‘‘Model I’’

in Gorchtein et al. (GHRM) [14];
(ii) vector meson dominance ðVMDÞ þ Regge model

[28,29], referred to as ‘‘Model II’’ by GHRM [14];
(iii) Sibirtsev et al. (SBMT) model [12], based on the

Regge parametrization of Capella et al. [30];
(iv) Carlson and Rislow (CR) model [13,31].

The models [12–14,31] differ primarily in the treatment of

the background contributions �ðbgdÞ
T;L for the �Z interfer-

ence, the uncertainty on which is the main source of
disagreement between the various estimates of h�Z. For
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the resonance region, all of the models (with the exception
of SBMT [12]) use the Christy and Bosted (CB) parame-
trization [24] of the electromagnetic structure functions at
low W, but differ in how these are transformed to the �Z
case. Note, however, in both Model I and Model II of
GHRM some of the resonance parameters in the CB fit
are modified to better match the choice of background
contribution [14]. In the following we discuss both the
resonance and background content of these models in
more detail.

A. Resonances

The CB parametrization [24] of F��
1;2 fits the resonance

region electron-proton scattering data in terms of the
seven most important resonances [P33ð1232Þ, P11ð1440Þ,
D13ð1520Þ, S11ð1535Þ, S15ð1650Þ, F15ð1680Þ and an l ¼ 3
state with mass 1934 MeV], and generally agrees with
the data to within 5%. The CB fit is used as the basis for
the resonance models of Carlson and Rislow [31], and
Gorchtein et al. [14], with the latter using slightly modified

parameters for�ðresÞ
T;L in their Models I and II. Sibirtsev et al.

[12], on the other hand, perform their own fit of the data,
incorporating the four resonances P33ð1232Þ, D13ð1520Þ,
F15ð1680Þ and F37ð1950Þ, and also obtain a reasonably
good description of the data.

Modifying the electromagnetic structure functions to
obtain their interference analogs involves modifying the
contribution from each resonance R by a ratio that takes
into account the differences between the electromagnetic
and weak neutral transition amplitudes, according to
Eq. (10). For the transverse cross section GHRM define
this ratio for a proton as [14]

�R � ��Z
T;R

���
T;R

¼ ð1� 4sin 2�WÞ � yR; (16)

where

yR ¼
Ap

R;12
An�
R;12

þ Ap

R;32
An�
R;32

jAp

R;12
j2 þ jAp

R;32
j2 ; (17)

with AN
R;� the transition amplitude from a proton or neutron

to a resonance R with helicity � ¼ 1
2 or

3
2 . The amplitudes

AN
R;� are assumed by GHRM to be Q2 independent, and

their values determined from electromagnetic decays at
Q2 ¼ 0 [32]. The ratio for the longitudinal cross section
is taken to be equal to the transverse ratio in both Models I
and II of GHRM.

Carlson and Rislow [31] use a similar ratio to that in
Eq. (16) (which they label as CR), but include in addition a
Q2 dependence in the amplitudes derived from the MAID
unitary isobar model [33]. For comparison, CR also calcu-
late the transition amplitudes using a constituent quark
model [13].

Finally, Sibirtsev et al. [12] use the conservation of the
vector current and isospin symmetry to set the ratio for
isospin-3=2 states to ð1þQp

WÞ 	 ð2� 4sin 2�WÞ. For the
isospin-1=2 resonances, such as the D13ð1520Þ, SU(6)
quark model wave functions are used to estimate the ratio
of couplings. The similarity of the magnitudes of the weak
and electromagnetic couplings was used by SBMT to
justify approximating the ratio �R by 1.

B. Background

1. Electromagnetic structure functions

Although the CB parametrization [24] includes a back-

ground �ðbgdÞ
T;L at low W (W < 3 GeV), to describe the

nonresonant contributions to the electromagnetic structure
functions at W > 3 GeV requires a model for the back-
ground which is also valid at large W. In the calculation of
GHRM [14], the color dipole model from Cvetic et al.
[26,27] is used for Model I, while the VMDþ Regge
model of Alwall and Ingelman [29] is employed for
Model II. Since the latter was shown by GHRM to intro-
duce the largest uncertainty in h�Z, it will be the main

focus of our attention.
According to the VMD hypothesis, the interaction of a

photon � with a hadron proceeds through transitions to
vector mesons V (with V ¼ �, ! or ), with strengthffiffiffiffiffiffiffiffiffiffi
4��

p
=fV , where fV is the electromagnetic decay constant

of V. The three vector mesons saturate around 80% of the
total photoproduction cross section [28]. The remainder is
usually attributed to contributions from higher masses,
which are modeled by a continuum of states starting at
mass m0 	 1:4 GeV [28]. (In the case of the color dipole
model [26,27,34], the photon is assumed to interact with
the hadron through coupling to uncorrelated q �q states
instead of mesons.) Following Ref. [29], we neglect the
off-diagonal terms in the mass integral, which is known to
be a good approximation for scattering from nucleons [35].
The transverse and longitudinal virtual photon-nucleon
cross sections can then be expressed as [29]

�VMD
T ¼ ��N

�X
V

rV
1

ð1þQ2=m2
VÞ2

þ rC
1

1þQ2=m2
0

�
;

(18a)

�VMD
L ¼ ��N

�X
V

rV�V

Q2=m2
V

ð1þQ2=m2
VÞ2

þ rC�C

�
m2

0

Q2
ln ð1þQ2=m2

0Þ �
1

1þQ2=m2
0

��
;

(18b)

where ��N is the real photon-nucleon cross section,

and the constants rV � 1=f2V represent the relative contri-
butions from the individual vector mesons V, with
rC ¼ 1�P

VrV being the continuum fraction [29].
Phenomenologically, the rV values are determined as
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rV ¼ f0:67; 0:062; 0:059g for V ¼ �, ! and , respec-
tively [36]. As we shall see below, rC plays a critical role
in determining the uncertainty on the interference cross
sections. The parameters �V and �C allow for different
behavior of the transverse and longitudinal components of
the vector mesons, although in practice these are usually
set equal, �V ¼ �C, in order to fit the available data. Note
that despite the apparent 1=Q2 dependence in the second
term of�VMD

L in Eq. (18b), one can verify by expanding the
logarithm for small Q2 that the longitudinal cross section
does in fact vanish in the Q2 ! 0 limit. According to
Regge theory, the real photon cross section can be parame-
trized as a sum of two terms [37],

��N ¼ A�s
�
� þ B�s

��
� ; (19)

where s� � W2, with the exponents � and � giving the

energy dependence of the Pomeron and Reggeon terms,
which have coefficients A� and B�, respectively.

In the model of SBMT, the background is parametrized
according to the structure function fit of Capella et al. [30],
with several parameters adjusted to better describe recent
data, as discussed in Ref. [12]. The parametrization of the
F��
2 structure function, which is valid for all Q2, is again

given by a sum of Pomeron (P) and Reggeon R exchange
terms,

F��
2 ðx;Q2Þ ¼ APx

��ð1� xÞnþ4

�
Q2

Q2 þ�2
P

�
1þ�

þ ARx
1��Rð1� xÞn

�
Q2

Q2 þ�2
R

�
�R

; (20)

where � and n are both functions of Q2, and AP, �P, AR,
�R and �R are fit parameters [30]. The F��

1 structure

function is obtained by SBMT from a parametrization of
the ratio of longitudinal to transverse cross sections. From
Eqs. (13) this can be written as

�L

�T

¼
�
1þ 4M2x2

Q2

�
F2

2xF1

� 1; (21)

which is parametrized by a sum of exponentials [12].
While the above models use the same background

parametrization over the entire range of kinematics, CR
[13,31] on the other hand divide their dispersion integral
into three distinct regions, each described by a different
model. In particular, the resonance region at low W is

described in terms of the CB fit to �ðresÞ
T;L and �

ðbgdÞ
T;L [24],

while for the high-W, low-Q2 region, CR use the Capella
et al. structure function parametrization. For high W and
high Q2, a partonic description is employed using the
CT10 global fit [38] of parton distribution functions
(PDFs).

2. �Z structure functions

To construct the nonresonant background contributions
to the transverse and longitudinal �Z cross sections, the
electromagnetic cross sections need to be rescaled by the

ratio ��Z
T;L=�

��
T;L, as for the resonance components. For

Model II of GHRM [14], a generalization of the VMD
model is used, assuming the �Z cross section for vector
meson V is given by the analogous �� cross section scaled
by the ratio �V of weak and electric charges,

��ZðVÞ
T;L ¼ �V�

��ðVÞ
T;L ; (22)

where

�� ¼ 2� 4sin 2�W; (23a)

�! ¼ �4sin 2�W; (23b)

� ¼ 3� 4sin 2�W (23c)

correspond to the isovector, isoscalar and strange quark
components of the electroweak current, respectively. This
allows the ratio of �Z to �� cross sections to be written
as [14]

��Z
T;L

���
T;L

¼ �� þ �!R
T;L
! ðQ2Þ þ �R

T;L
 ðQ2Þ þ �T;L

C RT;L
C ðQ2Þ

1þ RT;L
! ðQ2Þ þ RT;L

 ðQ2Þ þ RT;L
C ðQ2Þ ;

(24)

where RT;L
V is the ratio of cross sections for V and the �

meson,

RT;L
V � ���ðVÞ

T;L

�
��ð�Þ
T;L

¼ f2�

f2V

�
1þQ2=m2

�

1þQ2=m2
V

�
2
: (25)

The corresponding ratio RT;L
C of the continuum to �

contributions is given by

RT
C ¼ rC

r�

�
1þQ2=m2

�

1þQ2=m2
0

�
2
; (26a)

RL
C ¼ rC

r�

�
m2

0

Q2
ln ð1þQ2=m2

0Þ �
1

1þQ2=m2
0

��
�

Q2=m2
�

ð1þQ2=m2
�Þ2

�
; (26b)

with the continuum mass parameter set to m0 ¼ 1:5 GeV

[14]. The parameters �T;L
C in Eq. (24) denote the ratios of

the �Z and �� continuum contributions to the cross sec-
tion. Unlike for the discrete vector meson terms, the VMD
model does not prescribe a simple charge ratio factor to
modify the continuum part of the cross section. In view of
this, GHRM proceed by assigning a 100% uncertainty on
this contribution. As we will see below, this assumption
gives the largest contribution to the uncertainty on h�Z.

For Model I of GHRM, the same general form for the �Z
cross sections is used as in Eq. (24), but with different

individual contributions RT;L
V . Whereas in Model II, the
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RT;L
V are functions of Q2, in Model I these become con-

stants with relative strengths determined by squares of
quark electric charges, with the continuum contribution
associated with the J=c meson [14], f�:!::J=c g ¼
f1:1=9:2=9:8=9g. Similarly, a 100% uncertainty is assumed
for the J=c term in Model I.

In the SBMT model [12], the �Z structure functions at
low x are approximated by their electromagnetic counter-
parts. This is motivated by the approximate flavor inde-
pendence of sea quark distributions in the low-x region,
and the similarity of the sum of the electroweak couplings
for three quark flavors, ðPqeqg

q
VÞ=ð

P
qe

2
qÞ ¼ 2�

4sin 2�W 	 1 [11], where eq and gqV are the electric and

weak vector charges of quark q, respectively. At larger x

(x * 0:4), however, SBMT compute F�Z
i using a ratio

of leading twist (LT) structure functions computed from
the Martin-Roberts-Stirling-Thorne parton distribution
functions [39],

F�Z
i ¼

�
F�Z
i

F��
i

�
LT
F��
i : (27)

At these x values, SBMT note that the flavor dependence of
the parton distributions renders the interference function
approximately 30%–40% smaller than the electromagnetic
one. The functions F��

i therefore provide an upper limit on

F�Z
i .
Finally, for the CR model [13,31] the method for

modifying the �� background cross sections depends
on the kinematic region of W and Q2. In the resonance
region, CR take the average of the high energy (x!0) limit

(u¼d¼s), in which F�Z
i =F��

i ¼ 2� 4sin 2�W , and the

SU(6) quark limit (u ¼ 2d, s ¼ 0), in which F�Z
i =F��

i ¼
5=3� 4sin 2�W , to convert the electromagnetic back-
ground from the CB structure function parametrization
[24]. For the low-Q2, high-W region, CR apply the same
ratio to the Capella et al. [30] parametrization as SBMT,

while in the DIS region they compute the F�Z
i structure

functions directly from LT parton distributions [38].
Using these models for the resonance and nonresonant

background contributions to the �Z structure functions, the
analyses of GHRM [14], SBMT [12] and CR [13] estimate
the h�Z correction at the Qweak energy to be

<ehV
�Z ¼ ð5:4� 2:0Þ � 10�3 ½GHRM� (28a)

<ehV
�Z ¼ ð4:7þ1:1

�0:4Þ � 10�3 ½SBMT� (28b)

<ehV
�Z ¼ ð5:7� 0:9Þ � 10�3 ½CR� (28c)

respectively. The GHRM result for the central value of
<ehV

�Z is the average of Models I and II, but with the

dominant background error taken from the larger of the
two, in this case Model II. The GHRM analysis also
estimates the effect of the t dependence of the h�Z

correction, from t ¼ 0 in the dispersion formalism to t ¼
�0:03 GeV2 in theQweak experiment, finding a decrease of

approximately 1.3%, with a similar uncertainty on the
correction at the Qweak point.
The central values of all the calculations agree within the

quoted uncertainties; however, the error on the GHRM
value is twice as large as those on the SBMT and CR
calculations, even though the SBMT estimate includes a
fairly conservative uncertainty on the input �� structure
functions. Given the importance of the h�Z correction to

the extraction of the weak mixing angle from the Qweak

measurement, it is vital that the origin of this difference be
understood, and ways of further reducing the uncertainty
explored.

C. Adelaide–Jefferson Lab–Manitoba model

To proceed with our analysis of the �Z correction, we
define here the ingredients of our AJM model, within
which we will study in detail the various contributions to
<ehV

�Z and their uncertainties. We draw on the valuable

experience obtained with the existing models [11–14,31],
and incorporate into the AJM model some of the more
robust features of the previous analyses. Most importantly,
we consider additional constraints from existing data on
some of the model parameters which were unconstrained
in the earlier work. We will find that indeed data on PDFs
near the resonance-DIS transition, together with new re-
sults on inclusive parity-violating electron scattering asym-
metries, place significant constraints on the models, in
particular on the background contribution.

1. �� structure functions

Following CR [13,31], we divide the integrals in
Eq. (12) into distinct regions of W2 and Q2, using specific
models to parametrize the �Z structure functions in each
region. This is illustrated in Fig. 2, where the W2 and Q2

divisions and the models describing them are indicated.
Although the boundaries between the regions are clearly
defined, the models themselves overlap, allowing impor-
tant checks to be made on the continuity of the descriptions
across the boundaries.
For the input �� structure functions, we use the CB

parametrization [24] to describe the low-W region
(Region I) at W� <W < 2 GeV for all Q2 up to
10 GeV2. In fact, the strong suppression of the resonance
transition form factors with increasing Q2 results in negli-
gible resonance contributions already beyond Q2 	
2 GeV2. Since the CB fit also describes data up to W2 ¼
9 GeV2, we use it in the higher-W region for Q2 <
2:5 GeV2, as indicated by the blue shaded area in Fig. 2.
At higher W, corresponding to kinematics where Regge

theory is applicable, the VMDþ Regge model of Alwall
and Ingelman [29] is combined with a modified CB reso-
nance contribution (cf. Table II of Ref. [14]) to describe the
structure functions for W2 > 9 GeV2 and Q2 < 2:5 GeV2

(Region II, red shaded area in Fig. 2). Of course, at these
values ofW the resonances will contribute very little to the
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dispersion integral in Eq. (12), which will be contami-
nated by the background contribution. This model also
forms the basis for Model II of GHRM [14]. The match-
ing of the CB and VMDþ Regge parametrizations at the

boundary between the low-W and high-W regions is
illustrated in Fig. 3 for the F��

2 structure function as a

function of W2, at several fixed values of Q2, from Q2 ¼
0:05 to 2 GeV2. The agreement between the two models
in the region of overlap is clearly excellent. For the
structure function in the VMDþ Regge model, we
have assumed a conservative 5% uncertainty, similar to
that for the CB parametrization.
In the DIS region at high W and high Q2 (green

shaded area in Fig. 2), the structure functions can be
computed in terms of global PDFs, for which we use the
next-to-next-to-leading order (NNLO) fit by Alekhin
et al. (ABM11) [40]. This fit includes both leading twist
and higher twist contributions, allowing for descriptions
of data for Q2 > 2:5 GeV2 and W > 1:8 GeV, which
overlaps partially with the CB [24] and VMDþ Regge
[29] parametrizations. (Other similar global fits, such as
those in Refs. [41–45], give very similar results, and
differences between the parametrization generally lie
within the PDF uncertainties.) The transition between
DIS kinematics (Region III) and the models describing
the lower-W and Q2 regions is illustrated in Fig. 4
for F��

2 at Q2 ¼ 2:5 GeV2 (where the transitions
between all three parametrizations are shown at W2 ¼
9 GeV2) and at higher Q2 values, up to Q2 ¼ 10 GeV2,
for the transition between Regions I and III. Again, the
models generally match very well across these kinematic
boundaries.
The boundaries between the three regions can also be

displayed for fixedW2 as a function of Q2, as illustrated in
Fig. 5. The matching of Regions I and II forW2 ¼ 4 GeV2

1 4 9
0

2.5

10

W 2 GeV2

Q
2

G
eV

2 III

I II

FIG. 2 (color online). Kinematic regions contributing to the
hV

�Z integrals in the AJM model: Region I (blue shaded) at low

W and low Q2 is described by the CB F��
1;2 fit [24], transformed to

the �Z case; Region II (red shaded) represents the high-W, low-Q2

domain as in Ref. [29] (or the GHRM Model II [14]), transformed
to �Z; and Region III (green shaded) at high W and high Q2 is
described by global PDF fits to high-energy scattering data [40].
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FIG. 3 (color online). Proton F��
2 structure function versus W2 at fixed Q2 ¼ 0:05, 0.5, 1.5 and 2 GeV2 for the CB fit [24] at low W

(blue solid) and VMDþ Regge parametrization [29] at high W (red dashed). The boundary between these (corresponding to
Regions I and II in Fig. 2) is indicated by the vertical dashed line at W2 ¼ 9 GeV2.
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FIG. 5 (color online). Proton F��
2 structure function versus Q2 at fixedW2 ¼ 4, 6, 9 and 12 GeV2 for the CB fit [24] (blue solid), the

ABM11 PDF parametrization [40] (green dotted), and the VMDþ Regge model [29] (red dashed), with the boundaries between
Regions I, II and III indicated by the vertical lines at fixedQ2. Note that the small disagreement between the VMDþ Regge model and
the PDF parametrization forQ2 ¼ 2:5 GeV2 appears only at largerW2 values where the contribution to the dispersion integral is small.
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FIG. 4 (color online). Proton F��
2 structure function versusW2 at fixedQ2 ¼ 2:5, 5, 8 and 10 GeV2 for the CB fit [24] at lowW (blue

solid) and the ABM11 PDF parametrization [40] at high W (green dotted), with the boundary between Regions I and III at W2 ¼
4 GeV2 indicated by the vertical line. For the Q2 ¼ 2:5 GeV2 panel, the matching with the VMDþ Regge model [29] (red dashed),
corresponding to the boundary between Regions I and II, is indicated by the vertical line at W2 ¼ 9 GeV2.
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shows excellent agreement between the CB [24] and
ABM11 PDF [40] parametrizations at Q2 ¼ 2:5 GeV2.
At the highest W value at which the CB fit is valid,
W2 ¼ 9 GeV2, the agreement between the models de-
scribing all three regions is also quite good. For larger W
(W2 * 10 GeV2) the VMDþ Regge model [29] slightly
exceeds the PDF parametrization. However, this generally
occurs at the edge of the kinematic boundary between
Regions II and III, where the contribution to the imaginary
part of h�Z in Eq. (12) is very small.

2. �Z structure functions

Having detailed the forms of the electromagnetic
structure functions, we now turn to their �Z interference
analogs. For the low-W=low-Q2 region dominated by the
nucleon resonances, the transverse and longitudinal ��
cross sections parametrized in the CB fit [24] are modified
using the ratio �R in Eq. (16), with the parameter yR
determined from the proton and neutron helicity ampli-
tudes as in Eq. (17). This follows closely the approach
adopted by GHRM [14], but, importantly, differs in the
way the uncertainties on the helicity amplitudes AN

R;� are

determined.
In particular, GHRM combined the uncertainties on

the amplitudes by adding extremal values of each, which
implicitly assumes a uniform error distribution rather than
the standard Gaussian one. Adding errors linearly clearly
overestimates the uncertainties, and in the AJM analysis
we adopt the more conventional Gaussian distribution to
add the errors in quadrature. (When combining all of the
uncertainties on the final <ehV

�Z value, however, GHRM

add the errors in quadrature.) In Table I the yR values for
the proton and their uncertainties computed using both
methods are shown for comparison. For completeness,
we also list the yR values for the neutron and deuteron,
with uncertainties added in quadrature, which will be
needed in subsequent sections. For the isospin- 32
P33ð1232Þ and F37ð1950Þ resonances, the uncertainties on
the helicity amplitudes are given by the Particle Data
Group (PDG) [47] as zero. To be conservative, however,
we follow GHRM [14] and include a 10% uncertainty on
the P33ð1232Þ and a 100% uncertainty on the F37ð1950Þ
resonance [24,25].

Note that in Table I and in our numerical calculations
we make use of the latest values of the helicity ampli-
tudes from the PDG [47]. However, when comparing
directly with the GHRM analysis [14] we will refer to
the earlier, 2010 PDG values [32] that were utilized by
GHRM for the D13ð1520Þ and P11ð1440Þ resonances. The
yR ratios using these earlier values are listed in paren-
theses in Table I, but with errors evaluated using
Gaussian distributions.
For the nonresonant background, the models describing

the electromagnetic structure functions are transformed to
the �Z case according to the kinematic region considered.
For the region of low Q2 but high W, the cross section in
the VMDþ Regge model [29] is modified using the ratio
in Eq. (24), in analogy with Model II of GHRM [14].

However, instead of fixing the parameters �T;L
C so that the

�� and �Z continuum pieces are equal [14], we allow
these to be determined by demanding that the �Z structure
functions be continuous across the boundaries of this
region, that is, at W ¼ 3 GeV and Q2 ¼ 2:5 GeV2. As
we will see in the following section, this places strong

constraints on �T;L
C , leading to significantly reduced un-

certainties on the resulting value of <ehV
�Z.

Finally, the �Z structure functions in the DIS region, at
W2 > 4 GeV2 andQ2 > 2:5 GeV2, are computed from the
ABM11 PDF parametrization [40,48]. The transformation
from �� to �Z is trivial at the parton level, amounting to a
replacement of the quark electric charges eq multiplying

the universal PDFs by the weak vector charges gqV . In the
absence of �Z structure function data at low Q2, the

relative magnitude of the higher twist corrections to F�Z
2

was taken [48] to be the same as for F��
2 . To account for

this uncertainty, we therefore assign a conservative 5%

uncertainty on F�Z
1 and F�Z

2 over the entire range of
kinematics in Region III. Since it is given by a difference

of the F�Z
2 and F�Z

1 structure functions [see Eq. (14)], the

longitudinal structure function F�Z
L will necessarily have a

larger relative uncertainty.

IV. PHENOMENOLOGICAL CONSTRAINTS

As mentioned in the previous section, the central value
of <ehV

�Z in Ref. [14] is given by the average of Models I

TABLE I. Electromagnetic to �Z resonance cross section transformation ratios yR from Eq. (17) for the proton, neutron and deuteron
in the AJM model, compared with the proton ratio in the GHRM model [14]. The AJM model values in parentheses use helicity
amplitudes from the earlier 2010 PDG [32], as utilized by GHRM. The errors labeled with the asterisks ( � ) are values corrected [46]
from those in Ref. [14].

P33ð1232Þ P11ð1440Þ D13ð1520Þ S11ð1535Þ S11ð1665Þ F15ð1680Þ F37ð1950Þ
p (AJM) �1:0� 0:1 �0:67� 0:17 �0:84� 0:17 �0:51� 0:35 �0:28� 0:41 �0:27� 0:08 �1� 1

ð� 0:62� 0:16Þ ð� 0:77� 0:08Þ
p (GHRM) �1:0� 0:1 �0:62þ0:19

�0:20 �0:77þ0:122
�0:125 (�) �0:51þ0:35

�0:71 �0:28þ0:45
�0:69 (�) �0:27þ0:10

�0:12 �1� 1
n (AJM) �1:0� 0:1 �1:50� 0:39 �0:85� 0:15 �1:96� 1:32 �3:53� 5:06 �2:50� 1:01 �1� 1
d (AJM) �1:0� 0:1 �0:92� 0:27 �0:85� 0:14 �0:81� 0:64 �0:52� 0:78 �0:49� 0:14 �1� 1
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and II, with the dominant nonresonant background contri-
bution taken from Model II. If it were possible to reduce
the background uncertainty, the error on the final <ehV

�Z

correction could also be lowered significantly.
In their calculation of h�Z, GHRM [14] estimate the

�Z nonresonant background cross section by transforming
the �� cross section in the VMDþ Regge model [29]
according to

�
�ZðbgdÞ
T;L ¼

�
��Z

T;L

���
T;L

�
�VMD

T;L ; (29)

with the electromagnetic cross sections �VMD
T;L parame-

trized as in Eqs. (18a) and (18b), and the rescaling factor

(��Z
T;L=�

��
T;L) given by Eq. (24). The uncertainties on the �Z

cross section are obtained by comparing each RT;L
V ratio in

Eq. (24) with HERA data on exclusive vector meson
electroproduction [49] (cf. Fig. 13 of Ref. [14]), with the
uncertainty taken to be the difference between the two.

The final contribution to the background error comes

from the values of �T;L
C in Eq. (24). In the GHRM analysis

[14] this term is equated with the electromagnetic contin-
uum piece, assuming a 100% uncertainty. The resulting

F�Z
2 structure function is illustrated in Fig. 6 as a function

of bothW2 and Q2, and compared with the ABM11 global
fit [40]. Note that the uncertainty band on the GHRM
VMDþ Regge calculation includes only the continuum

part of the background, and will be larger once the resonant
uncertainty is included. The comparison clearly shows that
the GHRM uncertainties are significantly larger than those
typically obtained from global QCD analyses, especially in
the region of intermediate W and Q2 where both descrip-
tions should be valid. Furthermore, as suggested already in
Figs. 4 and 5, the central values lie systematically above
the PDF parametrizations.
Although the VMD model itself does not provide any

additional constraints on the interference continuum con-
tribution, we shall examine in this section the possibility of

constraining �T;L
C using existing knowledge of parton dis-

tributions, as well as recent data on parity-violating inelas-
tic scattering from the Jefferson Lab E08-011 experiment
[15]. These constraints will make it possible to reduce the
overall uncertainty in <ehV

�Z compared with those ob-

tained in earlier analyses, Eq. (28).

A. Constraints from PDFs

In the deep-inelastic region at highW (W * 2 GeV) and
Q2 (Q2 * 1 GeV2), structure functions can be described in
terms of leading twist PDFs, with corrections from target
mass and higher twist contributions included to account for
residual, 1=Q2-suppressed nonperturbative effects. While a
PDF-based description will eventually break down at low
W andQ2, the region where the continuum contributions to
the cross sections are relevant overlaps with the typical
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FIG. 6 (color online). Comparison of the proton F�Z
2 structure function in the VMDþ Regge model (Model II) of GHRM [14] (red

dashed) with the ABM11 global parametrization [40] (green dotted), for fixed Q2 (top panels) and fixedW2 (bottom panels). Note that
the VMDþ Regge model only includes uncertainties from the continuum part of the background, while the ABM11 parametrization
includes an overall 5% error.
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reach of global PDF parametrizations [40–45]. One can
therefore constrain the nonresonant part of the �Z structure
functions by requiring consistency of the model in the
overlap region with the PDF parametrizations.

Our fit of the parameters �T;L
C involves equating the cross

section ratios ��Z
T;L=�

��
T;L in Eq. (24) with the structure

function ratios computed from global QCD fits in the
DIS region [see Eqs. (13) and (14)],

��Z
T

���
T

¼ F�Z
1

F��
1

��������DIS
;

��Z
L

���
L

¼ F�Z
L

F��
L

��������DIS
; (30)

where the DIS structure functions F��;�Z
1;L are taken from

the ABM11 parametrization [40]. As discussed in Sec. III,

in fitting �T;L
C in the DIS region, to be conservative we

assume an overall 5% uncertainty on F�Z
1 , and a 40%

uncertainty on F�Z
L , which exceeds the uncertainties

quoted in Ref. [40] over the kinematics relevant for the
<ehV

�Z calculation.

For the constrained fit we determine the values of �T;L
C

that minimize the �2 for each point in W2 and Q2, over a
range of W2 values at fixed Q2 near the boundary between
the DIS region (Region III) and the other regions in Fig. 2.

To test the stability of the fitted �T;L
C values with respect to

the matching scale, we consider several different values of
Q2 (Q2 ¼ 2:5, 6 and 10 GeV2). The resulting fits in Fig. 7
indicate relatively mild dependence on the scale, which
becomes negligible with increasingQ2 for �T

C, but with the

expected larger uncertainties for �L
C.

The central values of �T;L
C are computed by averaging

over the three sets of Q2 values, and the uncertainty
determined by taking into account both theW2 dependence

of the fits and the PDF error. Because the �T;L
C values at the

differentQ2 are correlated, performing a simple �2 fit to all
the sets may underestimate the errors. As a more reliable
error estimate, we combine in quadrature the uncertainties
arising from (i) the W2 dependence, for which we take the
average of the difference between the central values of the

lowest and highest points for theQ2 set giving the strongest
W2 dependence (namely, for Q2 ¼ 2:5 GeV2 for �T

C, and

Q2 ¼ 10 GeV2 for �L
C); and (ii) the PDF error, the uncer-

tainty for which is given by the data point with the largest
error in the entire set (which occurs forQ2 ¼ 2:5 GeV2 for
both �T

C and �L
C). The final fitted values of the continuum

parameters are found to be

�T
C ¼ 0:65� 0:14; �L

C ¼ �1:3� 1:7: (31)

Compared with the uncertainties assumed by GHRM [14]
our uncertainty on the transverse parameter �T

C is about five

times smaller, while that on the longitudinal parameter �L
C

is almost two and a half times larger. However, the error on
�L
C has minimal effect on the �Z cross section at these

kinematics because of the relatively small contribution of
the longitudinal structure function.

The resulting F�Z
2 structure function with the con-

strained �T;L
C values is shown in Fig. 8 for fixedQ2, ranging

from Q2 ¼ 0:05 to 10 GeV2. The models of the �Z struc-
ture functions are seen to match very well at the boundaries
between the Regions I, II and III. As for the interference

F�Z
2 structure function in Fig. 6, only the continuum un-

certainty is included in these examples; this allows a direct
comparison with the uncertainty in the GHRMmodel input
which dominates all other uncertainties. The comparison
between Figs. 6 and 8 at the corresponding kinematics

illustrates the significant reduction in the F�Z
2 uncertainty

that results from constraining the structure functions by the
global QCD fits of PDFs. A similarly large reduction in the

uncertainty can be seen in Fig. 9 forF�Z
2 as a function ofQ2

at fixed W2 values.
The remaining uncertainty on the background contribu-

tion is associated with the RT;L
! and RT;L

 terms in Eq. (24).

Following GHRM [14], we take the difference between
these ratios calculated in the VMDþ Regge model atQ2 ¼
7 GeV2 and the experimental vector meson cross sections
from HERA [49], assuming RT

! ¼ RL
! and RT

 ¼ RL
 (see
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FIG. 7 (color online). Continuum parameters �T
C (left) and �L

C (right) fitted to the DIS data, parametrized by the ABM11 global QCD
fit [40], as a function ofW2 for fixed Q2 ¼ 2:5 GeV2 (red triangles), 6 GeV2 (blue squares), and 10 GeV2 (green circles). The average
values h�T;L

C i are indicated by the solid lines, with the shaded band giving their uncertainty. Note that some of the points have been

slightly offset for clarity.
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Fig. 13 of [14]). This uncertainty is then added in quadrature
with the continuum uncertainty, along with the resonance
contribution discussed in Sec. III, to obtain the total error on
the �Z structure functions used in estimating <ehV

�Z.

The impact of the total uncertainty reduction is illus-
trated in Figs. 10 and 11 for the parity-violating inelastic
asymmetry for the proton,

APV¼geA

�
GFQ

2

2
ffiffiffi
2

p
��

�

�
xy2F�Z

1 þð1�y� x2y2M2

Q2 ÞF�Z
2 þgeV

ge
A
ðy� 1

2y
2ÞxF�Z

3

xy2F��
1 þð1�y� x2y2M2

Q2 ÞF��
2

;

(32)
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FIG. 8 (color online). Proton F�Z
2 structure function versus W2 at various fixed Q2 values for the low-W CB fit [24] (blue solid) and
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where y ¼ 	=E is the fractional energy transferred to the

target. In addition to the vector F�Z
1;2 structure functions, the

asymmetry APV depends also on the axial-vector F�Z
3

structure function. For the the resonance contribution to

F�Z
3 we use the parametrization of the axial-vector tran-

sition form factors of Lalakulich et al. [50–52]. For the
background we follow Ref. [31] and rescale the electro-
magnetic cross sections [24] by the average of the x ! 0

and SU(6) quark model limits, which gives F�Z
3 ¼

5=3F��
1 . (Note that for the deuteron this average becomes

F�Z
3 ¼ 9=5F��

1 .)

The asymmetries calculated in the AJM and GHRM
models are shown in Fig. 10 at an incident energy
E ¼ 0:69 GeV and Q2 ¼ 0:34 GeV2, corresponding to

the kinematics of the recent G0 measurement at Jefferson
Lab near the � resonance region [53]. The central values of
both models agree well with the data, although the experi-
mental uncertainty is too large to enable meaningful con-
straints to be placed on the �Z structure functions. The
constraint on the �T

C value from matching to the DIS struc-
ture functions in the AJM model renders the uncertainty
band somewhat smaller than the GHRM uncertainty [14] at
higher values of W. (Note that the uncertainty on APV is
computed by taking the upper and lower values of the input
�Z structure functions, and is therefore asymmetric.)
The difference in the error bands becomes more pro-

nounced at larger Q2, as seen in Fig. 11 at E ¼ 6 GeV and
Q2 ¼ 2:5 GeV2, which are representative of typical kine-
matics at Jefferson Lab (see Sec. IVB below). Here the
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FIG. 10 (color online). Proton parity-violating inelastic asymmetry APV=Q
2 as a function of W, at fixed incident energy E ¼

0:69 GeV and Q2 ¼ 0:34 GeV2, for the GHRM Model II [14] (left) and the AJM model (right). The data point at W ¼ 1:18 GeV
(black circle) is from the Jefferson Lab G0 experiment [53].
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uncertainty on the GHRM model asymmetry at W �
2 GeV is around four times larger than the corresponding
uncertainty on the constrained AJM model asymmetry. For
comparison, we also show in Fig. 11 the asymmetry com-
puted directly from PDFs [40] in the region W > 2 GeV
where a partonic description is expected to be valid.

The uncertainty in the PDF-based calculation is slightly
smaller than, but qualitatively similar to, that in the AJM
model, while the GHRMmodel uncertainty is significantly
overestimated in the region of overlap. We stress that
although the DIS region makes only a modest contribution
to <ehV

�Z, the requirement that the �Z cross sections

match across the DIS-resonance region boundary imposes
strong constraints on the �Z structure functions also at
lower W and Q2. In the following section we confront this
against new data on parity-violating electron-deuteron
scattering in the resonance region.

B. Deuteron asymmetry

The E08-011 experiment [15,54] at Jefferson Lab re-
cently measured the parity-violating asymmetry in inclu-
sive electron-deuteron scattering over a range ofW andQ2

in both the resonance and DIS regions. While the DIS
region data are currently still being analyzed [54], the
available resonance region data [15] can be used to provide
an independent test of the procedure for estimating the �Z
structure functions. This is particularly important for
<ehV

�Z, since the integrals in Eq. (12) are dominated by

Region I in Fig. 2.
The measured parity-violating asymmetry Ad

PV, scaled by

1=Q2, is shown in Fig. 12 at W ¼ 1:26, 1.59, 1.86 and
1.98 GeV, with Q2 values ranging from 0.76 to 1:47 GeV2.
(The 1=Q2 scaling factor enables the various points to be
shown on the same graph.) The deuteron asymmetries in the
AJM model are computed with the continuum parameters
constrained by the DIS region structure functions computed
from global PDFs [40], as for the proton asymmetry in the
previous section (see Fig. 11). The resulting fit gives for the
transverse continuum parameter �T

CðdÞ ¼ 0:79� 0:05, and
is in excellent agreement with the E08-011 data [15] for
all kinematics, except at the � region point at Q2 ¼
0:95 GeV2, where it lies slightly below the data. Since
the calculation of the� resonance contribution toAd

PV relies

only on isospin symmetry and the conservation of the
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FIG. 12 (color online). Deuteron parity-violating asymmetry Ad
PV=Q

2 as a function of W for incident electron energy E ¼ 4:9 GeV
(left) and E ¼ 6:1 GeV (right). The data points from the Jefferson Lab E08-011 experiment [15] atW ¼ 1:26 (green square), 1.59 (red
circle), 1.86 (blue triangle) and 1.98 GeV (black diamond) correspond to average values of Q2 ¼ 0:95, 0.83, 0.76 and 1:47 GeV2,
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DIS region �Z structure functions [40], and are compared with those computed with errors on �T;L
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and 25% (inner dotted bands).

1.5 2.0 2.5 3.0
120

100

80

60

40

W GeV

A
PVp

Q
2

pp
m

G
eV

2

GHRM

1.5 2.0 2.5 3.0
120

100

80

60

40

W GeV

AJM ABM11

FIG. 11 (color online). Proton parity-violating inelastic asymmetry APV=Q
2 as a function ofW, at fixed incident energy E ¼ 6 GeV

andQ2 ¼ 2:5 GeV2, for the GHRMModel II [14] (left) and the AJMmodel (right). The asymmetry computed directly from PDFs [40]
is represented by the green band.

HALL et al. PHYSICAL REVIEW D 88, 013011 (2013)

013011-14



vector current, its uncertainty is smaller than that for
higher-mass resonances. The discrepancy may reflect
stronger isospin dependence of the nonresonant back-
ground for � production [55], although the difference is
at the&2� level. Also, as seen in Fig. 10 above, the models
agree well with the G0 data [53] in the � region, albeit
within larger errors.

By using the longitudinal structure function from the
global QCD fit in Ref. [40], we find for the longitudinal
continuum parameter �L

CðdÞ ¼ 0:2� 3:4. Although the

specific implementation of the CB parametrization [24]
prevents this uncertainty from being propagated directly

into Ad
PV, we nevertheless can use the �T;L

C values for the

proton to ensure that the uncertainty in the longitudinal
piece is taken into account. For comparison, we also show
in Fig. 12 the uncertainty that would be obtained with a
similar 100% error on the continuum parameters as was
assumed by GHRM for the proton, with the VMDþ
Regge model [29] used for the entire kinematic region
[14]. In this case the uncertainties on Ad

PV in the W *
1:8 GeV region are 	6 times larger than the AJM model
asymmetries. Using a reduced 25% uncertainty on �T

CðdÞ
results in asymmetries with a significantly smaller error
band, which is nevertheless slightly larger than in the
AJM model.

As a check, the parameter �T
CðdÞ was also constrained

by performing a �2 fit to the E08-011 data points. This fit
constrains the dominant, transverse continuum parameter
to be �T

CðdÞ ¼ 0:69� 0:13. [Omitting the � datum from

the fit would yield a marginally larger value, �T
CðdÞ ¼

0:72� 0:13.] For the longitudinal contribution, the CB
parametrization of the deuteron structure function
provides only F��

1 , while F��
L is obtained through the

longitudinal to transverse cross section ratio ���
L =���

T

[see Eq. (21)], with the deuteron ratio assumed to be the
same as for the proton. Within this parametrization, a
direct constraint on �L

CðdÞ as for the proton case is there-

fore not possible. However, as for the PDF-constrained
asymmetry, we can still propagate the uncertainty on
�L=�T through the final asymmetry by including the

uncertainties in the �T;L
C values of the proton which serve

as inputs into the ��Z
L =��Z

T ratio.
The resulting asymmetries are again in very good

agreement with the E08-011 data, as is seen in Fig. 13.
Moreover, the uncertainties (dashed curves) are three to
four times smaller in the W * 1:8 GeV region than those
obtained by assuming a 100% uncertainty on the pa-
rameters, and remain smaller than even for the reduced,
25% uncertainty case. The consistency between the data
and the results given by the constrained expressions
gives us confidence in the reliability of the �Z structure
functions in the AJM model in the region of low to
intermediate W and Q2 that is of greatest importance
for the <ehV

�Z calculation.

Finally, the values of the calculated asymmetries and
their uncertainties, using both the resonance region data
and the PDF constraints, are summarized in Table II at each
of the kinematic points from the E08-011 experiment [15].
In addition, we list the AJM model predictions for Ad

PV at

the measured DIS region points atW > 2 GeV (marked by
asterisks), which will be discussed further in the next
section.
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FIG. 13 (color online). As in Fig. 12, but with the AJMmodel asymmetries (solid) and their uncertainties (dashed) constrained by the
E08-011 data [15]. Note the different scale on the ordinate to that in Fig. 12.

TABLE II. Parity-violating deuteron asymmetries in the AJM
model at the kinematics of the E08-011 experiment [15,54]. The
asymmetries are computed with the continuum parameters
�T;L
C ðdÞ constrained by the E08-011 data, or by matching to

the DIS region described in terms of PDFs. Note that the points
marked with asterisks ( � ) are predictions.

E (GeV) W (GeV) Q2ðGeV2Þ
APV=Q

2 (ppm GeV�2)

PDF constraint E08-011 constraint

4.9 1.26 0.95 �93:7þ8:8
�9:0 �93:1þ8:8

�9:0

4.9 1.59 0.83 �82:7þ9:7
�9:9 �80:1þ10:1

�10:3

4.9 1.86 0.76 �86:2þ6:7
�6:9 �82:4þ7:9

�8:0

6.1 1.98 1.47 �84:7þ6:2
�6:4 �79:2þ8:6

�8:8

6.1 2.03 1.28 �84:9þ6:2
�6:4 (�) �79:7þ8:4

�8:6 (�)
6.1 2.07 1.09 �85:2þ6:2

�6:4 (�) �80:3þ8:2
�8:3 (�)

6.1 2.33 1.90 �82:7þ6:3
�6:5 (�) �76:5þ9:3

�9:3 (�)
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V. RESULTS

A. �Z box corrections for Qweak

The detailed examination of the �Z interference struc-
ture functions and their uncertainties, constrained by data
in the DIS region and parity-violating asymmetries in the
resonance region, allows us to compute the =mhV

�Z cor-

rection in Eq. (12), and through the dispersion relation (6)
to make a reliable determination of the �Z box correction
to Qp

W . The dependence of <ehV
�Z on the incident energy

E is illustrated in Fig. 14, which also shows the individual
contributions of the various W and Q2 regions in Fig. 2.

At low energy (E & 1 GeV), the total correction<ehV
�Z

is dominated by the low-W, low-Q2 region (Region I in
Fig. 2). As found in earlier analyses [11–14,22], the reso-
nant contribution [mainly from the �ð1232Þ resonance]
peaks at around E 	 0:7 GeV, and gradually decreases at
higher energies. The nonresonant and resonant compo-
nents of Region I are approximately equal at E� 1 GeV,
with the nonresonant part growing with increasing energy.
The higher-W, higher-Q2 regions play a relatively minor
role in thehV

�Z correction, with Regions II and III contrib-

uting 	20% and 10% of the total, at E ¼ 3 GeV,
respectively.

At the Qweak energy, E ¼ 1:165 GeV, the breakdown of
the <ehV

�Z correction into its individual contributions is

summarized in Table III. Including uncertainties from all
regions, the total correction is found to be

<ehV
�Z ¼ ð5:57� 0:21½bgd� � 0:29½res� � 0:02½DIS�Þ

� 10�3; (33)

where the uncertainties listed are from the nonresonant
background, the resonances, and the DIS region, respec-
tively. Adding the errors in quadrature gives <ehV

�Z ¼
ð5:57� 0:36Þ � 10�3 at the Qweak energy. The 	 7%
relative uncertainty on this correction remains largely
energy independent, even at large energies, where the
contributions from larger W and Q2 become more impor-
tant; since the structure functions are constrained by DIS
data, the uncertainty in <ehV

�Z does not grow with E.

The AJM model value of the �Z box correction
is similar to the result, <ehV

�Z ¼ ð5:40� 0:54Þ � 10�3,

obtained using the �Z structure functions from Region II
extended over all kinematics, as in the GHRM Model II

[14], but with the �T;L
C parameters constrained by matching

to the DIS region structure functions [40]. This constraint
renders the uncertainty � four times smaller than that in
Ref. [14], but still slightly larger than in the AJM model
calculation.

B. Predictions for parity-violating asymmetries

The �Z structure functions can be further constrained by
additional parity-violating asymmetry data from the E08-
011 experiment at Jefferson Lab [15,54]. The deep-
inelastic region data are currently being analyzed [54],
and the predictions from the AJM model are shown in
Fig. 15 as a function of W for the three experimental Q2

values (see also Table II). The uncertainties on the predic-
tions are computed both by fitting the continuum parame-

ters�T;L
C to theDIS structure functions [40] and the E08-011

resonance region data [15]. The asymmetries with the E08-
011 data constraints are marginally higher than those with
the parameters constrained by PDFs, with slightly larger
uncertainties. As for the resonance region comparison in
Figs. 12 and 13, these uncertainties are 	 four to five
times smaller than they would be without the constraints

on �T;L
C , assuming 100% errors along the lines of the proton
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FIG. 14 (color online). Energy dependence of the contribu-
tions to <ehV

�Z from the various regions in W and Q2 displayed

in Fig. 2 in the AJM model (top), and the breakdown of Region I
into its resonant and nonresonant background components
(bottom).

TABLE III. Contributions to <ehV
�Z from various regions in

W and Q2 in the AJM model (see Fig. 2) at the Qweak energy
E ¼ 1:165 GeV.

Region <ehV
�Z (�10�3)

I (res) 2:18� 0:29
I (bgd) 2:46� 0:20
I (total) 4:64� 0:35
II 0:59� 0:05
III 0:35� 0:02
Total 5:57� 0:36
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calculation in Ref. [14]. The upcoming data will therefore
be extremely useful in determining the uncertainties on the
�Z structure functions and on the resulting <ehV

�Z

correction.
A further constraint will be provided by the inelastic

Qweak measurement [16], which was a special run of the
Qweak experiment tuned to the inelastic region at an aver-
age W ¼ 2:23 GeV. The AJM model prediction for the
proton asymmetry Ap

PV and its uncertainty are shown in
Fig. 16, where we find Ap

PV ¼ ð�7:8� 0:6Þ ppm at the
experimental Q2 ¼ 0:09 GeV2 value. The uncertainty in

the AJM model, with the continuum parameters �T;L
C con-

strained by the DIS structure functions, is 	 two times
smaller at the inelastic Qweak kinematic point than that
from the GHRM model [14] without these constraints.
Note also that in the resonance region, W � 1:5 GeV, the
uncertainty in the GHRM model almost doubles by taking
extrema values instead of the more conventional addition in

quadrature. The inelastic Qweak, and similar measurements
of the parity-violating inelastic asymmetries, will be valu-
able for constraining the �Z structure functions and the
<ehV

�Z corrections in the future.

VI. CONCLUSION

We have performed a comprehensive analysis of the �Z
box contribution to the forward electron-proton elastic
parity-violating asymmetry. Our primary result is a new
determination of the uncertainty on <ehV

�Z at the beam

energy of the Qweak experiment. In comparison with pre-
vious estimates, we report a significant reduction in this
uncertainty, driven largely by data on structure functions in
the DIS region, and measurements of parity-violating
asymmetries in the resonance region.
To isolate the dependence on the various inputs required

in the evaluation of <ehV
�Z, we have divided the disper-

sion integral into three kinematic regions. Region I, which
includes resonance contributions at low W and Q2, is
identified to totally dominate the value of <ehV

�Z. The

total uncertainty is therefore largely driven by how well the

�Z interference structure functions F�Z
i can be constrained

in this region.
The resonance region �Z structure functions are deter-

mined by an isospin transformation of the corresponding ��
structure functions. The input F��

i functions are determined
by a fit [24] to the world’s inclusive electron-nucleon scat-
tering data in terms of resonance contributions and a non-
resonant background. For the resonance components, the
isospin transformation can be performed using the conser-
vation of the vector current and the isospin dependence of
the couplings, as reported by the PDG, with relatively
modest contribution to the overall uncertainty. For the back-
ground, following the approach of Ref. [14], the transfor-
mation is estimated using a prescription based on the VMD
model [29]. For the low-mass vector meson components the
isospin rotation is determined by isospin symmetry of
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FIG. 15 (color online). Predictions for the parity-violating deuteron asymmetry Ad
PV=Q

2 as a function ofW (solid) for the DIS region
kinematics of the Jefferson Lab E08-011 experiment [54] atQ2 ¼ 1:28 GeV2 (green), 1:09 GeV2 (red) and 1:90 GeV2 (blue) (see also
Table II). The uncertainties (dashed) are computed in the AJM model with the continuum parameters �T;L

C constrained by DIS structure

functions (left), and by the E08-011 resonance region data (right). The predictions at the experimental W values [54] are shown as
pseudo-data points (open symbols).
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the electroweak interactions, while the transformation of
the high-mass continuum part is not fixed within the
VMD formalism, and consequently contributes a larger
uncertainty.

At larger Q2 values (Q2 > 1:5 GeV2) the continuum
piece totally dominates the nonresonant background. We
use this fact to constrain the continuum component of the
isospin rotation by matching this to the DIS structure
functions in the transition region. The model dependence
from using a particular continuum form at lower Q2 (away
from the PDF constraint) is less important, since this region
is dominated by the low-mass vector mesons �,! and. It
is the constraint on this rotation that drives the significant
reduction in uncertainty in the present AJM model as
compared to that reported by GHRM [14].

Combined with the relatively well-determined contribu-
tions from Regions II and III at higher W and Q2

(see Fig. 2), we find the final value for �Z correction to
be <ehV

�Z ¼ ð5:57� 0:36Þ � 10�3. Importantly, this pre-

cision maintains confidence in the interpretation of the
Qweak experiment as a standard model test.

The reliability of our constraint procedure has been
confirmed by a comparison with the corresponding inclu-
sive �Z interference asymmetries recently measured on
the deuteron by the E08-011 experiment at Jefferson Lab
[15]. Conversely, using the E08-011 resonance region
data as a constraint on the �Z structure functions, the
resulting asymmetries are found to be very similar to
those in the AJM model with the PDF constraints, albeit
with slightly larger uncertainties. Upcoming data on the

deuteron asymmetry in the DIS region [54] should reduce
these uncertainties.
Beyond this, the most promising means by which

one could further constrain the �Z structure functions
would be to perform a systematic experimental study of
parity-violating electron scattering on hydrogen across
Region I. While the recent deuterium measurements [15]
have proven useful in providing confidence in the proce-
dure of matching to PDFs at intermediate Q2 and W,
because the deuteron requires a knowledge of the neutron
structure function as well as of the proton, this has limited

value as a means to reduce the uncertainty in F�Z
i . A

dedicated study of the proton itself would directly con-
strain the model and lead to a reduction in the uncertainty
of the radiative correction arising from the �Z box.
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