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We study electroweak Sudakov effects in single W, Z and � production at large transverse momentum

using soft collinear effective theory. We present a factorized form of the cross section near the partonic

threshold with both QCD and electroweak effects included and compute the electroweak corrections

arising at different scales. We analyze their size relative to the QCD corrections as well as the impact of

strong-electroweak mixing terms. Numerical results for the vector-boson cross sections at the Large

Hadron Collider are presented.
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I. INTRODUCTION

The production of a single electroweak boson is one of
the basic hard-scattering processes that one can measure at
hadron colliders. Much theoretical effort has been put over
the years into precisely predicting the cross section of the
W, Z, and � production processes. There is ongoing work
to obtain the second-order corrections in the strong cou-
pling �s to the transverse momentum spectrum, a quantity
for which the next-to-leading order results are known for a
long time [1–3] and have been implemented in numerical
integration programs [4–8]. One way to improve the fixed-
order results is to include resummation of higher-order
terms that are enhanced in certain kinematical limits.
Here, we focus on the region of large transverse momen-
tum pT and compute the cross section near the partonic
threshold. In this region, two types of Sudakov-enhanced
terms arise, whose combined resummation is the subject of
the present paper. First of all, the electroweak corrections
are enhanced by double logarithms of the vector-boson
masses MW and MZ over pT . Secondly, near threshold,
the invariant mass of the hadronic jet which recoils against
the electroweak boson is small and the perturbative cor-
rections are enhanced by logarithms of the jet mass MX

over pT . One can expand around the threshold limit and
resum the enhanced terms. For the electroweak-boson
spectrum, threshold resummation was first achieved at
next-to-leading logarithmic accuracy in [9]. Except in the
unrealistic case where the pT value is close to the maxi-
mum kinematically allowed value, the cross section also
receives contributions away from the threshold region.
However, the partonic threshold contributions often
amount to the bulk of the hadronic cross section. This is
due to the rapid falloff of the parton distribution functions
(PDFs) fðxÞ at large x, which dynamically enhances the
threshold region (see Ref. [10] and references therein).

In the partonic threshold limit, the real radiation
simplifies considerably because of the restricted phase
space. The hadronic final state consists of the electroweak
vector boson recoiling against a single low-mass jet, and all

additional hadronic radiation must be either soft, or collinear
to the jet or the incoming hadrons. This kinematical situ-
ation is amenable to an effective theory treatment using soft
collinear effective theory (SCET) [11–13].Within the SCET
framework, threshold resummation of quantum chromody-
namics (QCD) corrections for W, Z and � production at
large pT has been achieved at next-to-next-to-leading loga-
rithmic (N2LL) accuracy [14–16]. Some results with N2LL
accuracy were also presented in Ref. [17], using the tradi-
tional diagrammatic approach to resummation. Essentially
all the ingredients required to achieve next-to-next-to-next-
to-leading logarithmic (N3LL) accuracy in the SCET frame-
work are by now known [18–24] and a complete analysis
of resummation at N3LL accuracy will be the subject of a
future publication.
At the energies and luminosities that the Large Hadron

Collider (LHC) can reach, also virtual corrections due to
electroweak-boson exchanges can become quite signifi-
cant. Since we are considering single electroweak-boson
production, without additional radiation of soft or collinear
W or Z bosons, the cross section will contain logarithms
of the form ln ðp2

T=M
2
VÞ, where MV is the W- or Z-boson

mass. This was recognized long ago, and the electroweak
one-loop corrections and two-loop logarithmically en-
hanced terms have been computed for these processes
[25–30]. The outcome of these analyses is that electroweak
corrections can be as large as 20% for pT � 1 TeV at the
LHC, clearly indicating that electroweak Sudakov effects
have to be included if one wants to have a precise predic-
tion for the spectrum in the region pT � MV . Let us note
that these logarithms would partly cancel if one considered
real W and Z emission, in addition to virtual electroweak-
boson exchanges, but the cancellation would not be com-
plete, since the initial states carry non-Abelian charge [31].
Recently, this was explicitly verified for the Zþ 1 jet
production process at the double-logarithmic level [32].
In this paper we elaborate on the inclusion of electroweak
effects in the cross sections using SCET.
A derivation of the factorization formula for single

electroweak-boson production within SCET has been
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given in Ref. [14]. The factorization formula will be made
more explicit in the following sections, but schematically
we have that the partonic cross section �̂ is given in a
factorized form as

d�̂� �̂BH� JV � J � S; (1)

where �̂B is the Born cross section, H the hard function,
and J and S the jet and soft functions, which encode
collinear and soft radiation, respectively. The symbol �
denotes a convolution. Since we will deal with electroweak
corrections, in addition to strong-interaction effects, we
have included a jet function JV for the electroweak boson
V ¼ W, Z, � in the factorization formula. The formalism
to incorporate electroweak corrections in the SCET frame-
work was developed in a series of papers by Chiu et al.
[33–37]. In those papers, resummation of electroweak
Sudakov corrections to the hard function H was studied
in detail, and explicit expressions for several different
hard-scattering processes were given. The strategy to
incorporate electroweak corrections consists of four
steps [36]: (i) a matching from the full Standard Model
(SM) to SCET at a high scale �h � pT . (ii) Running from
�h to a low scale �l �MV . (iii) Matching at the scale �l,
from a version of SCET that contains dynamical Z and W
bosons to a version of SCET where those massive gauge
bosons, together with the top quark and the Higgs boson,
are integrated out. Following Ref. [36] we denote the
theory below �l as SCET�, and the theory above �l as

SCETEW. The final step (iv) consists of the running from
�l to the factorization scale �f. Steps (i) and (ii) are

independent of the masses of the gauge bosons, and of
the pattern of electroweak symmetry breaking, and can be
performed in the unbroken theory, with massless particles.
The jet and soft functions are then defined in SCET� and

only contain photon, gluon and light-fermion radiation. We
denote by �j and �s the scales where the jet and soft

functions are defined, respectively. This whole setup is
illustrated in Fig. 1. In this paper, we study in detail the
importance of electroweak corrections to the different
ingredients of the factorization formula and discuss the
best way to set the different factorization scales when
both QCD and electroweak corrections are included.

Before going on, a comment regarding the definition of
the observable we are considering is in order, which is no
longer unambiguous once electroweak corrections are
included. In particular, we need to clarify what we mean
by a jet. In the full SM, when one computes electroweak
corrections to V þ jet one will encounter real radiation
diagrams where there is a photon and a gluon or quark in
the final state. The pT of the electroweak boson V can be
balanced by both the recoiling parton and the photon. As a
consequence, the singularities of the real-emission diagrams
cancel in part with virtual electroweak corrections to
V þ jet but also in part with QCD corrections to the
V þ � process. One should therefore either put some cut

which excludes configurations where the pT of the V is
compensated by a hard photon, or consider a more inclusive
observable and include also the V þ � process with its QCD
corrections. Either option amounts to a well-defined observ-
able, and both of them were discussed in the literature
[29,30]. In addition, Refs. [38,39] present electroweak cor-
rections including the leptonicW and Z decay. Comparisons
between the different results seem to indicate that the the
size of the corrections is very similar in the two cases [30].
Here, we consider single-boson production near threshold,
where the factorization formula Eq. (1) for the partonic cross
section is valid. Since we consider inclusive V production in
the threshold limit, the real radiation is encoded in the soft
and jet functions, with no phase space for additional hard
radiation. At leading order in the power counting in the
effective theory one will have operators which, in addition
to the vector boson V, involve (i) a collinear quark or gluon
field, or (ii) a collinear photon in the final state. Obviously
the first operators give V þ jet, while the second ones give
V þ � at Born level. The different operators do not mix, and
we can consider them separately. We will not include op-
erator (ii) in the following. The quark (and gluon) jet
functions contain collinear photons, but soft quark radiation
is power suppressed in the threshold limit and a quark jet
function will not lead to contributions where a photon
carries all the energy. Therefore by considering the threshold
limit, and writing down the factorized formula in the effec-
tive theory, we avoid the need to introduce an explicit cut to
exclude a hard photon. The cut would affect power-
suppressed terms, whose size will govern its importance.
The rest of the paper is organized as follows. In Sec. II,

we first we describe the kinematics of the process and

FIG. 1 (color online). Effective theory setup. H, J, S, and f
denote the hard, jet, and soft functions, and the PDFs, respec-
tively; �QCD is the QCD scale.
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specify the power counting that we use. We then give
general expressions for the anomalous dimensions and
the matching corrections and discuss how the result for
specific channels can be obtained. Section III contains the
results and plots for Z and � production, while Sec. IV
contains the ones for W bosons. In Sec. V we discuss the
size of the electroweak corrections, compare with results
from the literature and conclude. The Appendix collects
the beta functions that enter in our results.

II. PRELIMINARIES

A. Kinematics and power counting

There are two partonic channels that are relevant for
single electroweak-boson production at leading order: the
Compton channel qg ! qV, and the annihilation channel
q �q ! gV, plus permutations of the initial-state partons or
interchange of q and �q. At next-to-next-to-leading order
also the channel gg ! gV contributes, but it is only relevant

for N3LL accuracy, and we don’t need to consider it here.
The partonic Mandelstam variables for ab ! cV are given
by ŝ¼ðpaþpbÞ2, t̂¼ðpa�pVÞ2, and û¼ðpb�pVÞ2.
Throughout the paper, a hat denotes a partonic quantity.
We now define a counting to be able to specify which

terms in the amplitude will be kept in our results. Defining
a as the counting parameter, we use

�s � a; L :¼ log
p2
T

M2
Z

� 1

a
; �i � a2; (2)

where �s is the strong coupling and �i is the SUð2ÞL
or Uð1ÞY coupling (�2 or �1, respectively; or the
electromagnetic coupling �em, if we are in SCET�). As

was done in Ref. [35], we find it convenient to present a
table with the different terms entering in the amplitude.
If we denote the amplitude by M, we have, schemati-
cally, that the log of the amplitude will contain the
following terms:

logM�

�sL
2þ�iL

2 �sLþ�iL �sþ�i

� 1
aþ 1 �1þa �aþa2

�2
sL

3þ�2
i L

3 �2
sL

2þ�2
i L

2 �2
sLþ�s�iLþ�2

i L �2
s þ�s�iþ�2

i

� 1
aþa �1þa2 �aþa2þa3 �a2þa3þa4

�3
sL

4þ�3
i L

4 �3
sL

3þ�2
s�iL

3þ�s�
2
i L

3þ�3
i L

3 ..
. . .

.

� 1
aþa2 �1þaþa2þa3

..

. ..
.

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

; (3)

where it is understood that the amplitude is normalized
such that tree level corresponds to M ¼ 1. To obtain the
above table, one needs to take into account that the �
functions in the SM contain terms involving couplings
from different gauge groups starting at two loops, and
that the cusp anomalous dimension contains terms that
mix the couplings starting at four loops. For the pure-
QCD terms, Nk�1LL accuracy corresponds to keeping
all the terms in the first k columns of the table of Eq. (3).
Pure-QCD terms were considered at N2LL accuracy in
Refs. [14–16]; here we will also consider the rest of the
terms, which involve at least one �i.

B. Renormalization-group evolution
of the hard function

In the effective theory, the resummation is performed by
solving renormalization-group (RG) equations for the
hard, jet and soft functions and evolving them to a common
scale. To set the stage for the explicit expressions given in
the next sections, we now give general expressions for the
necessary hard anomalous dimensions and the solution
of the associated RG equations. The hard functions are

given by renormalized on-shell amplitudes. For massless
particles and at the one-loop level, their evolution is
governed by the anomalous dimension [40,41]

� ðfpg; �Þ ¼ X
i<j

�

4�
Ti � Tj�0 ln

�2

�sij
þX

i

�

4�
�i
0; (4)

where fpg represents the set of momentum vectors of the

external particles, sij :¼ 2�ijpi � pj þ i0, and the sign

factor �ij ¼ þ1 if the momenta pi and pj are both incom-

ing or outgoing, and �ij ¼ �1 otherwise. The product

Ti � Tj ¼ P
aT

a
i T

a
j , where T

a
i are the gauge-theory gener-

ators in the representation relevant for particle i (see e.g.
Ref. [41] for more details). This expression is valid for a
general unbroken gauge theory with coupling constant �.
The one-loop cusp anomalous dimension is �0 ¼ 4 and the
collinear anomalous dimension �i

0 depends on the repre-

sentation and the spin of the particle. For a fermion, one
has �q

0 ¼ �3CF, while it takes the value �
g
0 ¼ ��0 for a

gauge boson, where it is understood that one uses the
Casimir CF and first beta function coefficient �0 that
are appropriate for the corresponding gauge group.
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Because we count �1 � �2 � a2, the one-loop expression
for the anomalous dimension is sufficient for the electro-
weak corrections at order a. However, we note that there
are strong all-order constraints on the anomalous dimen-
sion [40–45], which imply in our case that the structure of
the anomalous dimension remains the same up to, at least,
three-loop order.

The relevant theory for the hard functions at �� pT �
MV is the SM in the unbroken phase, and one has to replace

�

4�
Ti � Tj ! �1

4�
Yi � Yj þ �2

4�
ti � tj þ �s

4�
Ti � Tj (5)

in the above expression, Eq. (4), for the anomalous dimen-
sion. Here Yi is the hypercharge of particle i, and ti and Ti

the generators associated with SUð2ÞL and SUð3ÞC, in the
appropriate representation for particle i. The relevant
theory for the running below �l is QCDþ QED and the
anomalous dimensions are obtained by substituting

�

4�
Ti � Tj ! �em

4�
Qi �Qj þ �s

4�
Ti � Tj (6)

in the general expression, whereQi is the electric charge of
particle i.

In our case, the hard amplitudes are q �q ! gV and cross-
ings thereof. They involve only three charged particles
under any of the gauge groups. In the three-particle case,
charge conservation

P
iTi ¼ 0 can be used to rewrite the

color-dipole terms in the form

2
X
i<j

Ti � Tj ln
�2

�sij
¼ �ðC1 þ C2 � C3Þ ln �2

�s12

� ðC1 þ C3 � C2Þ ln �2

�s13

� ðC2 þ C3 � C1Þ ln �2

�s23
; (7)

where Ci ¼ Ti � Ti is the quadratic Casimir operator asso-
ciated with leg i. This makes it clear that the anomalous
dimensions for vector-boson production are diagonal in
gauge-group space.

Below, we will write the RG equation for the hard
function for production of a vector boson V in the partonic
channel ab ! cV in the form

d

d ln�
Hab;Vðŝ; t̂; �Þ ¼

�
�ðVÞ ln

ŝ

�2
þ �ðVÞ

ab

�
Hab;Vðŝ; t̂; �Þ;

(8)

where we suppress the dependence of the noncusp anoma-

lous dimension �ðVÞ
ab on ŝ and t̂. Wewrite the solution to this

equation in terms of an evolution factor times the hard
function at a high scale �:

Hab;Vðŝ; t̂; �Þ ¼ UðVÞ
ab ð�;�ÞHab;Vðŝ; t̂; �Þ: (9)

At the order we are working, we do not need to consider
electroweak corrections to the matching, and the functions
Hab;Vðŝ; t̂; �hÞ are then given by the corresponding

QCD results. We thus do not need to distinguish the
Uð1ÞY hard function Hab;Bðŝ; t̂; �hÞ from the SUð2ÞL hard

function Hab;W3ðŝ; t̂; �hÞ and will denote the common

QCD hard function for Z-boson production simply by
Hab;Zðŝ; t̂;MZ;�hÞ. We furthermore keep the power-

suppressed MZ dependence both in Hq �q;Zðŝ; t̂; MZ;�hÞ
and in the Born-level cross sections.
The pure-QCD hard functions and their evolution were

given in [14,16]. The contribution of the electroweak
gauge coupling �i to the evolution factor has the following
form:

lnUðVÞ
ab ð�;�Þj�i

¼2SðVÞð�;�Þ�AðVÞ
ab ð�;�Þ

� ln
ŝ

�2
AðVÞ
� ð�;�Þþ2S�s�i

ð�;�Þ; (10)

where the functions SðVÞð�;�Þ and AðVÞ
ab ð�;�Þ are [14,46]

SðVÞð�;�Þ ¼ �
Z �ið�Þ

�ið�Þ
d�

�ðVÞð�Þ
�ð�Þ

Z �

�ið�Þ
d�0

�ð�0Þ ;

AðVÞ
ab ð�;�Þ ¼ �

Z �ið�Þ

�ið�Þ
d�

�ðVÞ
ab ð�Þ
�ð�Þ :

(11)

The function AðVÞ
� ð�;�Þ is obtained by replacing �ðVÞ

ab with

�ðVÞ in AðVÞ
ab ð�;�Þ. It is understood that the appropriate

anomalous dimension and beta function for each coupling
is used in Eq. (11). The explicit expressions for the beta
function coefficients appearing throughout the paper are
collected in the Appendix. In addition to the contributions
from the individual gauge groups, we also need to take into
account mixing terms at the order we are working. These
are encoded in the last term in Eq. (10). The mixing
contribution is S�s�1;2

when V ¼ W1;2;3 or B, and S�s�em

when V ¼ Z, W�, or �, for the hard running below the
scale �l. It is given by the function Sð�;�Þ for the strong
coupling keeping only the terms of order a that contain one
�i, which come from the expansion of the beta function for
�s in the denominators of Eq. (11). These corrections
correspond to the terms with one �i and an arbitrary
number of �s in the second column of Eq. (3), all of which
are of order a. For the second stage of hard running, below
the scale �l, the logarithm ln ŝ=�2

l arising in Eq. (10) is

large because�2
l � ŝ. In this case, we also need to include

a mixing term A�s�em
arising in the function AðVÞ

� .

C. Collinear factorization anomaly

For massive Sudakov problems, the individual collinear
and soft diagrams are not well defined and need additional
regularization beyond the standard dimensional regulari-
zation. This can be done with an analytic regulator [47].
The additional regulator can be removed once the

THOMAS BECHER AND XAVIER GARCIA I TORMO PHYSICAL REVIEW D 88, 013009 (2013)

013009-4



contributions from the individual collinear regions are
combined, but as a result a large logarithm arises in the
matching of SCETEW to SCET� [33]. The presence of

large logarithms in the matching is problematic since
such logarithms are not generated by RG evolution but
need to be resummed. This collinear anomaly also arises
in many other observables, in particular in transverse-
momentum dependent quantities [48]. It was shown in
[34] that the additional logarithm exponentiate. The expo-
nentiation is derived from the requirement that the regula-
tor dependence must cancel among the different collinear
and soft pieces [34,48], or alternatively, from solving an
evolution equation in the associated regulator scale [49].

While the standard electroweak matching corrections
are beyond our accuracy, the logarithmically enhanced
pieces due to the collinear anomaly need to be included.
One-loop collinear functions for the Standard Model were
given in [37]. The logarithmically enhanced piece has the
general form

Di
C ¼ �

4�

�0

4
Ti � Ti ln

M2

�2
ln

ŝ

�2
; (12)

where � stands for the coupling of the broken gauge group
whose boson has a mass M. The full one-loop expression
involves a sum over pairs like Eq. (4), but since we
only need the leading logarithmic contribution, we have
replaced sij ! �ŝ and have used charge conservationP

iTi ¼ 0 to write it in the above form. These collinear
functions need to be computed in the broken phase and to
obtain them, one replaces [37]

�Ti � Ti ! �Wðti � ti � ðt3i Þ2Þ þ �ZðtZi Þ2; (13)

where tZ ¼ t3 � s2WQ, �W ¼ �2, and �Z¼�1=s
2
W¼

�2=c
2
W¼�em=ðc2Ws2WÞ, with cW :¼ cos �W , sW :¼ sin�W ,

and �W the weak-mixing angle. To obtain the eigenvalues
of the Casimir operators acting on the W-boson fields,
we need to work with the generators in the adjoint
representation. We find

ðt � t� ðt3Þ2ÞjW�i ¼ jW�i;
ðt � t� ðt3Þ2ÞjW3i ¼ 2jW3i;

ðtZÞ2jW�i ¼ c4W jW�i;
ðtZÞ2jW3i ¼ 0:

We will use the notation

DðW3!ZÞ
q �q ð�Þ ¼ Dq

C þD �q
C þDW3

C (14)

for the collinear function for Z-boson production arising
from the operator with field content q �qW3 (and analogous
notations for the rest of the collinear functions). As we
stated above, this contribution exponentiates, so the rele-
vant factor in the cross section is

D ðW3!ZÞ
q �q ð�Þ ¼ eD

ðW!ZÞ
q �q ð�Þ: (15)

III. RESULTS FOR Z AND � PRODUCTION

We now give the results for Z production and will after-
wards discuss how they must be modified to also obtain the
cross section for � production. The hadronic cross section
for the Z-boson case is given by

d�Z

dpTdy
¼ 2pT

X
ab

Z
dx1dx2faðx1Þfbðx2Þ

�
ŝ
d�̂ab;Z

dŝdt̂

�
;

(16)

where faðxÞ is the PDF for parton a. The sum runs over a,
b ¼ q, �q, g, and y is the Z’s rapidity. The factorized form
for the partonic cross section for the channel ab ! cZ
is [14,15]

ŝ
d�̂ab;Z

dŝdt̂
¼ �̂B

ab;ZHab;Zðŝ; t̂;MZ;�Þ

�
Z

dkJcðM2
X � 2EJk;�ÞSab;Zðk;�Þ; (17)

whereM2
X ¼ ðpa þ pb � pZÞ2, and EJ is the energy of the

jet. At Born level Jcðp2; �Þ and Sab;Zðk;�Þ reduce to delta

functions of their first arguments, and the hard function
Hab;Z is equal to 1. The Born-level cross sections are

given by

�̂B
q �q;Z ¼ ��em�s

ŝ

2CF

Nc

ðIZÞ2
�
t̂2 þ û2 þ 2M2

Zŝ

t̂ û

�
;

�̂B
qg;Z ¼ ���em�s

ŝ

1

Nc

ðIZÞ2
�
t̂2 þ ŝ2 þ 2M2

Zû

t̂ ŝ

�
;

(18)

with CF ¼ ðN2
c � 1Þ=ð2NcÞ, Nc the number of colors,

and IZ :¼ ðcWsW t3 � sW
cW

YÞ, with t3 the weak isospin and Y

the hypercharge (the electric charge Q is given by Q ¼
t3 þ Y). Note that we keep the MZ terms in the Born-level
cross section, and in kinematical factors.
The Z boson in the low-energy broken theory can come

from the Uð1ÞY gauge boson B or the SUð2ÞL gauge boson
W3 in the unbroken theory. We therefore need to consider
the amplitudes ab ! cW3 and ab ! cB in the high-
energy unbroken theory, and combine them according to
Z ¼ cWW

3 � sWB, which can be thought of as part of the
tree-level matching condition at �l. For the pure-QCD
terms, the log resummation is the same for the B and W3

terms, and therefore the amplitude is still proportional to IZ

after resummation, but when we include electroweak cor-
rections the B andW3 terms receive different contributions
and the resummed amplitude is no longer proportional to
IZ. The external Z, and the external W in the next section,
are treated with a boosted version of a heavy quark effec-
tive theory (HQET) field in SCET� [36,50] (we use the
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standard name HQET, despite the fact that the heavy
particle is not a quark in our case). Since the Z is neutral,
its jet function JZ is trivial (i.e. exactly a 	 function),
and it does not appear explicitly in the factorization
formula in Eq. (17). That is, we have already integrated
over the associated convolution variable that would appear
in Eq. (1).

A. Cross section in SCET

In this section we present the results for the different
ingredients that enter in the factorized cross section
formula in SCET, Eqs. (16) and (17). The hard function
(times Born-level cross section) for the annihilation chan-
nel is given by

�̂B
q �q;ZHq �q;Zðŝ; t̂; MZ;�fÞ ¼ ��sð�hÞ

ŝ

2CF

Nc

�
t̂2 þ û2 þ 2M2

Zŝ

t̂ û

�
jUðZÞ

q �q ð�l;�fÞj2jcW
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ð�hÞ

q
t3DðW3!ZÞ

q �q ð�lÞUðW3Þ
q �q ð�h;�lÞ

� sW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1ð�hÞ

q
YDðB!ZÞ

q �q ð�lÞUðBÞ
q �q ð�h;�lÞj2Hq �q;Zðŝ; t̂; MZ;�hÞ: (19)

In Eq. (19), theUðVÞ
q �q ð�h;�lÞ factors encode the running from�h to�l in SCETEW, andUðZÞ

q �q ð�l;�fÞ the running from
�l to�f in SCET�. The general structure of the anomalous dimensions was given in Sec. II B, we present in the following

the expressions needed to account for the terms up to order a in Eq. (3). The explicit results for the electroweak part of the
anomalous dimensions we need are

�ðW3Þ ¼ �1

4�
Y2�0 þ �2

4�

7

4
�0; �ðW3Þ

q �q ¼ �1

4�
Y2ð�6� i��0Þ þ �2

4�

1

4

�
�18� 4��2

0 þ i��0 � 4�0 log
ŝ2

t̂ û

�
;

�ðBÞ ¼ �1

4�
Y2�0 þ 	
L

�2

4�

3

4
�0; �ðBÞ

q �q ¼ �1

4�
½Y2ð�6� i��0Þ � ��1

0 	 þ 	
L

�2

4�

3

4
ð�6� i��0Þ;

�ðZÞ ¼ �em

4�
Q2�0; �ðZÞ

q �q ¼ �em

4�
Q2ð�6� i��0Þ;

(20)

where 
 ¼ L, R indicates if the quark is left or right handed.

The factorsDðV!BÞ
q �q ð�lÞ encode the matching from SCETEW to SCET� at �l. Using the results of Sec. II C, the relevant

functions are obtained as

DðW3!ZÞ
q �q ð�Þ ¼ 1

4�
2 log

ŝ

�2

�
�emðIZÞ2 logM

2
Z

�2
þ �2

3

2
log

M2
W

�2

�
;

DðB!ZÞ
q �q ð�Þ ¼ 1

4�
2 log

ŝ

�2

�
�emðIZÞ2 logM

2
Z

�2
þ 	
L�2

1

2
log

M2
W

�2

�
:

(21)

The factor Hq �q;Z encodes the matching from the SM to

SCETEW . At the order we are working it is 1 plus pure-
QCD terms. Here, we do not explicitly show the pure-QCD
part of the running and the matching expressions, which
were considered in previous papers, see Refs. [15,16].
The hard function for the Compton channel is related to
Eq. (19) by crossing.

The leading electroweak corrections for the soft and jet
functions are

Sq �q;Zðk;�fÞ ¼ e�4Q2Sð�s;�fÞ	ðkÞ;
Jqðp2; �fÞ ¼ e�4Q2Sð�j;�fÞ	ðp2Þ;

(22)

and Sqg;Z and Jg remain delta functions at this order.

Sð�;�Þ in Eq. (22) is given by Eq. (11) with � ¼ �em

4� �0.

As we will discuss in the next section, we will not include
subleading electroweak corrections in the soft and jet
functions for our numerical evaluations, therefore, we do
not write them explicitly.

The results for direct photon production can readily be
obtained from the ones for Z production given above. The
hard function in the photon case can be obtained from the
corresponding equation for the Z case, Eq. (19), with
the following changes: (i) MZ should be set to 0 inside
the parenthesis in the first line and in Hq �q;Zðŝ; t̂;MZ;�hÞ,
(ii) the matching condition at �l should be changed
according to the following substitution:

cW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ð�hÞ

q
t3DðW3!ZÞ

q �q ! sW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ð�hÞ

q
t3DðW3!�Þ

q �q ;

�sW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1ð�hÞ

q
YDðB!ZÞ

q �q ! cW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1ð�hÞ

q
YDðB!�Þ

q �q ;
(23)

with DðW3!�Þ
q �q ¼ DðW3!ZÞ

q �q and DðB!�Þ
q �q ¼ DðB!ZÞ

q �q at

the order we are working, and (iii) UðZÞ
q �q ð�l;�fÞ !

Uð�Þ
q �q ð�l;�fÞ. At the order we need them, the anomalous

dimensions for Uð�Þ
q �q are given by

THOMAS BECHER AND XAVIER GARCIA I TORMO PHYSICAL REVIEW D 88, 013009 (2013)

013009-6



�ð�Þ ¼ �ðZÞ; (24)

�ð�Þ
q �q ¼ �ðZÞ

q �q � �em

4�
��em

0 : (25)

The electroweak corrections to the soft functions are
the same as in the Z case, see Eq. (22). In principle there
is now a jet function J� for the photon, which contains

contributions from light fermions, analogous to the ones
in the QCD jet function for the gluon. Those were not
present in the Z case because there we had a HQET
field. As we will discuss below in Sec. III B, we do not
need to include these terms. The photon jet function is
therefore just a delta function and we recover the same
structure for the factorization formula that we had in the
Z case.

B. Scale setting and numerical results

To evaluate the cross section numerically, we need to set
the values of the different scales that appear in the SCET
factorization formula, when both electroweak and Sudakov
corrections are included. We recall that the electroweak
corrections can be quite significant, around 20% for pT

around 1 TeV, but the pure-QCD corrections are, of course,
also important. The hard, jet, and soft scales that are
appropriate for the pure-QCD terms were determined in
Refs. [15,16], following the procedure advocated in
Ref. [10]. They were obtained as

�h ¼ 13pT þ 2MV

12
� p2

Tffiffiffi
s

p ;

�j ¼ 7pT þ 2MV

12

�
1� 2

pTffiffiffi
s

p
�
;

(26)

and �s ¼ �2
j=�h. The hard scale in Eq. (26) is of order

pT and therefore also adequate for the electroweak correc-
tions. On the other hand, to resum the electroweak Sudakov
corrections, we performed a running from �h to the low
scale�l in the unbroken gauge theory, and then matched to
a broken gauge theory. We use �l �MV , since this is the
scale at which we integrate out the massive gauge bosons.
The jet and soft functions are then defined below the scale
�l and contain only light degrees of freedom, but no W or
Z bosons, as is appropriate for the observable we are
studying. The jet and soft scales in Eq. (26), though, are
above MV for values of pT where the LHC will measure,
and there is thus an apparent difficulty here, in the sense
that the QCD values for the scales are not appropriate for
the electroweak corrections. In practice, this does not lead
to problems because the main part of the electroweak
corrections is contained in the hard function: we have
checked that the change in the cross section due to the
leading electroweak corrections of the jet and soft func-
tions is at the level of 1% or below for the range of pT

we study. Therefore, we can consider the jet and soft

functions just with leading electroweak corrections; at
this order the strong and electroweak corrections do not
mix [see Eq. (22)], and we can effectively set �j ¼ MV

just in the electroweak part of the jet function. The alter-
native to that would be to choose �j and �s of order MV

everywhere, which would be in accordance with the chain
of effective theories we used to resum the electroweak
Sudakov corrections. There is not any obstacle to do that,
but this scale setting would generate larger uncertainties
in the QCD part, and the final result would be less precise.
It is therefore better to ignore the subleading, numerically
negligible, electroweak corrections in the jet and soft
functions, and to use the scales in Eq. (26) everywhere
except in the electroweak part of the jet and soft
functions, where we use �j ¼ MV , and �s ¼ �2

j=�h,

accordingly.
Having set the scales, we now present plots of the results

for the cross section for Z production. We include electro-
weak Sudakov as well as QCD corrections. The default
values for the scales �h, �j, and �s are fixed according to

the discussion above. The default values for the low-
matching scale, �l, and the factorization scale, �f, are

�l ¼ �f ¼ MV . We will vary these scales by a factor of 2

to estimate the uncertainties. In all our plots we use the
next-to-next-to-leading order MSTW 2008 PDF set [51].
Note that for consistency of the factorization formula one
should include quantum electrodynamics (QED) effects in
the PDFs. This PDF set, though, does not include QED
effects. There are some older PDF sets that do include
QED corrections [52], but these have lower accuracy for
the QCD part. Since the QED corrections in the PDFs
should not be very important according to our discussion
above, it is better to use a newer PDF set with higher QCD
orders. The numerical values for the couplings and masses
that we use readMZ ¼ 91:1876 GeV,MW ¼ 80:399 GeV,
�sðMZÞ ¼ 0:1171, �emðMZÞ ¼ ð127:916Þ�1, sin 2�W ¼
0:2226, Vud ¼ 0:97425, Vus ¼ 0:22543, Vub ¼ 0:00354,
Vcd ¼ 0:22529, Vcs ¼ 0:97342 and Vcb ¼ 0:04128.
We present our results for the LHC at 7 TeV, for an
easier comparison with the results in Ref. [16]. The
relative size of the corrections is very similar at 13 TeV.
To show the effect of including electroweak corrections

to the cross section, we plot in Fig. 2 the difference

��ew :¼ �i
ew � �i

�i ; (27)

where �i represents the cross section with QCD
corrections at order NiLL, while �i

ew also includes the
electroweak corrections. The electroweak corrections
are always included at the same order, independently of
the value of i; i.e. including terms up to order a in the
exponent for the hard function, and the leading correc-
tions in the jet and soft functions. In the figure, the black
curves and bands correspond to i ¼ 1, and the green ones
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to i ¼ 2. Again, in each plot we have varied the corre-
sponding scale by a factor of 2. The scales in the QCD
and the electroweak parts are varied simultaneously,
both in the numerator and denominator of Eq. (27).
From the fact that the black and green curves are almost
identical, we learn that in order to study the relative
importance of the electroweak corrections it is not
necessary to include the QCD corrections at N2LL accu-
racy. To better visualize the effect of the scale variations,

we choose a reference value pT ¼ 500 GeV and plot the
cross section as a function of the deviation from the
default scale choices; this is shown in Fig. 3, for
both the Z boson and the photon. We observe that the
electroweak corrections in the cross section for photon
production are smaller than those for Z production.
For our final results, which are shown in Fig. 5, we add
the bands coming from the different scale variations in
quadrature.

200 400 600 800 1000 1200 1400

25

20

15

10

5

pT GeV

ew

Z production LHC7 f var.

200 400 600 800 1000 1200 1400

25

20

15

10

5

pT GeV

ew

Z production LHC7 j var.

200 400 600 800 1000 1200 1400

25

20

15

10

5

pT GeV

ew

Z production LHC7 s var.

200 400 600 800 1000 1200 1400

25

20

15

10

5

0

pT GeV

ew

Z production LHC7 h var.

200 400 600 800 1000 1200 1400

25

20

15

10

5

0

pT GeV

ew

Z production LHC7 l var.

FIG. 2 (color online). Z production for the LHC at 7 TeV. We plot the difference of cross sections with and without electroweak
corrections, normalized to the QCD result, as defined in Eq. (27). The black (darker) curves and bands correspond to i ¼ 1, and the
green (lighter) ones to i ¼ 2, note that they basically overlap. In each plot we vary the corresponding scale, denoted at the top, by a
factor of 2.
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IV. RESULTS FOR W PRODUCTION

We now consider singleW-boson production. The main
difference with respect to Z production is that the
W� bosons are charged. Therefore, both particles in the
final state, the W� and the quark or gluon, can have a jet
function. This means that the factorization formula is
more complicated than in the previous section, and will
have the general form sketched in Eq. (1). The situation is
similar to the study of QCD corrections to dijet cross
sections. A factorization formula for those processes
was derived in Ref. [53], and the ingredients for N2LL
resummation in SCET were given in Refs. [54,55]. The
expression that we will use here has the same form as the
one in Ref. [55], but is simpler, because we only have one
possible group structure (the tree level diagrams contain
one SUð3ÞC and one SUð2ÞL matrix, but those are in
different spaces and commute), in contrast to the dijet
case. Therefore, theH and S functions in the factorization
formula have no group indices. We write the partonic
cross section for the channel ab ! cW as

ŝ
d�̂ab;W

dŝdt̂
¼ �̂B

ab;WHab;Wðŝ; t̂;MW;�Þ

�
Z
dp2

Wdp
2
cdkJWðp2

W;�ÞJcðp2
c;�ÞSab;Wðk;�Þ

�	ðM2
XþM2

W�p2
W�p2

c�2EJkÞ; (28)

and the hadronic cross section is then obtained after
performing the convolution with the PDFs, analogous to
Eq. (16). Since we will only include electroweak correc-
tions to the jet and soft functions at leading order, JW
reduces to a 	ðp2

W �M2
WÞ times a prefactor, and we

recover the structure for the factorization formula that
we had in the Z case. In the following we give the results
for the different ingredients of the factorization formula
above.

The W� bosons in the broken theory come from
the SUð2ÞL gauge bosons W1;2 in the unbroken theory,

according to the combination W� ¼ 1=
ffiffiffi
2

p ðW1 
 iW2Þ.
Amplitudes with a W1 or a W2 receive the same electro-
weak corrections as those for W3 in the previous section,

i.e. the evolution factor UðW3Þ
ab ð�h;�lÞ in Eq. (19). Below

the scale �l, the W� boson is treated as a field in HQET.
The low-energy matching is given by1

DðW�!W�Þ
q �q ð�Þ

¼DðW3!ZÞ
q �q ð�Þþ�2

4�
log

ŝ

�2

�
�log

M2
W

�2
þc2W log

M2
Z

�2

�
;

(29)

and the running in the low-energy broken theory is given

by the corresponding factor, UðW�Þ
q �q ð�l;�fÞ, with the fol-

lowing anomalous dimensions:

�ðW�Þ ¼ �em

4�

�0

2
ðQ2 þQ02Þ; (30)

�ðW�Þ
q �q ¼ �em

4�

�
��0

1

2
log

M2
W

ŝ
� �0QQ0i�

þ �0QQW� log
�t̂

ŝ
� �0Q

0QW� log
�û

ŝ

� 3ðQ2 þQ02Þ � 2

�
; (31)

where Q is the charge of the quark and �Q0 the charge of
the antiquark (i.e.Q�Q0 ¼ QW� , withQW� the charge of
theW� boson). Since theW� is massive in the low-energy
theory, the expression Eq. (4) cannot be used to obtain the
above anomalous dimension. The appropriate expression
for the massive case was given in [56]. The hard function
times Born-level cross section is then given by
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FIG. 3 (color online). Effect of scale variations in the cross section for Z and � production at pT ¼ 500 GeV as a reference point.

1For simplicity, we use the subscript q �q in DðW�!W�Þ
q �q , despite

the fact that the two quarks have different flavor.
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�̂B
q �q;W�Hq �q;W�ðŝ; t̂;MW;�fÞ ¼ ��sð�hÞ

ŝ

2CF

Nc

�
t̂2 þ û2 þ 2M2

Wŝ

t̂ û

������UðW�Þ
q �q ð�l;�fÞ

�����2

�
��������
Vijffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ð�hÞ

q
DðW�!W�Þ

q �q ð�lÞUðW�Þ
q �q ð�h;�lÞ

��������
2

Hq �q;W�ðŝ; t̂;MW;�hÞ: (32)
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FIG. 4 (color online). Effect of scale variations in the cross section for W� and Wþ production at pT ¼ 500 GeV as a reference
point.
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FIG. 5. W, Z and � production for the LHC 7 TeV. We plot the difference of cross sections with and without electroweak corrections
given by Eq. (27), with i ¼ 1. The bands reflect the perturbative uncertainty of the results. They are obtained by first varying each of
the scales appearing in the factorization formula by a factor of 2 (as discussed in the text), and then adding these different individual
bands in quadrature.
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Here, Vij denotes the Cabibbo-Kobayashi-Maskawa matrix
and we have assumed that the quark and antiquark are from
generations i and j, respectively. Like in the Z case of the
previous section, we do not write pure-QCD corrections
explicitly, and Hab;Wðŝ; t̂; MW;�hÞ is again 1 plus pure-
QCD terms at the order we are working. The expression for
the Compton channel can be obtained from the result in
Eq. (32) above by crossing.

The W� jet function is defined in HQET, see Ref. [57].
At the order we need here we have

JWðp2; �fÞ ¼ e�4Sð�j;�fÞ	ðp2 �M2
WÞ; (33)

with Sð�;�Þ given by Eq. (11) with � ¼ �em

2� . Finally, for

the leading electroweak corrections to the soft functions
that we need in this case we obtain

Sq �q;Wðk;�fÞ ¼ e�4ðQ2þQ02�1ÞSð�s;�fÞ	ðkÞ;
Sqg;Wðk;�fÞ ¼ e�4ðQ2�Q02�1ÞSð�s;�fÞ	ðkÞ;

(34)

again with Sð�;�Þ given by Eq. (11) with � ¼ �em

2� .

We show the effect of the different scale variations
for W� production in Fig. 4. The final results for the
cross section are shown in Fig. 5. The results for W� are
numerically quite similar to the Z-boson case.

V. SUMMARYAND CONCLUSIONS

In summary, in this paper we have computed electro-
weak Sudakov corrections to the cross sections for single
W, Z and � production at large transverse momentum,
within SCET using the approach of Refs. [36,37]. We have
presented complete results for the factorized hadronic
cross sections with electroweak corrections. At the LHC,
these corrections are of order 20% for pT � 1 TeV for Z
and W production and about half as big for prompt photon
production. Their inclusion is necessary to obtain precise
predictions of the spectrum at large pT . In our numerical
analysis, we included both QCD and electroweak correc-
tions, and discussed the most adequate way to set the
different scales that appear in the factorized form for the
cross section. Our results are summarized in Fig. 5, where
we show the effect of including electroweak corrections in
the cross section by plotting the difference of cross sec-
tions with and without electroweak corrections.

Two important features of our results are the follow-
ing: first of all, the main part of the electroweak correc-
tions is contained in the hard function, and the effects on
the jet and soft functions are much smaller. This is also
evident from the fact that the bands due to �j and �s

variation in Fig. 2 are much smaller than the ones
coming from the variation of the other scales. This result
is in accordance with the statements made in Ref. [30]

regarding the small impact of the different treatments of
singularities in real radiation photon diagrams on the
size of the corrections [29,30]. The second feature worth
stressing is that the relative importance of the electro-
weak corrections, as defined in Eq. (27), does not depend
much on the order to which we work in the QCD part.
This means that one can, to good accuracy, include
electroweak effects via an overall prefactor in existing
pure-QCD computations.
Electroweak Sudakov corrections to vector-boson

production have been considered before. In particular,
Refs. [25,27,30] have presented analytic expressions
for the IR-finite part of the virtual electroweak corrections,
at next-to-leading logarithmic accuracy up to two loops, in
the limit M2

W;Z � ŝ� t̂� û, for Z, � and W� production,

respectively. These terms correspond to our expressions
for �̂B

q �q;VHq �q;V expanded to order �3
i , with �l ¼ �f ¼

MW ¼ MZ. References [25,27,30] do not consider QCD
corrections and the mixing terms S�s�i

ð�;�Þ are therefore

not included in their results. Switching off the QCD terms
in our result and performing a fixed-order expansion, we
find agreement with their results.
The results of this paper together with the resummation

of the pure-QCD corrections, which can be performed at
N3LL accuracy, yield predictions for single electroweak-
boson production at large transverse momentum at an
unprecedented level of accuracy. Ratios of these pT spectra
can be used to constrain the u=d ratio of PDFs or as a
theoretical input in estimations of the Zð! � ��Þþ jets
background to new physics searches, as recently discussed
in Ref. [58]. A comprehensive study comparing with avail-
able LHC data, including N3LL accuracy for the pure-
QCD resummation, will be the subject of a future
publication.
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APPENDIX: BETA FUNCTIONS IN THE SM

The two-loop running of a general direct-product
group can be found in Ref. [59]. Recently, the running
of the couplings in the SM up to three loops has also
been computed, in Refs. [60–62]. For convenience this
Appendix collects the expressions for the SM beta func-
tions that are used throughout the paper.
We write the beta function for the coupling �a as

�ð�aÞ ¼ �2�a

�
��a

0

�a

4�
þ ��a

1

�
�a

4�

�
2

þ ��a�b

1

�a

4�

�b

4�
þ � � �

�
: (A1)

The coefficients that are used in the paper read
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��1

0 ¼ 5

3

�
� 4

3
ng � 1

10
nh

�
¼ � 41

6
; ��2

0 ¼ 22

3
� 4

3
ng � 1

6
nh ¼ 19

6
;

��s�1

1 ¼ � 5

3

11ng
30

¼ � 11

6
; ��s�2

1 ¼ � 3ng
2

¼ � 9

2
;

�
�1�s

1 ¼ � 5

3

44ng
15

¼ � 44

3
; �

�2�s

1 ¼ �4ng ¼ �12;

��em

0 ¼ � 4

3
½Ncð3Q2

d þ 2Q2
uÞ þ 3Q2

l 	 ¼ � 80

9
; ��s�em

1 ¼ 2ð3Q2
d þ 2Q2

uÞ ¼ � 22

9
;

��em�s

1 ¼ �4CF½Ncð3Q2
d þ 2Q2

uÞ	 ¼ � 176

9
;

(A2)

where ng ¼ 3 is the number of generations, nh ¼ 1 is the number of Higgs doublets, CF ¼ ðN2
c � 1Þ=ð2NcÞ, Nc ¼ 3 is the

number of colors, Qd ¼ �1=3 and Qu ¼ 2=3 are the charges of the down- and up-type quarks respectively, and Ql ¼ �1
is the charge of the charged leptons.
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