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We isolate the two-step mechanism involving a real intermediate photon from the one-step mechanism

involving a virtual photon for the trident process in a constant crossed field. The two-step process is shown

to agree with an integration over polarized subprocesses. At low to moderate quantum nonlinearity

parameter, the one-step process is found to be suppressed. When the parameter is large, the two decay

channels are comparable if the field dimensions are not much greater than the formation length.
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I. INTRODUCTION

Partly due to experiments that have measured them, and
partly due to theoretical proposals to observe them, higher-
order quantum-electrodynamical processes in external
fields have recently gained much attention in the literature.
Theoretical results for two-photon nonlinear Compton
scattering in a pulsed laser field [1,2] have shown in
particle spectra a much richer physics of higher-order
processes compared to tree-level versions. Recent attention
has also been focused on the trident process in an external
field, which is essentially a lowest-order fermion-seeded
pair creation, e� ! e� þ eþe�, where eþ represents a
positron and e� an electron. Part of the trident process
was measured in the landmark E-144 experiment at the
SLAC [3,4], which still more than a decade later is being
analyzed by theorists [5,6] despite higher-order processes,
including the trident, having first been studied some years
before [7–9] (a review of strong-field effects in quantum
electrodynamics (QED) can be found in Refs. [10,11]).

In light of several plans to construct the next-generation
of high-intensity lasers [12], there has been much activity
in attempting to simulate relativistic plasmas that include
strong-field QED effects [13]. Due to their complexity and
the current lack of a consistent framework for including
classical and quantum effects alongside one another, ap-
proximations must be employed (although some nonper-
turbative strong-field QED simulation methods for systems
with fewer particles are also being currently developed
[14,15]). The current paper is motivated on the one hand
by the need to justify approximating higher-order QED
processes by chains of tree-level processes in simulation-
based approaches and on the other by an enquiry into the
physics of the trident process in an external field. This
study complements the numerical approach of Ref. [5]
that analyzed the weakly nonlinear regime in E-144 using
a monochromatic plane wave background modified to
take into account finite interaction time, the lucid general

theoretical outline of Ref. [6], and the expression for the
total rate in a constant crossed field neglecting exchange
terms derived in Refs. [7,8]. By deriving an analytical
expression for the trident process in a constant crossed field,
we will separate off in an unambiguous way the two-step
process, measured in E-144 in a laser pulse, of a real photon
produced via nonlinear Compton scattering decaying into
an electron-positron pair (e� ! e� þ �, �! eþe�,
where � represents a photon). Moreover, we will show
that the two-step process is exactly given by a sum over
intermediate photon polarization of each tree-level subpro-
cess integrated over the photon light-front momentum and
that for the small quantum nonlinearity parameter, the one-
step process involving a virtual photon suppresses the total
rate. Furthermore, we compare the relative importance of
the two decay channels and comment on the measurability.
The paper is organized as follows. We begin by

highlighting important points in the derivation of the trident
process in a constant crossed field, relegating technical
albeit standard steps to Appendices. The two-step contri-
bution is analyzed and compared to combining tree-level
rates, and then the remaining, nominatively ‘‘one-step’’
contribution is analyzed and compared to the Weizsäcker-
Williams approximation. The total creation probability is
then studied, the measurability of each process commented
on, the results discussed, and the paper concluded.

II. PROBABILITY DERIVATION OUTLINE

A diagram of the considered trident process is given in
Fig. 1, where double lines indicate fermions dressed in the
external field, which has a vector potential A�ð’Þ, phase
’ ¼ ßx, and wave vector ß, satisfying ßA ¼ ß2 ¼ 0.
Following standard Feynman rules (see e.g. Ref. [16]), in
a system of units c ¼ ℏ ¼ 1 with the fine-structure con-
stant � ¼ e2, for positron charge and mass e > 0, m, the
scattering matrix for this trident process is given by

Sfi¼�
Z
d4xd4yc 2ðxÞ��c 1ðxÞG��ðx�yÞc 3ðyÞ��cþ4 ðyÞ

�ðp2$p3Þ; (1)
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where the electron in, electron out, and positron out wave

functions in the field of a plane wave c , c , cþ are given
by Volkov states [17]; G��ðx� yÞ is the photon propaga-

tor; and (p2 $ p3) refers to an exchange of p2 and p3 in

the first term of Sfi and Sfi ¼ ~Sfi � SQfi. The second term

must be subtracted due to exchange symmetry as the two
outgoing electrons are indistinguishable (Pauli’s princi-
ple). To avoid ambiguity arising from the exchange term,
differential rates will be in p0, p�, and pþ, which refer
to the scattered electron, created electron and positron
momentum, respectively.

Let us fix the coordinate system by defining ß� ¼
ß0ð1; 0; 0; 1Þ�, A� ¼ Að’Þð0; 1; 0; 0Þ�. Then focusing

on just ~Sfi (the calculation for SQfi is analogous), using

the definition of the objects in Eq. (1) and Fourier-
transforming both vertices x and y, one arrives at [18]

~Sfi ¼ ð2�Þ2�
Z

drds�ð4Þð�Þ��ðrÞ 1

k02 þ i"

��������k0¼k0�
��ðsÞ;

(2)

where � ¼ p2 þ p3 þ p4 � p1 � ðrþ sÞß, k0 is the
photon wave vector, k0� ¼ p1 � p2 þ rß and ��ðrÞ and
��ðsÞ are functions of variables at the first and second

vertices, respectively. It has been shown that the Fourier-
transformation variables r and s are equivalent to the
number of external-field photons when the background is
an infinite plane wave [10].

A constant crossed field background A�ð’Þ ¼ a�’ is
interesting, first because many integrals can be performed
analytically facilitating physical interpretation, second,
that integration is computationally sufficiently cheap that
rates could feasibly be added to simulations and, third,
that predictions in a constant crossed field are often a
good approximation to those in an arbitrary background
field. When one considers that a general strong-field
QED process can depend on four gauge- and relativistic-
invariants [19],

� ¼ e2p�T
��p�

m2ðßpÞ2 ; � ¼
e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp�F

��j2
q

m3
;

F ¼ e2F��F
��

4m4
; G ¼ e2F���F

��

4m4
;

(3)

where T�� and F�� are the energy-momentum and
Faraday tensors and � and � the classical and quantum

nonlinearity parameters, it is a common argument [10]
that if �� 1 (equivalent to process formation lengths
being much smaller than the external field wavelength),
the external field can be considered constant during the
process, and if F , G� �2, 1, then probabilities P are
well-approximated by those in a constant crossed field
Pð�;F ;GÞ � Pð�; 0; 0Þ. The classically nonlinear regime
�� 1 is fulfilled by the most intense lasers [20], as are
F , G� 1.
The probability of the trident process can be calculated

by performing the trace average over spin states (achieved
using the package Feyncalc [21]) and integrating over the
outgoing degrees of freedom (a factor of 1=2 removes
double counting from identical final particles), P¼ð1=4Þ�Q

4
j¼2½V

R
d3pj=ð2�Þ3�trjSfij2, where V is the system vol-

ume. When the momentum-conserving delta function
in Eq. (2) is squared, a factor in the denominator of a
formation phase length, �’þ, is generated:

�ðrþ s� ðr0 þ s0ÞÞjrþs¼r0þs0 ¼ �’þ=2�; (4)

where �’þ ¼
R
d’þ, ’� ¼ ’x � ’y is assumed finite

and ’z ¼ zß, z 2 fx; yg [more detail of this step is given in
Eqs. (A14)–(A18)]. The formation phase length can be
related to particle momenta by calculating the position of

the (real) saddle point in the phase of ~Sfi, ’
�þ ¼ ’�x þ ’�y

and then associating �’�þ ¼
R
d’�þ analogous to

tree-level calculations [10], explained in more detail in
Sec. A 6. Replacing phase lengths �’ with coherence
intervals �’� is a key part of this approach, and they
will be used interchangeably.

As the rate is proportional to jSfij2 ¼ j ~Sfi þ SQfij2,
we note interference between exchange terms arises. In
Sec. A 8, it is argued that this interference is negligible
when the field dimensions are much larger than the
formation length. This is the only part neglected as we

proceed with P � ð ~Pþ PQ Þ=2. Moreover, p2 $ p3 is a
symmetry of the remaining integrand, permitting us to

define P ¼ ~P ¼ PQ .
Using the definition of P given above with the replace-

ment Sfi ! ~Sfi, one then has

~P ¼ �2�2m2

27ðß0Þ3ðßp1Þ
Z dp�2 dp�3 dp2

2dp
2
3

4�p�1 p�2 p�3 p�4

	ðp�2 Þ	ðp�3 Þ
p�1 � p�2

J

(5)

J ¼
Z d’�þd’��

2�2
tr

��������Z dr
��ðrþ r�Þ��ðs� � rÞ

rþ i"

��������2

nn
;

(6)

where the integral in d3p4 has already been performed,
� ¼ m�E=ß

0, the instruction nn means that all normal-

izations of the form ð2Vp0
j Þ�1=2 for j 2 f1; 2; 3; 4g

have been removed, r� ¼ ðp1 � p2Þ2=2ßðp2 � p1Þ, and

FIG. 1. The Feynman diagram for one term of the trident
process in a plane wave (the other is given by the substitution
p2 $ p3).
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s� ¼ ½ðp2 þ p3 þ p4Þ2 �m2�=2p1ß� r� (the steps to
arrive at this formula are detailed in Appendices).
Focusing on the r integration, we can write

J ¼ 1

2�2

Z
d’�þd’��

��������Z dr
ei’

��rFðrÞ
rþ i"

��������2

; (7)

where FðrÞ 2 C1. A crucial step is how to deal with the
integration over the photon propagator. As commented in
Ref. [6], using the Sokhotsky-Plemelj formula [22],Z 1

�1
dr

FðrÞ
r� i"

¼ 	i�Fð0Þ þ P̂
Z 1
�1

dr
FðrÞ
r

; (8)

where P̂ refers to taking the Cauchy principal value of
the integral and P might be thought to be split into real
and virtual parts, for which the photon is on-shell (k2 ¼ 0)
and off-shell, corresponding to the first and second
terms in Eq. (8) respectively. However, for a constant
crossed field at least, these two terms correspond only to
a � function and a principal value part. Using Eq. (8),
performing the principal values first, J can be shown to be
equal to

J ¼ J ð2Þ þ J ð1Þ� þ J ð1Þd (9)

J ð2Þ ¼ 2jFð0Þj2
Z

d’�þd’��	ð�’��Þ (10)

eJ ð1Þ� ¼ Fð0Þ
�

Z
d’�þ

Z 1
0

dr
F�ðrÞ þ F�ð�rÞ � 2F�ð0Þ

r2

(11)

J ð1Þd ¼
1

�

Z
d’�þ

Z
dr
jFðrÞ � Fð0Þj2

r2
; (12)

where J ð1Þ� ¼ 2Re eJ ð1Þ� , Re is the real part, and 	ð
Þ is the
Heaviside theta function. J ð1Þd and J ð1Þ� denote the direct

one-step and one-step-two-step interference integrals.
Since F most often has a maximum at r ¼ 0 for the most
important dynamical regions, it can also be noted that the
interference term is effectively negative. We return to this
point in the discussion of the one-step process. Recognizing
that if ’�x, ’�y 2 ½’0; ’� then 2�1

R
d’�þ

R
d’��	ð�’��Þ is

equivalent to
R
’
’0

d’�x
R
’�x
’0

d’�y, and J ð2Þ forms a two-step

process. Although there are ostensibly two phase regions’�x
and’�y, in a constant crossed field, the two-step phase factor
is trivially related to the total phase region through

Z ’

’0

d’�x
Z ’�x

’0

d’�y ¼ ð�’Þ
2

2
; (13)

where �’ ¼ ’� ’0 is the total phase difference between
the beginning and end of the process in the external field,

thereby measuring its extent. What remain in P are terms
proportional to 2�1

R
d’�þ, equal to

R
’
’0

d’0 ¼ �’, which

we deem accordingly a one-step process. The Heaviside
theta function in the two-step process preserves causality,
ensuring that pair creation from a photon occurs after
photon emission from nonlinear Compton scattering. An
important point is that this theta function is generated from
terms in both the � function and principal value part of the
photon propagator, and so the principal value part also plays
a key role in the calculation of the two-step process involv-
ing a real photon. Even in the remaining one-step terms in

Eq. (9) that comprise a cross-term I ð1Þ� and a direct-term

I ð1Þd , it transpires that

I ð1Þ� ðr ¼ 0Þ þ I ð1Þd ðr ¼ 0Þ � 0: (14)

So as the two-step term contains a contribution from the
principal value part of the propagator, so does the one-step
term contain a nonzero on-shell contribution. Overall cau-
sality can be seen to be observed without having to split up
the propagator into � function and principal value parts, by
calculating the r integral early on in Sfi using [23]

Z 1
�1

dr
1

rþ i"
eirð’x�’yÞ ¼ �2�i	ð’y � ’xÞ: (15)

We can then write the total probability in terms of the

two-step and one-step probabilities P ¼ Pð2Þ þ Pð1Þ, where
Pð1Þ ¼ Pð1Þd þ Pð1Þ� comprises ‘‘pure’’ one-step and one-

step-two-step cross terms.

III. TWO-STEP PROCESS

From the six original outgoing momentum integrals, due
to the symmetry in the 1- (electric-field) direction, four
integrals remain. As we neglect mixing between direct
and exchange terms, each integral in the 2-direction can
be factorized into a Compton-scattering vertex part and a
pair-creation vertex part. Some useful Airy integrals that
were derived from existing results in the literature are given
in Appendix B, which facilitated thep2

2 andp
2
3 integrations,

giving for Pð2Þ a final double integral, which can be written
as a product of a spacetime-dependent phase length squared
and a dynamical part dependent on relativistic and gauge-
invariant quantities �j ¼ �Eðp0

j � p3
j Þ, �E ¼ E=Ecr and

Ecr ¼ m2=e,

Pð2Þ ¼ ð��’Þ2I ð2Þ=2

I ð2Þ ¼ �2

�2
1

Z d�2d�3	ð�1 � �2 � �3ÞAð2Þ

ð�1 � �2Þ2
;

(16)

where I ð2Þ ¼ I ð2Þð�1Þ and Að2Þ ¼Að2Þð�1; �2; �3Þ
given by
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Að2Þ ¼Ai1½�2=3
2 �Ai1½�2=3

3 �þa2Ai
0½�2=3

2 �Ai1½�2=3
3 �

þa3Ai1½�2=3
2 �Ai0½�2=3

3 �þa4Ai
0½�2=3

2 �Ai0½�2=3
3 �

a2¼�1=3
2 ð�2

1þ�2
2Þ=ð�1��2Þ

a3¼��1=3
3 ½ð�1��2��3Þ2þ�2

3�=ð�1��2Þ
a4¼�ð�2�3Þ1=3½�4

1� 2�3
1ð�2þ�3Þ

þ�1�2ð�2�2
2��2�3þ�2

3Þþ�2
1ð2�2

2þ�2�3

þ 2�2
3Þþ�2

2ð�2
2þ 2�2�3þ 2�2

3Þ�=ð�1��2Þ2
(17)

�2 ¼ �1 � �2

�1�2

; �3 ¼ �1 � �2

ð�1 � �2 � �3Þ�3

; (18)

where Ai is the Airy function [24], Ai0 its differential, and
Ai1ðxÞ ¼

R1
x AiðyÞdy. The phase formation length factor

can be written in a variety of ways:

��’ ¼ m�E�’

ß0
¼ L

L�
; (19)

where L is the extent of the external field and L� ¼ 
=�E

the formation length, where 
 ¼ 1=m is the reduced
Compton wavelength. It is quite logical that the formation
length should be of this form when one considers over what
extent thework done by the field is sufficient to create a pair
L� ¼ m=eE ¼ 
=�E.

Further support that the splitting off of the two-step
process is unambiguous in a constant crossed field is found
upon comparison with the ‘‘product approach’’ of integrat-
ing the tree-level processes of nonlinear Compton scatter-
ing (quantities denoted by subscript �) and photon-seeded
pair creation (subscript e) over the intermediate photon
light-front momenta and summing over the photon polar-
ization, l. The differential rates for the subprocess are given
by [25,26]

I�;l ¼ ��
�2
1

Z �1

0
d�k

��
2� 1

z�
þ �kz

1
2
�

�
Ai0ðz�Þ þ Ai1ðz�Þ

�
Ie;l ¼ �

�2
k

Z �k

0
d�3

��
2� 1

ze
� �kz

1
2
e

�
Ai0ðzeÞ þ Ai1ðzeÞ

�
;

(20)

where z�¼ð�k=�1ð�1��kÞÞ2=3¼�2=3
2 , ze¼ð�k=

�3ð�k��3ÞÞ2=3¼�2=3
3 , and � refers to transverse polar-

izations l ¼ 1, 2. The probability in the product approach is
P�e ¼ ð��’Þ2I�e=2, where

I�e ¼ 1

2

X2
l¼1

Z �1

0
d�k

@I�;l

@�k

Ie;l: (21)

By comparison of Eqs. (20) and (16), one can observe that

I ð2Þ ¼ I�e. This agrees with previous analyses performed

for the total trident rate in a constant crossed field by

analyzing the polarization operator correction to the
Volkov propagator in a constant crossed field [7,8].

The differential rate @2I ð2Þ=@�0@�� (�0, ��, and �þ
refer to the scattered electron, created electron, and posi-
tron � factors, respectively) is plotted in Fig. 2 for incom-
ing quantum nonlinearity parameter �1 ¼ 1 and �1 ¼ 10.
It was found that for �1 � 1, the differential rate is sym-
metric in �0 and ��, becoming more sharply peaked
around the maximum at �0 ¼ �� ¼ �þ ¼ �1=3 as the
initial � is shared equally among the products of the
reaction. However, when the highly quantum nonlinear
regime �1 � 1 is entered, �0 ! �1 and �� ! 1, and the
most probable scenario for a highly relativistic fermion
seed that creates a pair is that it remains highly relativistic
and can seed further generations of pairs in a field-free
cascade (this point has recently been explored in Ref. [25]).
By plotting the differential rate in the 2-component of

momentum of the outgoing electrons @2I ð2Þ=@p02@p2�, in
Fig. 3 it can be seen that at high �1, a beam of electrons
colliding head on with the external field wave vector is split

FIG. 2 (color online). The differential rate of the two-step pro-
cess @2I ð2Þ=@�0@�� for incoming fermion quantum nonlinearity
parameter (a)�1 ¼ 1 and (b)�1 ¼ 10. As�1 increases above1, the
probability becomes skewed around large �0 and small ��.

(a) (b)

FIG. 3 (color online). The scaled differential rate for the two-
step process 108@2I ð2Þ=@p0y@py� for incoming fermion quantum
nonlinearity parameter (a) �1 ¼ 1 and (b) �1 ¼ 10. For higher
�1, the electrons are split into two ever more distinct momentum
regions.
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into two connected phase-space regions, denoted by the
two lobes in Fig. 3(b). Using transverse momentum con-
servation p2

1 � p02 � p2� � p2þ ¼ 0, it can be shown that
the distribution in electron and positron momenta is simi-
larly split, with the line of symmetry along p2þ ¼ �p2�.
The width of the distribution in p02 and p2� can be
estimated using the result that bremsstrahlung from an
electron is emitted in a cone of radius � 1=� [27].
Assuming �� 1, and that the incoming electron collides
head on with the external field wave vector, the magnitude
of the transverse coordinate p?2 over the 3-component of
initial electron momentum must be approximately equal to
this angle, i.e. p02=p3

1 � 1=�. Using the approximation

� � 2��E, it then follows that p02 and hence p2� must
be approximately less than unity.

The dependency of the total two-step probability on �1

is plotted in Fig. 4, in which I ð2Þ is compared to the product
approach using unpolarized tree-level differential rates,

�I�e ¼
Z �1

0
d�k

@ �I�

@�k

�Ie; (22)

where �I j ¼ ðI j;1 þ I j;2Þ=2 for j 2 f�; eg. The relative

difference between the total unpolarized and polarized
rate was found to be around � 12% for 1<�1 < 103. In
addition, the dashed line in Fig. 4 plots an approximate
formula derived by Baier, Katkov, and Strakhovenko in
Ref. [7], adapted to the current notation as

I ð2Þbks ¼
3�2

16�1

log

�
1þ �1

12

�
e
� 16

3�1ð1þ 0:56�1 þ 0:13�2
1Þ16;
(23)

which was found to agree with I ð2Þ to within around 4% for
1<�1 < 103.

IV. ONE-STEP PROCESS

Pð1Þ was evaluated as a five-dimensional numerical
integral of the form

Pð1Þ ¼ ��’I ð1Þ

I ð1Þ ¼ �2

��1

Z d�2d�3dp
2
2dp

2
3dv	ð�1 � �2 � �3Þ

ð�1 � �2Þ2
Bð1Þ

v2
;

(24)

where

eBð1ÞðvÞ ¼ jAð1ÞðvÞ �Að1Þð0Þj2
þ 2Re½Að1Þð0ÞðAð1Þ�ðvÞ �Að1Þ�ð0ÞÞ�; (25)

whereBð1Þ¼Bð1ÞðvÞ¼ eBð1ÞðvÞþ eBð1Þð�vÞ andAð1ÞðvÞ ¼
Að1Þðv; �1; �2; �3; p

2
2; p

2
3Þ are functions containing prod-

ucts of Airy functions depending on the combination
ðp2

2;3Þ2 þ �2;3 with

22=3�2;3ðvÞ ¼ �2=3
2;3 �

v

�1�
1=3
2;3

; (26)

where we note �jðv ¼ 0Þ ¼ ð�j=2Þ2=3 and the integral in

v ¼ 2�1ß
0r=m�E is between 0 and 1. One can relate

the more complicated function Að1ÞðvÞ to the analytical

expression for the two-step process integrand Að2Þ by
recognizingZ

dp2
2dp

2
3A

ð1Þð0; �1; �2; �3; p
2
2; p

2
3Þ ¼Að2Þð�1; �2; �3Þ;

(27)

whereAð2Þ was given in Eq. (16). Numerical integration in
the left-hand side of Eq. (27) then served as a partial check

of Að1ÞðvÞ.
As noted in the derivation, the one-step term can be

written as the sum of a purely one-step and a one-step-

two-step interference term, I ð1Þ ¼ I ð1Þd þ I ð1Þ� , where it

was seen that I ð1Þ� < 0. To investigate this point, we plot

in Fig. 5 the differential rate @2I ð1Þ=@�0@��, in which one

FIG. 4 (color online). The two-step rate I ð2Þ is compared to an

approximation from the literature I ð2Þbks and the product approxi-

mation of an integration over the lightfront photon momentum
using unpolarized subprocesses �I�e.

(a) (b)

FIG. 5 (color online). A plot of the differential rate of the one-
step process in �0 and �� for (a) �1 ¼ 1 and (b) �1 ¼ 10. The
one-step rate is entirely negative in a).
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can clearly observe negative regions. As long as the total
differential rate remains positive, this negativity originates
from the artificial splitting into one- and two-step terms.
The one-step process in these momentum regions is not
directly detectable but rather serves to suppress the overall
rate. As �1 increases, the suppression is reduced, and the
one-step probability becomes positive.

To investigate the different dynamics of the one-step
process, in Fig. 6 we plot the differential rate

@2I ð1Þ=@p02@p2�, in which one can clearly observe that
the regions of maximum amplitude are negative. Upon
comparison with the two-step differential rate in Fig. 3,

we found that the purely one-step term I ð1Þd splits into two

lobes first atmuch higher�1, and the line of symmetry in the
distribution was at a reduced angle. We consider whether
the transverse momentum distribution can be used to mea-
sure the one-step process in the Sec. VA.

The total probability of the one-step process is plotted in
Fig. 7. We note that the total one-step rate becomes positive
for �1 * 20. This is a consequence of the positive purely
one-step rate, which increases with �1 becoming dominant
over the negative cross term between one-step and two-step
processes, in which the two-step rate decreases for �1 �
20. One could consider the following intuitive reasoning as
to why the off-shell part increases with �1, in contrast to
the on-shell part. From the bandwidth theorem applied to
the uncertainty relation, �E�T 
 ℏ, the spread of virtual
energies available �E is larger when the interaction time
�T is shorter, which here corresponds to the time taken to
traverse the formation length L�. Since �T / 1=u1, where
u1 is the velocity of the incoming electron, which increases
with �1, the virtual photons can therefore more easily fulfil
energy-momentum conservation at both vertices. The two-
step process, on the other hand, does not benefit from this
scaling. We discuss the consequences of this in Sec. V.

From Fig. 7 we note that the maximum suppression of
the two-step rate due to a negative one-step rate occurs at
�1 � 10. Since the cross-term is essentially the overlap

between the one-step and two-step processes, and since
this grows with �1, the suppression does not appear to be
due to the increasing overlap of the two decay channels as in
e.g. the Landau-Pomeranchuk-Migdal effect (recently
studied in the combination of laser and atomic fields
[28]). What can be noticed is that the probability for the
one-step process becomes only positive when, over a for-
mation length L�, regardless of the extent of the field, the
purely one-step process becomes more probable than the
two-step process.
The total rate for the one-step process can also be

verified in part by using existing asymptotic approxima-
tions in the literature, for example from Ref. [7] one has

I ð1Þbks 

��2

32

ffiffiffiffiffiffiffiffi
2�1

3�

s
e
� 16

3�1 ; �1 � 1; (28)

(a) (b)

FIG. 6 (color online). A plot of the differential rate of the one-
step process in the 2-components of the outgoing electrons,
multiplied by 108 when (a) �1 ¼ 1 and (b) �1 ¼ 10.

FIG. 7 (color online). Various parts of the one-step probability.
Dotted lines represent negative contributions (suppression), and
for �1 * 20, the total one-step probability becomes positive

(solid line). The purely direct term I ð1Þd is also compared with

the Weizsäcker-Williams approximation I ð1Þww.

FIG. 8 (color online). The agreement between the one-step rate

and the asymptotic expression I ð1Þbks from Ref. [7] for �1 � 1.
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the error for which remains less than 20% for �1 & 0:1, as
plotted in Fig. 8.

A test that was used to approximate the one-step back-
ground in E-144 [3,4] is the Weizsäcker-Williams (WW)
approximation Pww [27,29], which is applicable to the

purely virtual part, Pð1Þd . This approximation substitutes

the virtual photon spectrum of a charged seed particle
with an equivalent real photon spectrum (by neglecting
nontransverse polarisation components) and then assumes
the individual real photon frequency components can be
summed incoherently with the photon-seeded pair-creation
probability. One can achieve a similar result by performing
the spin trace over just the transverse spacetime indices,
followed by a limiting procedure k2 ! 0 in the resulting
quantum amplitudes [30]. This should be a good approxi-
mation to the trident process, the closer the intermediate
virtual photon is to being real, i.e. the smaller k2 becomes
with respect to the electron mass. We note

k2 ¼ ðp2 � p1Þ2 � 2rßðp2 � p1Þ; (29)

therefore, the closer the scattered electron momentum is to
the original one, i.e. the smaller the electron recoil, the
smaller k2 is, independent of r. For the two-step case, the
integration of the product approximation shows [25] that in
general �k � �1 and �2 � �1 when �1 � 1. It then
follows that when �1 � 1, the Weizsäcker-Williams
method can be used to approximate to the directly virtual

part of the probability, Pð1Þd . One can modify the

Weizsäcker-Williams approximation for pair creation via
bremsstrahlung [22] to the present case,

Pð1Þwwð�1Þ ¼ 2�

�

Z �1

0

d�k

�k

�
ln

�
�1

�k

�
� C

�
Peð�kÞ; (30)

where C¼�Eþ1=2� ln2�0:384 and �E ¼ 0:57721 . . .
is the Euler constant. The comparison is made in Fig. 7,

where we have taken Pe ¼ ��’ �Ie and Pð1Þww ¼ ��’I ð1Þww.
For values of �1 & 2, the WW approximation becomes
quickly worse than 10%, seeming to support the decom-
position of the one-step process into purely virtual and
cross-term parts (although the error remains of the order
of the polarization error in the two-step process, of around
10%). However, despite the accuracy when compared to
the purely virtual one-step process, the WWapproach does
not take into account the cross term between one- and two-
step processes and therefore even fails to indicate the
region of measurability of the one-step process or its
suppressive effect on the total rate. One might conjecture
that the WW rate could be useful when �1 increases above
100, but we have not investigated this here as doubt has
been cast on whether the perturbative expansion in final
particles is valid at such a large value of �1 [31].

V. TOTAL TRIDENT PROCESS RATE

Comparison of the one- and two-step processes depends
not only on �1 but also on the extent of the external field
and will allow for an analysis of how small the external
field can be taken without substantially violating the
assumptions in the derivation. In previous sections, it was
seen that for small �1, the total one-step process becomes
negative. Since the total rate must remain positive, this
allows for a condition on the minimum allowable dimen-
sion of the external field. To make the discussion more
transparent, let us rewrite the phase factors in terms of
formation lengths recalling ��’ ¼ L=L�, L� ¼ 
=�E, so
that the total probability is of the form

P ¼ 1

2

�
L

L�

�
2
I ð2Þ þ L

L�
I ð1Þ þ I ð0Þ; (31)

whereI ð0Þ corresponds to the neglected interferencebetween
exchange terms. By regarding L=L� as a separate variable,
we plot the dependency of the calculated terms in P on both
�1 and L=L� in Fig. 9. From the plot of the total rate in
Fig. 9(a), it seems that L=L� < 2 is required before the total
rate becomes negative, and this is most critical at around

�1 � 10. Onemight argue that sinceL=L� < 2, theI ð0Þ term
must be taken into account and possibly cancels out this
negativity. However, in Fig. 9(b) we plot the maximum ratio
of L=L� required such that also the differential rate of the
calculated terms in p02 and p2� (solid line) and in �0 and
�� (dashed line) remains positive,which is seen togrowwith
�1 into the L=L� > 2 region (L=L� � 60 was found for
�1 ¼ 103, although it is unknown whether the current
method is at all applicable at such high � factors [31]).

Therefore, the I ð0Þ term is unlikely to be fundamental to
the discussion.
The origin of this negativity is most likely the assump-

tions made in deriving the constant crossed field rates.

(a) (b)

FIG. 9 (color online). Plot (a) is the sum of the total two- and
one-step rates (multiplied by 106) as a function of incoming
nonlinear quantum parameter �1 and external field dimension
L=L�. Plot (b) is the maximum value of L=L� such that the
differential rate in p02 and p2� (solid line) and �0 and �� (dashed
line) remain positive.
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Most notably, the infinite integral over the external-field
phase performed to generate the characteristic Airy func-
tions must be modified to include the finite duration. These
results imply a useful additional constraint on the validity
of the constant crossed field approximation, namely,

��’� 1: (32)

This is independent of the condition �� 1, which is
required to justify the limit on the external-field frequency
ß0 ! 0 in the expression for a general background because
��’ is independent of ß0.

A. Measurability

Here we are discussing the measurability of electron-
seeded pair creation in the collision of a laser and electron
beam in the nonperturbative and highly nonlinear regime
(�� 1) in contrast to the weakly nonlinear regime
(� & 1) discussed in Ref. [5] in a curtailed plane-wave
background. The two-step process is measurable by taking
similar parameters to the SLAC E-144 experiment but
increasing the intensity of the laser used from 1:3�
1018Wcm�2 to 1022Wcm�2 (the frequency !¼527nm)
and reducing the pulse duration from � ¼ 1:6 ps to
� ¼ 10 fs, allowing the energy and number of initial elec-
trons to be reduced to 109, 2 GeV electrons. Assuming the
slight angle between the laser and particle beam required in
any experimental setup makes only a minor difference to
our analysis for a head-on collision [in E-144 the angle was
�=10 radians and �1ð	Þ � �1ð0Þð1� 	2=2Þ for collision
angle 	� 1], �1 ¼ 1, � ¼ 30, and L=L� ¼ 1100; for a
constant external field, the initial beam of electrons would
create of the order of 5� 106 pairs. This estimate can
be improved by using the locally constant crossed field
approximation:

Pð2Þ ¼
Z 1
�1

d’x

Z �1

0
d�k

@P�½�1ð’xÞ; �kð’xÞ�
@�k

�
Z ’x

�1
d’yPe½�kð’yÞ�; (33)

for a 500 TW laser pulse of focal width 2 �m modelled

by Eð’Þ ¼ E0e
�ð’=’0Þ2 cos’, where ’0 ¼ !�, (� � 30,

� � 1), the probability of which is plotted in Fig. 10,
which then predicts of the order of 105 pairs. However,
we stress that Compton scattering and focusing effects
have been neglected, which would act to reduce this esti-
mate. The one-step process in this regime seems much
more difficult to separate in an experiment. One possibility
is to measure the transverse momenta of final state posi-
trons (the electron momentum distribution will likely be
washed out by double-photon Compton scattering of the
initial electron). Due to the slightly wider momentum
spectrum in the 2-direction for positrons created via the
one-step process compared to the two-step process, plotted
in Fig. 11(a), with a judicious momentum ‘‘cut,’’ the effect

of the one-step process could be measured. In Fig. 11(b)
the ratio rð�1Þ of one-step to two-step created positrons
outside of the area jp2�j<m, in regions of the detector
where the former is at least 50% the latter, is plotted as a
function of the field dimension L=L�. The one-step process
is then most measurable for a head-on collision when the
� factor is increased but �E held relatively low. A beam of
109, 250 GeV electrons combined with a single-cycle
1021 W cm�2 laser pulse (�1 ¼ 40, � ¼ 10, L=L� � 60)
would produce of the order of 104 positrons via the one-
step process in these measurable regions from initial seed
electrons. Another possibility not explored here is that only
in those parts of the pulse for which �1 * 20 leads to one-
step pair creation, and so if the created positrons could be
‘‘streaked’’ [32,33], one could perhaps use this well-
defined phase-space region to better exclude the two-step
background. Although further Compton scattering of the

FIG. 10. The maximum of the probability of the two-step
process using the locally constant crossed field approximation
is shifted from the maximum of the external field at ’ ¼ 0.

(a) (b)

FIG. 11 (color online). In plot (a) for �1 ¼ 10 is the ratio of
the one-step to the two-step processes, where in the empty
regions, the ratio becomes much larger than the maximum on
the color scale. In plot (b) the percentage rð�1Þ of the measurable
one-step signal to the total signal in the p2� � p2þ plane, with
increasing L=L�, is plotted.
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positrons could take place, this three- rather than a two-
vertex dressed process is less probable.

VI. DISCUSSION

A fundamental difference between the two- and one-step
processes is that in the two-step process, the real photon
can propagate for an arbitrarily long phase length before
decaying into a pair, whereas in the one-step process, the
photon’s range is limited by the uncertainty relation. So
when the subprocesses are not very probable, for example
at low �, one would expect the two-step process to domi-
nate. If the range of the real photon were curtailed to a
length of the order of the formation length, the length
associated with the one-step process, this advantage of
the two-step process would be lost, and the two processes
should be comparable, as we indeed find. On the other
hand, considering the uncertainty relation in energy and
time, the shorter the interaction duration, the larger the
bandwidth of frequencies available to fulfill energy-
momentum conservation at the vertices of one-step pair
creation. Therefore, for electrons incident with a high �
parameter, the probability of the one-step process is
enhanced compared to the two-step version, leading to its
dominance for external field dimensions of the order of the
formation length and large �.

An important point is the overlap of the two production
channels. Assuming that the constant crossed field is still
valid (��’� 1), instead of considering the suppression
of the two-step process through the one-step process, one
could instead consider this phenomenon the other way
round. The one-step process is essentially suppressed by
the more probable two-step process at low �, but when
� is large enough that the one-step channel becomes more
probable over its formation length, the one-step process
probability becomes positive and emerges as a separate
channel on its own. Moreover, this threshold is indepen-
dent of the extent of the external field, and so this
phenomenon is likely present in more complicated back-
grounds as well.

Although we have only calculated a two-step process, the
question presents itself whether the constant crossed field
approximation can be used to model long chains of processes
as is typically used in computer codes. In this case for
n vertices, assuming the Poisson-like dependence on the
external field’s spatial extent (and duration) continues to
higher orders, one could have a probability of the form

P ¼ 1

n!

�
L

L�

�
n
I ðnÞ þ 
 
 
 þ L

L�
I ð1Þ þ I ð0Þ; (34)

where I ðjÞ represents a process with j� 1 on-shell propa-

gators. Assuming the dynamical factors I ðjÞ are of the same
order, the potentially largest negative contribution arises

from the I ðnÞ � I ðn�1Þ cross term, which acquires an extra
factor n. Therefore, one might surmise that the constant-
crossed-field approximation is also valid for an n-vertex

process as long as ��’� n, although calculation of
higher-order processes would be necessary in order to vali-
date such speculation.
The two-step process was measured in the weakly

nonlinear (multiphoton) regime (� ¼ 0:3) in the E-144
experiment. We calculated the approximate number of
pairs created in the highly nonlinear and nonperturbative
regime (�� 1, �> 1). It was found that if the laser
intensity could be updated to higher, currently available
intensities (2� 1022 Wcm�2 was already achieved in
2008 [20]), the particle beam can be allowed to be even
less relativistic and the two-step process measurable. More
difficult is separating the one-step mechanism for which it
is crucial that the field extent is not much larger than the
formation length; otherwise, the background from the two-
step channel is too large. However, to use the slightly
different transverse positron momentum distribution, the
� factor must remain high � * 20. Here around 104 posi-
trons were predicted to be produced in ‘‘measurable’’
regions for a single-cycle 1021 Wcm�2 pulse but a
250 GeV electron beam. These results for the �� 1
‘‘quasistatic’’ often referred to as the ‘‘tunnelling’’ regime,
can be contrasted with the analysis in Ref. [5], in which it
was shown that in the �� 1 ‘‘multiphoton’’ regime, in
which probabilities involving N photons are proportional
to �2N , if the frequency of the laser pulse can be made high
enough in the rest frame of the seed particles, the one-step
process (leading order N ¼ 2) can be orders of magnitude
larger than the two-step process (leading order N ¼ 3).

VII. CONCLUSION

The trident process in a constant crossed field must be
considered in its entirety, being separable into two- and
one-step processes rather than real and virtual parts, which
were both seen to contribute to the one-step process. The
two-step process was found to agree exactly with an
integration of the average of polarized tree-level processes
over light-front momenta. The one-step process was found
to be effectively suppressed for �1 & 20 due to the larger
probability of the two-step process over the formation
length. In the highly nonlinear and nonperturbative regime
(�� 1, �> 1), the two-step process was shown to be
measurable for electron beams even less energetic than in
the E-144 experiment, as long as the intensity of the laser is
updated to around 1022 W cm�2. For field dimensions not
orders of magnitude larger than the formation length, it
was shown that the one-step process could in principle be
separated from the two-step process using the wider posi-
tron transverse momentum spectrum when a single-cycle
1021 W cm�2 pulse collides with a 250 GeVelectron beam.
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APPENDIX A: FURTHER DETAIL
ON DERIVATION

1. Definitions

Here we define objects used in the manuscript and
further calculation. The Volkov states are [16]

c rðpÞ ¼
�
1þ eß 6A

2ßp

�
urðpÞffiffiffiffiffiffiffiffiffiffiffiffi
2p0V

p eiSðpÞ

c rðpÞ ¼ �urðpÞffiffiffiffiffiffiffiffiffiffiffiffi
2p0V

p �
1þ e 6Aß

2ßp

�
e�iSðpÞ

cþr ðpÞ ¼
�
1� eß 6A

2ßp

�
vrðpÞffiffiffiffiffiffiffiffiffiffiffiffi
2p0V

p eiSð�pÞ

SðpÞ ¼ �px�
Z ’

0
d�

�
eðpA½��Þ

ßp
� e2A2½��

2ðßpÞ
�
;

(A1)

where ß ¼ ��ß�, �� are the gamma matrices,

ur (vr) are free-electron (-positron) spinors satisfyingP
2
r¼1ur
ðpÞ �ur�ðpÞ¼ð6pþmÞ
�=2m,

P
2
r¼1vr
ðpÞ �vr�ðpÞ¼

ð6p�mÞ
�=2m, �u ¼ uy�0, and the remaining symbols are

as described in the main paper. The photon propagator is

G��ðx� yÞ ¼
Z d4k

ð2�Þ4
4�g��

k2 þ i"
eikðx�yÞ: (A2)

The expansion of the vertices in Fourier modes is

Z dr

2�
��ðrÞe�ir’ ¼ c 2ð’Þ��c 1ð’Þ (A3)

��ðrÞ ¼
Z

d’ eir’c 2ð’Þ��c 1ð’Þ (A4)

Z ds

2�
��ðsÞe�is’ ¼ c 3ð’Þ��cþ4 ð’Þ (A5)

��ðsÞ ¼
Z

d’ eis’c 3ð’Þ��cþ4 ð’Þ; (A6)

where we have used the shorthand c i ¼ c ðpiÞ with spinor
indices suppressed and c jð’Þ are the Volkov states with

Fourier terms e�ipjx removed.

2. Derivation of rate expression

Beginning from the expression for the scattering matrix,

Sfi¼�
Z
d4xd4yc 2ðxÞ��c 1ðxÞG��ðx�yÞc 3ðyÞ��cþ4 ðyÞ

�ðp2$p3Þ; (A7)

¼ ~Sfi � SQfi: (A8)

Using the definitions in Eqs. (A1)–(A6), we can rewrite
Eq. (A7) as

~Sfi ¼ �

�

Z
d4x d4y

d4k

ð2�Þ4 dr ds e
ix��þiy��

��ðrÞ��ðsÞ
k2 þ i"

;

(A9)

where �� ¼ k� �p�, �p� ¼ p1 þ rß� p2 and �� ¼
�k� �p�, �p� ¼ sß� p3 � p4. Performing the integra-
tion in Eq. (A9) over x and y gives

~Sfi ¼ ð2�Þ
4�

�

Z
d4k dr ds �ðk� �p�Þ�ðkþ �p�Þ

� ��ðrÞ��ðsÞ
k2 þ i"

(A10)

and over k gives

~Sfi ¼ ð2�Þ
4�

�

Z
dr ds �ð4Þð�p� ðrþ sÞßÞ

� ��ðrÞ��ðsÞ
k02 þ i"

��������k0¼k0�
; (A11)

where k0� ¼ �pþ r, �p ¼ p1 � p2 and �p ¼ p2 þ p3 þ
p4 � p1. We notice

1

k02 þ i"

��������k0¼�pþrß
¼ 1

ð�pÞ2 þ 2rß�pþ i"

¼ ð2ß�pÞ�1
r� r� þ i"

; (A12)

where we have defined r� ¼ �ð�pÞ2=ð2ß�pÞ. With a
coordinate transformation r! rþ r� we have

~Sfi ¼ ð2�Þ
3�

ß�p

Z dr ds

rþ i"
�ð4Þð�p� ðrþ r� þ sÞßÞ

� ��ðrþ r�Þ��ðsÞ: (A13)

In order to evaluate the delta functions, we switch at this
point to light-cone coordinates. For spatial coordinates we
define x� ¼ ðx0 � x3Þ, x? ¼ ðx1; x2Þ, whereas for mo-
menta, p� ¼ ðp0 � p3Þ=2, p? ¼ ðp1; p2Þ. We also define
a coordinate system and specify a constant crossed field
ß ¼ ß0ð1; 0; 0; 1Þ, A�ð’Þ ¼ a�’, a� ¼ ðE=ß0Þð0; 1; 0; 0Þ,
ßa ¼ ß2 ¼ 0, so that ßx ¼ ß0ðx0 � x3Þ ¼ ßþx�.
In forming the probability, we must square the scattering

matrix. Let us concentrate on j ~Sfij2 as the steps for other

contributions are similar. When Eq. (A11) is mod-squared,
one has, for some function f ¼ fðr; s; r0; s0Þ 2 C1,
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jSj2 ¼
Z

drdr0dsds0f�ð4Þ½�p� ðrþ sÞß��ð4Þ½�p� ðr0 þ s0Þß� (A14)

¼
Z

drdr0dsds0f�ð4Þ½�p� ðrþ sÞß��ð4Þ½ðrþ s� ðr0 þ s0ÞÞß� (A15)

¼
Z

drdr0dsds0f�ð4Þ½�p� ðrþ sÞß��
ð4Þ½ðrþ s� ðr0 þ s0ÞÞß�
�ðrþ s� ðr0 þ s0ÞÞ �ðrþ s� ðr0 þ s0ÞÞ (A16)

¼
Z

drdr0dsds0f�ð4Þ½�p� ðrþ sÞß� VT

ð2�Þ3�’þ
�ðrþ s� ðr0 þ s0ÞÞ (A17)

¼ VT�ð2Þð�p?Þ�ð�p�Þ
ð2�ß0Þ3�’þ

Z
d~rd~r0fð~s ¼ �p� ~r; ~s0 ¼ �p� ~r0Þ; (A18)

where we have defined a formation phase length�’þ [10],

�ðrþ s� ðr0 þ s0ÞÞjrþs¼r0þs0 ¼ �’þ
2�

; (A19)

where

�ðxÞjx¼0 ¼
Z dl

2�
eixljx¼0; (A20)

and ~q :¼ ß0q for q 2 fr; r0; s; s0g.
At this point, since we wish to form probabilities and not

rates, we invoke the relation T=p0
1 ¼ �’þ=ßp1 [10], so

that, combining the arguments leading to Eqs. (A13) and
(A18), we then have

j ~Sfij2¼ ð2�Þ
3�2

ðß�pÞ2
Vp0

1Ið!;!Þ
ß0ðßp1Þ

�ð2Þð�p?Þ�ð�p�Þ

Ið!;!Þ¼
��������Z dr

��ðrþ r�Þ��ðs� � rÞ
rþ i"

��������2

; (A21)

where we have defined s� ¼ �pþ=ß0 � r�, which can be
shown to be equal to

s� ¼ ðp2 þ p3 þ p4Þ2 �m2

2p1ß
� r�: (A22)

We note that in order to evaluate the light-cone coordinate
delta functions occurring in Eq. (A21) from a Cartesian
integral, one can use

Z d3pj

2p0
j

fðpjÞ ¼
Z d2p?j dp�

2p�j
	ðp�j ÞfðpjÞ

���������
pþj ¼

ðp?
j
Þ2þm2

4p�
j

;

(A23)

where 	ð
Þ is the Heaviside step function.

The probability ~P, using the expression ~P ¼ ð1=2Þ�Q
4
j¼2½V

R
d3pj=ð2�Þ3� trj ~Sfij2, is then given by

~P ¼ �2

26ðß0Þ3ðßp1Þ
Y
j¼2;3

Z d2p?j
ð2�Þ3

dp�j
p�j

	ðp�j Þ trIð!;!Þjnn
p�4 ðp�1 � p�2 Þ2

;

(A24)

where the instruction nn means that all normalizations of

the form ð2Vp0
j Þ�1=2 for j 2 f1; 2; 3; 4g have been removed

and the integral in d3p4 has already been performed (to
account for the degeneracy of outgoing states, the total
probability P requires an extra factor 1=2 as explained in
the main text).

3. Vertex functions

We can rewrite the vertex functions Eqs. (A4) and (A6)
in a way that allows them to be easily evaluated by
separating integrals from trace products. Concentrating
first on ��ðrÞ,

��ðrÞ ¼
Z

d’

8><>: �u�2
ðp2Þffiffiffiffiffiffiffiffiffiffiffiffi

2p0
2V

q �
1þ e 6Að’Þß

2ßp2

�
��

�
1þ eß 6Að’Þ

2ßp1

�

� u�1
ðp1Þffiffiffiffiffiffiffiffiffiffiffiffi

2p0
1V

q eiðr’þc2’2þc3’3Þ

9>=>;; (A25)

where we have introduced

c2¼ e

2

�
p2a

ßp2

�p1a

ßp1

�
; c3¼�e2a2

6

�
1

ßp2

� 1

ßp1

�
: (A26)

Now as A� ¼ a�’, we can rewrite Eq. (A25) as

��ðrÞ ¼ �u�2
ðp2Þffiffiffiffiffiffiffiffiffiffiffiffi

2p0
2V

q "
C1�

� þ C2

e

2

 
ßa

ßp2

�� þ �� aß

ßp1

!

þ C3

e2ßa��aß

4ßp2ßp1

#
u�1
ðp1Þffiffiffiffiffiffiffiffiffiffiffiffi

2p0
1V

q ; (A27)
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Cnðr; c2; c3Þ ¼
Z 1
�1

d’’n�1eiðr’þc2’2þc3’3Þ: (A28)

By shifting the ’ coordinate ’! ’� c2=3c3, one can
show

C1 ¼ bAið�2=3Þ (A29)

C2 ¼ �b
�
c2
3c3

Aið�2=3Þ þ i

ð3c3Þ1=3
Ai0ð�2=3Þ

�
(A30)

C3¼b

���
c2
3c3

�
2�

�
�

3c3

�
2=3
�
Aið�2=3Þþ 2ic2

ð3c3Þ4=3
Ai0ð�2=3Þ

�
;

(A31)

b ¼ 2�

ð3c3Þ1=3
ei�; � ¼ � rc2

3c3
þ 2c32

27c23
;

�2=3 ¼ r� c22=3c3

ð3c3Þ1=3
;

(A32)

where Ai is the Airy function defined in Eq. (B12) with
normalization N ¼ �.

The calculation of ��ðsÞ proceeds in a similar way.

From Eq. (A6) we have

��ðsÞ ¼
Z

d’

8<: �u�3
ðp3Þffiffiffiffiffiffiffiffiffiffiffiffi

2p0
3V

q �
1þ e 6Að’Þß

2ßp3

�
��

�
1� eß 6Að’Þ

2ßp4

�

� v�4
ðp4Þffiffiffiffiffiffiffiffiffiffiffiffi

2p0
4V

q eiðs’þc02’2þc03’3Þ
9=;; (A33)

where we have introduced

c02¼
e

2

�
p3a

ßp3

�p4a

ßp4

�
; c03¼�

e2a2

6

�
1

ßp3

þ 1

ßp4

�
: (A34)

Then

��ðsÞ ¼
�u�3
ðp3Þffiffiffiffiffiffiffiffiffiffiffiffi

2p0
3V

q �
D1�� þD2

e

2

�
ßa

ßp3

�� � ��

aß

ßp4

�

�D3

e2ßa��aß

4ßp3ßp4

�
v�4
ðp4Þffiffiffiffiffiffiffiffiffiffiffiffi

2p0
4V

q ; (A35)

Dn ¼ Cnðr! s; c2 ! c02; c3 ! c03Þ: (A36)

4. Fermion trace

The trace to be evaluated comprises the trace of each
exchange term mod-squared plus interference terms. If we
define the objects

eM� ¼ �0My��0; E�i ¼
�6pi þm

2m
; (A37)

then for each exchange term squared, the trace is of the
form

Ið!;!Þ ¼X
�i

tr½ �u�2
C�ðp2; p1; rÞu�1

�u�3
D�ðp3; p4; rÞv�4

u�2
eC�ðp2; p1; r

0Þ �u�1
u�3

eD�ðp3; p4; r
0Þ �v�4

�

¼ �tr½Eþ1 C�ðp2; p1; rÞEþ2 Cy�ðp2; p1; r
0Þ� 
 tr½Eþ3 D�ðp3; p4; rÞE�4 Dy�ðp3; p4; r

0Þ�; (A38)

where from the definition of Ið!;!Þ, Eq. (A21), C� and D� are factors of Cj andDj, and j 2 f1; 2; 3g, multiplied by the
combinations of gamma matrices occurring in Eqs. (A32) and (A35), integrated over r and r0 variables. Following similar
steps, for each interference term, it is of the form

Ið ;!Þ ¼X
�i

tr½ �u�3
C�ðp3; p1; rÞu�1

�u�2
D�ðp2; p4; rÞv�4

u�2
eC�ðp2; p1; r

0Þ �u�1
u�3

eD�ðp3; p4; r
0Þ �v�4

�

¼ �tr½Eþ1 Cy�ðp2; p1; r
0ÞEþ2 D�ðp2; p4; rÞE�4 Dy�ðp3; p4; r

0ÞEþ3 C�ðp3; p1; rÞ�: (A39)

We note that the trace of each exchange term mod-squared is factorizable into a Compton-scattering and pair-creation
vertex when the connecting photon polarization is taken into account. These traces were performed with the package
Feyncalc [21].

5. Complex phase factor

It can be seen from the definitions of the Airy integrals resulting from the vertex factors that an overall phase factor
�ð
; 
Þ occurs in the traces Ið
; 
Þ [from the � factors in Eq. (A32) occurring in Eqs. (A38) and (A39)]. If one squares the r
integral, labelling the new coordinate r0, they are of the form
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�ð!;!Þ ¼ �
�
c2ðp2; p1Þ
3c3ðp2; p1Þ �

c02ðp3; p4Þ
3c03ðp3; p4Þ

�
ðr� r0Þ

�ð!; Þ ¼ �ðrþ r�Þc2ðp2; p1Þ
3c3ðp2; p1Þ þ ðr� s�Þc02ðp3; p4Þ

3c03ðp3; p4Þ þ ðr
0 þ r�Þc2ðp3; p1Þ
3c3ðp3; p1Þ � ðr

0 � s�Þc02ðp2; p4Þ
3c03ðp2; p4Þ

þ 2

27

�
c32ðp2; p1Þ
c23ðp2; p1Þ

� c32ðp3; p1Þ
c23ðp3; p1Þ

þ c032 ðp3; p4Þ
c023 ðp3; p4Þ

� c032 ðp2; p4Þ
c023 ðp2; p4Þ

�
: (A40)

After some simplification, it can be seen that the noninterference terms have a relatively simple structure (where
�E ¼ E=Ecr, Ecr ¼ m2=e):

�ð!;!Þ ¼ �ß0ðr� r0Þ
m2�Eðp�1 � p�2 Þ

½p1
2ðp�3 � p�1 Þ þ p1

3ðp�1 � p�2 Þ þ p1
1ðp�2 � p�3 Þ�: (A41)

6. Formation length of two-step process and subprocess

If we imagine that the process takes place in a coherence
interval of finite duration, for a given incoming electron
momentum p1, these integrals will also be finite [other-
wise, the particles would have to be accelerated infinitely
quickly (see also Ref. [34])]. We apply the following
reasoning, which is standard for lower-order constant-
crossed-field processes (see e.g. Ref. [10]). The phase
of the modified Airy functions that occur at each vertex,
Eq. (A28), have a stationary point at

’� ¼ �

241� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 3rc3
c22

s 35; 
 ¼ c2
3c3

: (A42)

Let us write ’� ¼ �
ð1� �’�Þ, where 
 is the phase at
which the process takes place (the saddle point) and �’� is
the width. It is assumed that �’� ¼ 0 because when this
is not the case, the resulting Airy functions have no
dependency on dynamical variables. Therefore, integration
over 
 is equivalent to integration over the relevant part of
the phase.

The complex phase factor for the purely direct (and
analogously for the purely exchange) term in a single r
integral is of the form

�ð!;!Þ ¼ ð’�x � ’�yÞr; (A43)

where ’�z is the saddle point at coordinate z and for the
purely direct term

’�x ¼ ß0

m2�E

p1
2p
�
1 � p1

1p
�
2

p�1 � p�2
(A44)

’�y ¼ ß0

m2�E

p1
2p
�
3 þ p1

3ðp�1 � p�2 Þ � p1
1p
�
3

p�1 � p�2
: (A45)

7. Isolation of the two-step process

Concentrating on the nonexchange term Ið!;!Þ [an
analogous calculation follows for Ið ; Þ], the integral
over r is of the form

J 0 ¼ 1

�2

Z
dp1

2dp
1
3

���������Z dr
ei½’�xðp1

2
Þ�’�yðp1

2
;p1

3
Þ�rFðrÞ

ðrþ i"Þ
���������

2

;

(A46)

with FðrÞ 2 C. Performing an integral substitution ’�� ¼
’�x � ’�y, one can rewrite this as

J 0 ¼ 1

2J�2

Z
d’�þd’��

��������Z dr
ei’

��rFðrÞ
ðrþ i"Þ

��������2

; (A47)

where J ¼ j@ð’�þ; ’��Þ=@ðp1
2; p

1
3Þj is the inverse Jacobian:

J ¼ m2�2 p
�
1 � p�2
2p�1

: (A48)

In order to remain consistent, before integrating in the
variable ’��, we will first perform the principal value
calculation. The order of integration is important as prin-
ciple value, and’�þ;� integrals do not necessarily commute

[for example in Eq. (A52), integration in a does not com-

mute with the operation P̂ ],

J 0 ¼ 1

2J�2

Z
d’�þd’��

���������i�Fð0Þþ P̂
Z
dr

ei’
��rFðrÞ
r

��������2

(A49)

¼ 1

2J�2

Z
d’�þd’��

���������2i�Fð0Þ	ð�’��Þ
þ
Z

drei’
��r
FðrÞ � Fð0Þ

r

��������2

(A50)

¼ 1

J

�
2jFð0Þj2

Z
d’�þd’��	ð�’��Þ

þ 1

�

Z
d’�þ

Z 1
�1

dr
jFðrÞ�Fð0Þj2

r2

þ 1

�

�
Fð0Þ

Z
d’�þ

Z 1
0
dr

F�ðrÞþF�ð�rÞ�2F�ð0Þ
r2

þc:c:

��
; (A51)
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where c. c. stands for complex conjugate and in Eqs. (A50)
and (A51), respectively, we have used the results [22]

P̂
Z 1
�1

dr

r
eiar ¼ i� sgnðaÞ (A52)

Z 1
�1

d’	ð’Þei’r ¼ iP̂
1

r
þ ��ðrÞ: (A53)

The first term in Eq. (A51) can be identified as the two-step
process due to the two phase integrals that occur, justified
in the main text. In addition, a Heaviside theta function in
�’�� occurs, which is a sign that causality is preserved
insofar as pair creation can only occur after Compton
scattering in this setting.

8. Justification for neglecting interference terms
between direct and exchange parts

For the noninterference terms, it has been shown in
Eqs. (A46)–(A51) how the simple nature of the exponential
occurring in the vertex functions leads to a dependency on
the external field phase in �’. For the interference terms,
the integral over p1

2;3 is of the form

J 0ð!; Þ ¼
Z

dp1
2dp

1
3drdr

0 e
i�ð!; ÞFðrÞF�ðr0Þ
ðrþ i"Þðr0 � i"Þ ; (A54)

where the phase �ð!; Þ contains terms of the order p1
2;3,

ðp1
2;3Þ3, p1

2ðp1
3Þ2, and ðp1

2Þ2p1
3. Instead of generating an

arbitrarily large (divergent in the strict sense) factor of
formation length �’ as for each exchange term squared,
for this interference term, an Airy function in remaining
particle momenta and r is generated, which, having posi-
tive or negative argument, will tend to reduce the value of
the integral. As noted in the conclusions of the main text, if
one demands that ��’� 1 to prevent regions of negative
total probability from arising, then these interference terms
can be safely neglected.

9. Numerical evaluation of one-step integral

Despite the five-dimensional integration of I ð1Þ,
Eq. (A55), not being oscillatory, it is challenging to
numerically evaluate

I ð1Þ ¼ �2

��1

Z d�2d�3dp
2
2dp

2
3dv	ð�1 � �2 � �3Þ

ð�1 � �2Þ2
Bð1Þ

v2
:

(A55)

As the evaluation ofBð1Þ is computationally expensive, it is
important to know the relevant bounds of the variables. In
the main text, it was justified that p2

2;3 � 1. We then take

p2
2, p

2
3,2 ½�4; 4�. From the arguments of the Airy function

given in Eq. (26), one would expect the maximum of Bð1Þ
in v to be of the order v � �1�2;3. Let a ¼ �2=�1 and

b ¼ �3=�1 so that a, b 2 ½0; 1�; then

�1�2 ¼ 1

a
� 1; �1�3 ¼ 1

1� a� b
þ 1

b
: (A56)

However, from studies of the approximated two-step pro-
cess in Ref. [25], it seems that as �1 increases above 1,
ð1� aÞ=a
 1=�1. Likewise, �3 was observed to remain
approximately constant so that b! 1=�1, leading to
�1�2;3 
 �1. Therefore, v 2 ½0; 10�1� was chosen for

the v integration, with the tail ½10�1;1� evaluated in w
with the conformal transformation w ¼ tan�1v. Although
the function B is quite smooth in the �2 � �3 plane, the
largest contribution to the total integral originates from an
ever smaller region around a ¼ 1, b ¼ 0, with increasing
�1, making these points particularly costly to evaluate. To
escape the triangular �2 � �3 plane as given in Fig. 2 in the
main text, one can substitute integration variables �2 !
�2=ð�1 � �3Þ and �3 ! �3=�1 to achieve a square inte-
gration region between 0 and 1. One can then more easily
observe where the maxima lie in the integrand and evaluate
grids of points incorporating these. The resulting surface
can then be interpolated and numerically integrated. For
�> 1, the global maximum was found in an ever smaller
region �3=�1 ! 0, �2=ð�1 � �3Þ ! 1. For example, for
the case �1 ¼ 100, as plotted in Fig. 12, the maximum was
centred around �2=ð�1 � �3Þ ¼ 0:995, �3=�1 ¼ 0:005.
The tests of accurate integration, other than the variation
of the number of points and the integration region, were
provided by comparison with asymptotic expressions from
the literature for the total rate and theWeizsäcker-Williams
approximation.

APPENDIX B: INTEGRALS OFAIRY FUNCTIONS

We give here a selection of Airy integrals that are useful
in the derivation and are in part derived from other results
in the literature. Let us define

FIG. 12 (color online). The differential of the dynamical part
of the one-step rate @I ð1Þ=@�2@�3 for �1 ¼ 100.
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I2n ¼
Z 1
�1

dt t2nAi2ðt2 þ cÞ (B1)

J2n ¼
Z 1
�1

dt t2nAiðt2 þ cÞAi0ðt2 þ cÞ (B2)

K2n ¼
Z 1
�1

dt t2nAi02ðt2 þ cÞ; (B3)

where c is an arbitrary constant (integrals involving coef-
ficients with odd powers of t are zero due to the functions
being odd). With I0, J0, and K0 being given in e.g.
Ref. [35], from partial integration and the use of some
primitives given in Ref. [36], the following analytical
results have also been verified numerically:

I0 ¼ �

2N
Ai1ðvÞ (B4)

I2 ¼ � �

4N

�
1

�
Ai0ðvÞ þ cAi1ðvÞ

�
(B5)

I4 ¼ 3�

16N

�
�

4
AiðvÞ þ c

�
Ai0ðvÞ þ c2Ai1ðvÞ

�
(B6)

J0 ¼ ���

4N
AiðvÞ (B7)

J2 ¼ � �

8N
Ai1ðvÞ (B8)

J4 ¼ 3�

16N

�
1

�
Ai0ðvÞ þ cAi1ðvÞ

�
(B9)

K0 ¼ � �

4N�
½3Ai0ðvÞ þ vAi1ðvÞ� (B10)

K2 ¼ �

16N

�
5

4
�AiðvÞ þ c

�
Ai0ðvÞ þ c2Ai1ðvÞ

�
; (B11)

v ¼ �c, � ¼ 22=3, N is the normalization factor occurring
in the definition of the Airy function,

AiðxÞ ¼ 1

N

Z 1
0

dt cos ðt3 þ xtÞ (B12)

where Ai0ðxÞ ¼ @AiðxÞ=@x, and Ai1 is defined as

Ai 1ðxÞ ¼
Z 1
0

dtAiðtþ xÞ: (B13)
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[29] C. F. Weizsäcker, Z. Phys. 88, 612 (1934); E. J. Williams,

Phys. Rev. 45, 729 (1934).

[30] H. A. Olsen, Phys. Rev. D 19, 100 (1979).
[31] N. B. Narozhny, Phys. Rev. D 21, 1176 (1980).
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